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We have shown in previous work that the perception of
order in point patterns is consistent with an interval
scale structure (Protonotarios, Baum, Johnston, Hunter,
& Griffin, 2014). The psychophysical scaling method used
relies on the confusion between stimuli with similar
levels of order, and the resulting discrimination scale is
expressed in just-noticeable differences (jnds). As with
other perceptual dimensions, an interesting question is
whether suprathreshold (perceptual) differences are
consistent with distances between stimuli on the
discrimination scale. To test that, we collected
discrimination data, and data based on comparison of
perceptual differences. The stimuli were jittered square
lattices of dots, covering the range from total disorder
(Poisson) to perfect order (square lattice), roughly
equally spaced on the discrimination scale. Observers
picked the most ordered pattern from a pair, and the
pair of patterns with the greatest difference in order
from two pairs. Although the judgments of perceptual
difference were found to be consistent with an interval
scale, like the discrimination judgments, no common
interval scale that could predict both sets of data was
possible. In particular, the midpattern of the perceptual
scale is 11 jnds away from the ordered end, and 5 jnds
from the disordered end of the discrimination scale.

Introduction

The notion of order appears in Gestalt psychology
(Koffka, 1935), and is related to arrangements of

objects where their relative placement has significance.
As such, order may consist of specific regularities
(laws), and these may interact synergistically (Wage-
mans, Wichmann, & de Beeck, 2005). It was suggested
that the visual system seeks order (e.g., symmetry) so as
to make sense of sensory signals. The ability of the
visual system to detect regularities has been proposed
as a method of compressing information to reduce
redundancy (Attneave, 1954). Gestalt principles con-
sidered under this view are functions of the perceptual
machinery that group information together and thus
provide an economical description of visual reality.
Order in the form of repetitive and symmetrical
patterns is also aesthetically preferred (e.g., Newell,
Murtagh, & Hutzler, 2013) and has been utilized
historically for artistic and architectural purposes. In
nature, perfect order rarely exists, and the visual system
has to cope with intermediate states of order. Subjective
assessments of the degree of order are common in
everyday life but also in scientific research when visual
patterns are examined (Cohen, Baum, & Miodownik,
2011; Cook, 2004; Marinari et al., 2012). Partial order
is particularly relevant to biology and biomedicine,
because living systems tend to be well-, but not
perfectly, ordered. For example, in the mammalian eye,
the spacing of the parafoveal receptors is less than
perfectly regular, preventing Moiré-like aliasing
(Wässle & Boycott, 1991). On the other hand,
generation of disorder is associated with aging and
disease (Guillaud et al., 2004; Hu, Li, Wang, Gou, &
Fu, 2012; Sudb, Marcelpoil, & Reith, 2000). As a
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texture attribute, the degree of order is essential for
texture discrimination and segmentation (Bonneh,
Reisfeld, & Yeshurun, 1994; Ouhnana, Bell, Solomon,
& Kingdom, 2013; Vancleef et al., 2013). Order also
interacts with other perceptual dimensions, and its
precise control in stimuli configurations is crucial for
psychophysical experiments. For example, the degree
of positional order of elements is known to affect
perceived numerosity (Allik & Tuulmets, 1991; Dakin,
Tibber, Greenwood, Kingdom, & Morgan, 2011;
Ginsburg & Goldstein, 1987). For contour integration
tasks, patterns of intermediate positional order should
be carefully generated in ways to avoid density cues
(Demeyer & Machilsen, 2012; Machilsen, Wagemans,
& Demeyer, 2015).

Not much is known about the visual mechanisms for
perceiving partial order. Recent work on perception of
regularity in point patterns has investigated the effect
of sensory noise on discrimination thresholds (Morgan,
Mareschal, Chubb, & Solomon, 2012), while Ouhnana
et al. (2013) demonstrated that regularity is an
adaptable visual dimension. Using a filter-rectify-filter
model (Graham, 2011), they argued that regularity is
encoded via the peakedness of the distribution of the
energy responses across receptive field size.

A fundamental question in the analysis of a
perceptual attribute (e.g., lightness, glossiness) is
whether we can represent quantitatively the intensity of
the percept as a value on an interval scale. This is
essential, as then almost all statistical measures are
applicable (Stevens, 1946). While for some established
perceptual dimensions and for limited ranges, the
ordinal, interval, or even the ratio structure of the
dimension is considered obvious, this should not be
taken for granted for all attributes. In particular, for
attributes like order where an observer may employ
varying criteria, and/or the intensity of the percept may
depend on the interaction of multiple parameters, even
the property of transitivity is not guaranteed, and
consequently even a simple ranking of the stimuli based
on the attribute may not be possible.

Therefore, for the collection of data, indirect scaling
methods are preferred to direct methods since they
allow validation of the empirical relationships between
the stimuli, and so it can be tested whether the collected
judgments are consistent with a specific type of scale
(Hand, 2004).

Two methods of indirect scaling can be distin-
guished. The first one—magnitude comparison—is
based on pairwise comparisons between stimuli and
originates with Thurstone (1927). Judgments are
collected from a series of presented pairs of stimuli
where the observer selects the one that contains the
attribute in question at the greatest degree. Analysis of
such judgment data yields a discrimination-based scale.
The second method—magnitude difference compari-

son—has been considered by Maloney and Yang
(Knoblauch & Maloney, 2008; Maloney & Yang, 2003)
and requires observers to consider quadruples of
stimuli that define two intervals and to select the pair of
stimuli that shows the greater perceptual difference.
This method has been applied to a range of perceptual
dimensions: color (Brown, Lindsey, & Guckes, 2011;
Lindsey et al., 2010; Maloney & Yang, 2003; Yang,
Szeverenyi, & Ts’o, 2008), quality of compressed
images or video (Charrier, Knoblauch, Maloney, &
Bovik, 2011; Charrier, Knoblauch, Maloney, Bovik, &
Moorthy, 2012; Charrier, Maloney, Cherifi, & Kno-
blauch, 2007; Menkovski & Liotta, 2012), surface
texture (Emrith, Chantler, Green, Maloney, & Clarke,
2010), gloss (Obein, Knoblauch, & Viénot, 2004),
transparency (Fleming, Jaekel, & Maloney, 2011),
strength of the watercolor effect (Devinck, Gerardin,
Dojat, & Knoblauch, 2014; Devinck & Knoblauch,
2012), similarity between pairs of faces (Rhodes,
Maloney, Turner, & Ewing, 2007), correlation in
scatterplots (Knoblauch & Maloney, 2008), auditory
stimulus duration (Yang et al., 2008), and emotional
intensity (Junge & Reisenzein, 2013). In this article we
investigate whether there is a single internal interval
scale of order for point patterns that underlies the
perception of order both for discrimination and
perceptual difference tasks.

For the construction of perceptual interval scales
from indirect scaling data, one supposes the existence
of a perceptual continuum where the true values of the
attribute in question reside. Each time a judgment
concerning a configuration of stimuli is performed,
noisy realizations of the true values of the attributes are
perceived and then compared, either directly or after a
differencing step. Assuming the realization noise is
stationary along the scale, and each perceptual
realization is independent, a link function with a
sigmoid form converts scale value differences, or
differences of differences, into response probabilities.
The form of noise distribution determines the exact
shape of the link function. With a data set of responses
to a set of scaling tasks, which has been well chosen
with respect to stimuli spacing and is sufficiently
numerous, the noisy realization model can be critically
tested using likelihood analysis. If the model is found to
account adequately for the data, scale values for the
experimental stimuli can be estimated by maximum
likelihood model fitting.

Due to their simplicity, point patterns constitute a
convenient stimulus class for investigating perception
of order. They are commonly displayed using circularly
symmetric elements (e.g., dots, Gaussian blobs). Figure
1 shows example point patterns of varying order.

Point patterns are used in various scientific fields
(e.g., ecology, developmental biology, material science)
to represent systems where the focus is on the position
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of the elements. While subjective assessments of the
degree of order are frequently employed, objective
quantification is required for systematic analysis.
However, apart from piecemeal approaches (e.g., Cliffe
& Goodwin, 2013; Dunleavy, Wiesner, & Royall, 2012;
Sausset & Levine, 2011; Steinhardt, Nelson, & Ron-
chetti, 1983; Truskett, Torquato, & Debenedetti, 2000),
no generally accepted mathematical theory exists for
intermediate order. Providing a mathematical scale of
order as an objective surrogate of human perception
seems a promising alternative. In previous work
(Protonotarios, Baum, Johnston, Hunter, & Griffin,
2014) we have shown, using pairwise comparisons of
point patterns from a diverse set, that observers are
highly consistent in their judgments of order, and that
these are compatible with an interval scale structure.
This means that the preference frequencies with respect
to order for pairs of point patterns of the whole set can
be predicted based on the distances between the
attribute values on this scale.

The analysis that yielded the scale made use of a
logistic link function (Bradley–Terry model; Bradley &
Terry, 1952). The derived scale is thus expressed in just-
noticeable differences (jnds), and its construction relies
on the confusion between adjacent stimuli. The interval
structure of the responses is important as it allows the
use of such judgments as a basis for quantification of
order for scientific purposes. By examining a list of
preexisting and designed geometrical measures of
order, we identified one that correlates very well with
human perception. This measure assesses the variability
of the spaces between the points, taking into account
the distributions of the sizes and shapes of the triangles
defined by their Delaunay triangulation (Delaunay,
1934). Rescaling an interval scale X with a linear
transformation aXþ b, where a, b are real constants
with a . 0, does not distort the interval character, since
the sign and the relative size of differences are
preserved. We therefore transformed the output of the
geometric measure so that certain significant patterns
are anchored to memorable values. We called the
resulting scale an absolute interval scale (a-scale) for
the measurement of order. On this scale, the anchored
values 0 and 10 correspond to total randomness
(Poisson point patterns) and perfect Bravais lattice,

respectively, and each unit corresponds roughly to a
jnd. We demonstrated its applicability by identifying
two distinct processes in the pattern formation of the
Drosophila bristle cells during development.

Although comparisons of all pairs of patterns were
used in the construction of this scale, the process relies
particularly on judgments of subthreshold differences
(discrimination), while suprathreshold differences do not
affect the scaling apart from validating its ordinal
structure. A natural question, therefore, is whether large
intervals on this scale correspond to direct perceptual
differences (Luce & Krumhansl, 1988). There is no
fundamental reason why these two types of judgment
should depend on the same sensory and/or cognitive
mechanism and therefore be predicted by a common
perceptual scale. However, if these depend on the same
visual mechanism and there is a common underlying
perceptual scale, then the derived scales from the two
tasks would be in agreement only if internal noise
remains constant across the perceptual dimension
(Kingdom, 2009). Contrary to discrimination-based
scales, it has been shown that the scales derived from
suprathreshold judgments of perceptual differences are
robust with respect to assumptions of constant or
varying internal noise (Kingdom & Prins, 2009).

In the following sections we present two experiments
we conducted for the collection of magnitude compar-
ison and magnitude difference comparison data for the
perception of order in point patterns and the con-
struction of the corresponding scales. We then inves-
tigate whether a common interval scale can account for
the data of both experiments, and therefore whether
appearance and discrimination form a consistent basis
for quantification of order.

Methods

Stimuli

The space of approximately ordered point patterns is
vast. In our previous work (Protonotarios et al., 2014)
we used a multistep process to synthesize diverse

Figure 1. Point patterns exhibiting varying degree of order. All patterns of the Figure are based on the same square lattice of points,

and different levels of order have been attained by varying the amount of positional jitter of the points.
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examples from this space. Starting from perfect lattices
of points, which could be triangular, rectangular, or
hexagonal, we independently perturbed the position of
the points, randomly deleted and added varying
proportions of them, and finally applied a smooth
nonlinear positional warp. In this article, however, we
are not concerned with a thorough investigation of the
interaction of these factors in the final percept of order
but rather aim to compare the two methods of scaling.
It would be sufficient to demonstrate a disagreement
between the two scaling methods in a subset of the
space of point patterns. Additionally, we noticed in
pilot experiments that in magnitude difference com-
parison, the effect of secondary parameters of the
stimuli (e.g., type of lattice) can be significant. In
particular, a quadruple of patterns may appear where
one pair exhibits a large difference in the degree of
order but having both patterns based on the same type
of lattice (e.g., triangular), while the other pair exhibits
a smaller difference in order but having its patterns
based on different types of lattice (e.g., triangular and
square). In this case, it is possible that the participant
may be influenced by the similarity of the first pair with
respect to the secondary parameter and judge the
second pair as the one showing the larger difference.

Given these considerations we chose a simple method
for the generation of stimuli with varying degree of order
and minimum presence of secondary perceptual dimen-
sions. We started with a point pattern based on a perfect
square lattice and introduced independent Gaussian
positional jitter on the points. The physical parameter
that defined the strength of the jitter was the standard
deviation of the Gaussian distribution (on each coordi-

nate) expressed as a fraction of the spacing of the perfect
square lattice. The final step was a random selection of a
circular window containing exactly 180 points.

For our experiment to be effective, it is ideal if we
use a set of stimuli that are regularly spaced in
perceptual order. Even with the simple jittered square
lattice we employ, this is not trivial to achieve for two
reasons. The first is that patterns can vary in how
ordered they appear even at a fixed level of jitter. The
second is that it is unjustified to expect that average
perceptual order depends linearly on jitter magnitude.
We have dealt with those problems by using the
geometric algorithm developed in our previous work.
The a-scale algorithm predicts the perceptual order of
patterns on a discrimination-based interval scale.

By generating many patterns at different jitter levels
and computing their a-scale values, we have determined
21 jitter levels that on average are uniformly spaced on
the a-scale. We then selected 21 patterns that have close
to the mean a-scale value for their level of jitter. Figure
2a shows the boxplot of the a-scale order values for the
generated point patterns for varying jitter levels. A set
of 100 patterns was generated at each jitter level. The
spread in a-scale values is larger for higher jitter levels.
Figure 2b shows the a-scale values and jitter levels of
the selected patterns. In all figures with jitter level on
the abscissa, the axis has been inverted so that scale
values corresponding to high order values are on the
right-hand side. The patterns at the highest jitter level
(disordered end) were generated from a Poisson
process, which is equivalent to applying an infinite
amount of jitter to a square lattice. We additionally
excluded patterns that contained points that were so

Figure 2. (a) Boxplot of the a-scale values of order for the generated point patterns for varying jitter level. The latter is expressed as

the standard deviation of the Gaussian perturbation of the points as a fraction of the spacing of the perfect square grid. (b) a-scale

values for the selected point patterns for the magnitude and the difference comparison task against the corresponding jitter level. The

horizontal axis has been inverted in both graphs so that high-order values are on the right-hand side.
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close that they would overlap when displayed as dots;
this happened with increasing frequency for larger
amounts of jitter.

For the magnitude comparison task, the whole set of
21 patterns was used (Set A). For the magnitude
difference comparison task the 11 odd-numbered
patterns of A were used (Set B) (Figure 2b). The
number of patterns used was chosen so that the
resulting number of pairwise comparisons for a
balanced task is not experimentally prohibitive while
giving a relatively dense set. This is necessary since the
scaling method based on the discrimination task relies
on overlap of the estimated values of order.

Observers

Twelve observers (five females) with normal or
corrected-to-normal vision participated in both of the
experiments. Participants’ age ranged from 18 to 40
years (M¼ 25.4, SD¼ 6.0 years). Our research adhered
to the tenets of the Declaration of Helsinki for the
protection of human subjects.

Procedure

The patterns were presented in pairs or quadruples
depending on the task at a comfortable viewing
distance of approximately 50 cm on a 40-cm diagonal
laptop screen of resolution 1920 3 1080. They were
presented as solid black dots of 0.5-mm diameter, on
white circular disks of radius r¼ 4.0 cm, on a gray
background. Participants viewed the patterns under
comfortable room illumination. In figures in this
article, the size of the dots in the patterns has been
increased for visibility in reproduction. Presentation of
stimuli and recording of responses were controlled
using the MATLAB Psychtoolbox (Brainard, 1997). In

both tasks participants were given unlimited time to
respond for each judgment.

Magnitude comparison experiment

Observers first completed the magnitude comparison
task (discrimination). Each of the 213 20/2¼ 210 pairs
was presented in random order in two blocks (Figure
3), resulting in 420 comparisons in total per participant.
In each trial the patterns were randomly allocated to
left or right in the first block and then in the opposite
way in the second block. Each pattern was randomly
oriented at integral multiples of 908. Randomization
aimed to minimize learning of the patterns and to
reduce bias and effects of adaptation.

Participants were given written instructions to use the
keyboard (left or right arrow keys) to indicate which of
the patterns appeared more ordered to them. They were
able to return to the previous trials if they wished to
correct a keystroke error. They were free to control the
pace of the experiment, but all took 12–20 min.

Magnitude difference comparison experiment

The magnitude difference comparison task followed
the magnitude comparison task after a short break.
Observers were presented with quadruples of patterns
arranged as two horizontal pairs separated by a thick
black horizontal line (Figure 4). Each of the quadruples
was presented in random order in two blocks. The two

Figure 3. Magnitude comparison task. Participants were asked

to select the pattern (left or right) that appears more ordered to

them. For this example, the left pattern gained 17 responses

and the right pattern gained seven.

Figure 4. Magnitude difference comparison task. Participants

were asked to select the pair of patterns (upper or lower) that

shows the greatest perceptual difference in order. For this

example, the upper pair gained three responses and the lower

pair gained 21.
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pairs were randomly allocated to the upper or lower
part of the screen in the first block and the opposite
way in the second block (Knoblauch & Maloney,
2012). Each pattern was again randomly oriented at
integral multiples of 908. Randomization, as in the first
experiment, aimed to minimize learning of the patterns
and to reduce bias and effects of adaptation. With each
pair defining an interval on the perceptual continuum,
all quadruples with nonoverlapping pairs of intervals
were presented. This gives 330 distinct quadruples, and
since all were presented twice, the total number of
comparisons for the magnitude difference comparison
task per participant was 660.

Participants were given written instructions to use
the keyboard (up or down arrow keys) to indicate
which of the pairs of patterns showed the largest
difference in the degree of order. They were able to
return to the previous trials if they wished to correct a
keystroke error. They were free to control the pace of
the experiment, but all took 30–50 min.

The method of quadruples for the magnitude
difference scaling is the original suggested by Maloney
and Yang (2003). However, the variant of triads has
also been used for the construction of difference scales
(Devinck & Knoblauch, 2012). In this case the observer
still judges intervals directly but a single stimulus serves
at the same time as both the high endpoint of the one
interval and the low endpoint of the second interval. In
the triads method, the number of possible comparisons
is lower, but this does not provide any benefit since the
standard deviation of the estimates depends on the
number of actual trials (Maloney & Yang, 2003).
Furthermore, in the triad method direct comparison is
conducted only for adjacent intervals and not for
intervals that are further apart.

Results

Agreement rates

We computed two measures of response variability,
the intra- and interobserver agreement rates, shown in
Table 1. The intra-agreement rate expresses the
probability that a random participant would repeat the
same judgment when faced twice with the same random
trial. Observers do not always respond the same to a
pair or quadruple of patterns. The rate of 91% for
magnitude comparison with Set A demonstrates that
there is high consistency. If we restrict the estimation of
the intra-agreement rate by subsampling on the Set B,
we observe a slight increase to 93%. This increase is
expected since the fewer patterns of Set B are more
widely spaced in order. The interagreement rate is the
probability that two observers will agree on the same

random trial. For the magnitude comparison task, the
91% for Set A, and the 93% for Set B, show that there is
no variation between participants over and above their
personal variability. For the magnitude difference
comparison task, the agreement rates are lower. The
intra rate is 76%, indicating lower consistency of
observers in comparison to the discrimination task and
the inter rate is 70%, indicating an additional 6% of
interpersonal difference over and above personal
variability.

Magnitude comparison scaling

Model fitting

For the magnitude comparison task, each stimulus Si

is assumed to have a true value Mi on a scale, and each
separate perception wi of it is a noisy realization of the
true value. When a magnitude comparison between two
stimuli Si, Sj takes place, the two noisy realizations are
compared and the observer reports which one is larger
(or smaller). Assuming the noise for each perception is
identically distributed and independent, then for
magnitude comparison, there exists a monotonic
preference function P: R � [0, 1], which maps the
signed difference between the true values, DM ¼Mi –
Mj, to the probability that the one will be preferred to
the other. This preference function is the cumulative
distribution function of the realization noise distribu-
tion convolved with itself. When the noise distributions
of the set have sufficient overlap, then the preference
rates will not all be 0 or 1 and fitting a model to the
preference rate data allows the interval, not just
ordinal, structure of the true values of the set to be
estimated. If the noise is assumed normally distributed
(Thurstone Model Case V) the preference function has
the form of cumulative Gaussian distribution function
(Thurstone, 1927), whereas if, for example, the noise is
assumed Gumbel-distributed (Bradley–Terry Model),
then the preference function has a logistic form
(Bradley & Terry, 1952; David, 1988). In this article we
will only consider Gaussian noise. However, this
method of scaling is relatively robust to noise
distribution assumptions (Stern, 1992).

Magnitude

comparison (%)

Magnitude difference

comparison (%)

Set A (21 patterns)

Intra 91 —

Inter 91 —

Set B (11 patterns)

Intra 93 76

Inter 93 70

Table 1. Agreement rates for the two experiments.

Journal of Vision (2016) 16(9):2, 1–17 Protonotarios, Johnston, & Griffin 6

Downloaded From: http://jov.arvojournals.org/pdfaccess.ashx?url=/data/Journals/JOV/935414/ on 10/18/2016



We fit models by maximization of the likelihood
(ML) of the data. The likelihood is computed using
binomial probabilities for each stimulus pair. It has
been shown that ML fitting is extremely sensitive to
probabilities near 0 or 1 (Harvey, 1986; Wichmann &
Hill, 2001a). It is possible that during the psychophys-
ical experiment errors that are independent of the
attribute differences occur (lapses), even when the
difference in the attributes between two stimuli is large.
The effect of lapsing appears at the data near the edges
of the preference function and can result in strong
biases in the estimates. Incorporating the lapse rate in
the model corrects this problem. This is easily done by
rescaling the preference function as kþ (1� 2k)P(DM),
where k, positive but small, is the lapse rate parameter
(Wichmann & Hill, 2001a). The model is parameterized
by (a) the unknown true values of each stimulus, (b) the
lapse rate parameter, and (c) any additional parameters
used to vary the form of P. We used gradient descent
for model fitting, with multiple random starts to check
for stability. The equal variance Gaussian noise model
we used required no additional parameters.

Since the interval scale is invariant under linear
transformation, we can choose the unit distance on the
scale to correspond to a jnd. By convention, the
magnitude of a jnd on a discrimination scale is such
that an observer will have a 75% chance of correctly
ordering two stimuli whose attributes are different by
this amount (Torgerson, 1958). On the Thurstone scale,
the jnd width does not refer to a change of a physical
stimulus intensity that yields a particular discrimina-
tion performance, but to a specific spacing of two
stimuli that corresponds to the fixed preference rate. In

this model the noise intensity (standard deviation of the
Gaussian noise distribution) and the jnd width are
related and remain constant across the scale. The fitted
values for Set A with respect to the physical parameter
(amount of positional jitter of the points) are shown in
Figure 5. This figure shows the estimated degree of
perceived order on the discrimination scale in jnd units;
the degree of perceived order increases as the amount
of jitter decreases. Since only differences in fitted
values, not absolute values, are used to predict
preference rates, ML fitting only estimates values up to
an additive constant for the entire set. In particular, the
value zero has been selected for the Poisson pattern,
which is judged as the most disordered. The estimated
value for the most ordered pattern is 16.5 jnds, meaning
that the whole range of order for Set A is 16.5 jnd units.
The ML estimated lapse rate parameter was 0.3%. We
note that 16.5 jnds is larger than the 10 jnds we found
between order and disorder in our previous work
(Protonotarios et al., 2014). We attribute this difference
to the greater variation in pattern types in the previous
experiment.

Our ML estimates for the scale values of our stimuli
are uncertain because we have collected only a finite
number of responses to each stimulus pair. To estimate
this uncertainty we used a parametric bootstrap
method (Efron, 1979; Wichmann & Hill, 2001b). The
method uses the ML-fitted equal variance Gaussian
model (with lapsing) to generate sets of synthetic
experimental data. A new model is fitted to each
synthetic data set. To remove the effect of arbitrary
additive constants, we align different bootstrap esti-
mates by subtracting the mean of each set. We thus
obtain a set of estimates for each stimulus, the standard
deviation of which provides an estimate of uncertainty.
Across the stimuli of Set A the standard deviations
ranged from 0.46 to 1.04 jnds, with 0.67 jnds being the
root mean square (RMS) average. The size of the range
of the fitted values in Set A is 16.5 6 1.2 jnds. The fitted
values for the patterns and the resulting 95% confidence
intervals are shown in Figure 6. Patterns are numbered
according to their predicted a-scale values with 1
corresponding to the least ordered and 21 to the most
ordered.

Both Figures 5 and 6 show the estimated order
values for the 21 patterns we used in the experiment.
Figure 5 shows how these vary with respect to the
physical parameter, while Figure 6 shows the fitted
values with respect to the pattern number. Latter figure
offers a better view of the pattern spacing on the
discrimination scale. We observe that graph is ap-
proximately linear confirming the effectiveness of our
a-scale computation of order for jittered square lattice
patterns, which is a different population than used to
establish the a-scale. Patterns 5 and 7 in both graphs
appear to violate the ordinal scale. This is not

Figure 5. Fitted values of order based on the discrimination task

plotted against the amount of jitter. The latter is expressed as

the standard deviation of the Gaussian perturbation of the dots

as a fraction of the dot spacing of the perfect square grid. For

the Poisson pattern (most disordered) the equivalent amount of

jitter is infinite.
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surprising for two reasons. First, our a-scale has limited
accuracy in predicting order, which is comparable to
the patterns dense spacing. Second, we have collected a
finite number of responses and thus order estimates are
uncertain. Bar size in Figure 6 does not allow
concluding whether the observed violations are real
(i.e., whether these correspond to significant perceptual
differences). These violations do not affect the analysis
since we do not rely at any point on the initial ranking
of the patterns of Set A. The a-scale has been employed
only to achieve approximate equal spacing of the
patterns on the discrimination scale.

Goodness of fit

Having determined a maximum likelihood model we
assess its goodness of fit (GoF) by comparing its
empirical deviance to the distribution of deviances that
result by Monte Carlo generation of random datasets
from the ML model. If the empirical deviance lies
within the range of simulated deviances that encompass
the 95% most common, then we accept the model.
Deviance of a dataset (original or simulated) is twice
the difference between the log-likelihood of the dataset
given the ML model and the log-likelihood of the
dataset given a saturated model. The saturated model
in this case specifies a separate ML probability for each
trial.

For the equal variance Gaussian model, the empir-
ical deviance is 145 and the 95% interval of acceptable
deviances for 10,000 repetitions is [107, 170], hence the
model is accepted. Therefore, the consensus of dis-
crimination-based order for Set A has the structure of

an interval scale. We refer to the resulting scale as the
discrimination scale.

Examining the responses, we notice that preference
rate was exactly 1 (or 0) in 129 out of the 210 presented
pairs. This means that a large number of trials simply
validated the ordinal structure of the scale. Although
we have established in previous work (Protonotarios et
al., 2014), the interval structure of the responses for
diverse point patterns, for the sake of completeness, we
preferred again a balanced design to check for that for
the new set. We could not exclude beforehand that
patterns of high jitter may appear more ordered than
patterns of intermediate jitter (e.g., because of random
pairs or clusters of points). The reader is reminded that
observers were not asked to judge the amount of
positional jitter, but the degree of order and these two
may not coincide. Independently of the monotonicity
with respect to jitter amount, judgments only between
similar order levels (within a few jnds) could not detect
possible violations of transitivity that would render the
existence of a one-dimensional scale impossible. Fur-
thermore, a validated obvious ordering of the stimuli
set is a requirement for the analysis of the difference
comparisons that follows. A balanced design allows the
estimation of the probability of consistent rankings for
the subset of stimuli of the magnitude comparison that
are being used in the difference comparison (Set B).
The traditional increment threshold paradigm for the
construction of the discrimination scale was not
preferred for an additional reason. For our set of
patterns, as Figure 2 indicates, the intensity of the
attribute, unlike, for example, brightness, is not

Figure 6. Fitted values of order based on the discrimination task.

Bars show 95% confidence intervals as estimated from

bootstrap analysis (200 repetitions). Patterns are numbered

according to their predicted a-scale values with 1 corresponding

to the least ordered and 21 to the most ordered.

Figure 7. Fitted values of order based on the magnitude

difference comparison task plotted against the amount of jitter.

The latter is expressed as the standard deviation of the

Gaussian perturbation of the dots as a fraction of the dot

spacing of the perfect square grid. The fitted values have been

scaled so that patterns of extreme order/disorder get the values

of 1/0 respectively (standard scale).
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uniquely defined by the physical parameter; patterns
generated at a specific jitter amount vary stochastically
in apparent order. Generating patterns only based on
jitter amount would increase the variability of re-
sponses. We avoided this problem by using common
stimuli in our two experiments. This way we can
construct and compare the two scales without relying
on any physical parameter.

Magnitude difference comparison scaling

Model fitting

The magnitude difference comparison scaling meth-
od is based on a stochastic model of difference
measurement (Krantz, Luce, Suppes, & Tversky, 1971;
Maloney & Yang, 2003; maximum likelihood differ-
ence scaling). Similarly to the Thurstone scaling
assumptions, each stimulus is associated with a number
on an interval scale expressing the real attribute
contained in the stimulus. The aim is to recover these
numbers for a set of stimuli by collecting direct interval
comparison judgments.

We again denote the set of stimuli as S1, S2,. . ., SN,
numbered in such a way so that the physical parameter,
ui, related to each stimulus is ranked as u1 , u2 , . . .
, uN (here N¼ 11). We assume that each stimulus, Si,
in the set evokes a perceptual response for the degree of
order, which can be numerically represented as wi¼Mi

þN(0, r), with Mi being the true value of the attribute.
We assume that when an observer compares the
perceptual difference between pairs (Si, Sj) and (Sk, Sl),
they respond on the basis of the sign of jwj� wij � jwl�
wkj. If the pair differences jMj�Mij and jMl�Mkj are
always sufficiently larger than the noise level, then
observers will never make an error about which pattern
of a pair is the more ordered, and the response
probability arises from a link function depending on
(Mj � Mi) � (Ml � Mk). The link function is the
cumulative distribution function of a Gaussian of
variance 4 times the variance of the realization noise.
We are justified in using this link function for our data
because of the spacing of patterns in Set B used for the
difference task. Within the discrimination data, pairs of
patterns from Set B are correctly ordered in 96% of
trials. In this article we only consider Gaussian noise
when examining the magnitude difference comparison
scaling. However, Maloney and Yang (2003) showed,
with the use of simulations, that the resulting scale is
robust with respect to the distributional assumptions
for the noise.

Similarly to the discrimination scale fitting, we
rescaled the link function to incorporate the lapse rate.
We used the maximum likelihood method with gradient
decent and multiple random starts for stability
checking to estimate the parameters M1, M2, . . ., MN

and r.

Goodness of fit

For the GoF assessment we compared the empirical
deviance with the histogram of deviances based on
Monte Carlo simulations using 10,000 repetitions.
Pooling data for all observers did not result in an
acceptable model for the equal-variance Gaussian
model (empirical deviance¼ 494 with 95% interval of
acceptable deviances: [303, 402]). A model of a
common scale for all observers was accepted when we
allowed different sensitivities (1/r) for each of the two
sessions completed by each observer (a noticeable
variation in the sensitivity per observer has been found
also in other studies where the same difference scaling
method was applied; e.g., Devinck & Knoblauch,
2012). For this model the empirical deviance was 7,051,
inside the 95% interval of acceptable deviances [6,898,
7,213]. Therefore, also for the case of the magnitude
difference comparison task, a common scale for the
stimuli can fit the collected data for all participants,
when independent sensitivities are allowed per session.

The fitted attribute values for the common scale with
respect to the physical parameter (amount of jitter) are
shown in Figure 7. We will call this scale the difference
scale. In the figure, the fitted values of the difference
scale have been normalized so that patterns of extreme
order/disorder get the values of 1/0 respectively
(standard scale; Knoblauch & Maloney, 2012).

Independently of the varying sensitivities across the
observers, we would expect that the pooled preference
rates should be around 1 when the perceptual
difference between patterns of one pair is considerably
larger than the corresponding difference of the other
pair. The extreme cases of this type appear when the
smallest interval on either side of the spectrum is
compared with the remaining largest nonoverlapping
interval of the opposite side. Checking this for both
cases validates that the largest difference has been
preferred in 24 or 23 out of the total 24 trials. This was
in general true for large differences; 75 out of the 330
quadruples corresponded to 24 or 23 preferences.

To exclude the possibility of a change in sensitivity
because of learning, we examined the distribution of
sensitivities for the first and second session per
observer. For comparison we normalized the sensitiv-
ities so that the highest sensitivity of all sessions is set to
1. Learning is expected to cause an increase in
sensitivity. When, for each observer, the sensitivity of
the second session is plotted against the sensitivity of
the first session, it is clear that there is no overall
tendency for increase (Figure 8). The number of data
points positioned above the identity line is five, while
the other seven are positioned below the line. In the
same graph, it is also noted that the average sensitivities
for the two sessions are highly correlated meaning that
the observers exhibit consistently low, medium, or high
sensitivity.
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Discrimination and difference scales

One has to be careful when interpreting Thurstone-
type discrimination-based scales. If the discrimination
data are consistent with such an equal-variance
Gaussian model, this does not necessarily imply that
the derived scale is the actual perceptual scale
associated with the attribute or that internal noise
remains constant along the dimension. The difficulty to
determine the perceptual scale based only on discrim-
ination judgments has been emphasized by Kingdom
(2009) who highlighted the contribution of Whittle
(1986, 1992) on the analysis of internal noise for
discrimination scales. In his work on perception of
luminance for a series of disks on a uniform
background, Whittle was able to superimpose (with
appropriate scaling) the functions relating jnds and
equal-perceived differences to contrast magnitude. As
Kingdom argued, this good overlap implied that
contrast transduction noise is additive (constant). In a
more detailed analysis Garcı́a-Pérez and Alcalá-Quin-
tana (2009) explained that with only two alternative
forced choice discrimination data, it is not possible to
disentangle the three underlying functions that affect
discrimination, namely, (a) the transducer function, (b)
how the variance of the noise varies with stimulus level,
and (c) the distribution of the noise. They showed that
models of constant or varying internal noise can fit
equally well the same discrimination data. Whether the
Thurstonian-type interval scale is mainly a theoretical
construct or it has a more substantial existence
corresponding to something happening in the nervous
system had puzzled psychophysicists in the past (Luce,
1994). In any case, it is of particular practical

importance. First, it allows testing of the collected
responses for their consistency with an interval scale
and thus verifies whether the perceptual dimension can
be properly quantified. Second, it offers a simple model
that allows direct comparison of intervals and their
conversion to preference rates. Further, and most
importantly, if the perceptual scale happens to be of
constant noise, then the Thurstone Case V model will
recover the real spacing of the stimuli, since for
constant noise the discrimination scale coincides with
the perceptual (Kingdom & Prins, 2009).

Common interval scale model for both
experiments

Having established that both the discrimination and
the difference comparison data can be described by
interval scale models with Gaussian noise, we at-
tempted models of equal variance noise that would
account for both sets of data simultaneously. This is
important as it would allow a simple interval scale for
both supra- and subthreshold judgments and would
imply a common underlying mechanism. We do not
expect that such a model would be accepted though for
the combination of tasks for all observers, since even
for the magnitude difference comparison task alone
such a model was not possible unless the per session
sensitivities were adjusted. Indeed, by constraining the
noise level to be the same for discrimination and
difference data, we achieved a deviance of 800, which is
outside the 95% interval of acceptable deviances [444,
566] computed using 10,000 repetitions. For a fixed
noise level for the discrimination scale, if we allowed
different noise levels for each of the difference
comparison task sessions, the empirical deviance was
7,361, just inside the 95% acceptable interval of [7,067,
7,389], for 10,000 repetitions. Thus we cannot reject
this model based solely on the total deviance analysis.
However, by focusing on the deviance residuals
distributions for the two experiments, we notice that
for the difference experiment the empirical deviance of
7,059 was inside the 95% interval of acceptable
deviances [6,901, 7,216], while for the discrimination
experiment the empirical deviance value was 302, far
outside the 95% interval of acceptable deviances [141,
203]. This is a strong indication that this model does
not describe the data for both tasks accurately.

The different but constant noise level for the two
tasks is equivalent to a linear transformation between
the two scales. Since the empirical deviance value for
the total model does not reject it, and since a nonlinear
relationship linking the two scales could be preferred,
we examined a model with a simple nonlinearity; we
implemented a quadratic transformation linking the
two scales’ values, which required the addition of one

Figure 8. Scatter plot of the normalized sensitivity per observer

for the first and second session. The identity line is shown for

reference. Two data points (below the identity line) overlap.
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parameter. This model achieved a deviance of 6,974,
which fell inside the 95% interval of acceptable
deviances [6,780, 7,115]. Examining the deviances per
experiment, for the difference comparison task the
empirical deviance was 6,797, inside the 95% interval of
acceptable deviances [6,640, 6,970], and for the
discrimination task, we achieved a better result than in
the linear case, as the empirical deviance value of 177
fell just inside the 95% interval of acceptable deviances
[114, 178].

Although it is not expected that the simple quadratic
transformation captures the exact relationship between
the two scales, the nonlinear model can be used for the
rejection of a common interval scale for both the
discrimination and the difference comparison tasks.
The linear and the simple nonlinear models form a
nested pair, the linear one being a special case of the
nonlinear, and therefore the linear relationship (null
hypothesis) between the two scales can be tested with
the use of the likelihood ratio test (Kingdom & Prins,
2009). For the application of the likelihood ratio test
we need to assume that the statistic W, which is twice
the difference of the log-likelihoods of the two models
in comparison, follows a v2

df distribution, where df is
the difference in the number of parameters between the
two models (Wilks, 1938; in our case the two models
differ by 1 degree of freedom). Although this is
asymptotically true, it is not easy to estimate the
number of observations that are necessary to provide a
good such approximation (Wichmann & Hill, 2001a).
We can, however, simulate the distribution of the
statistic W. By accepting the linear model that has been
estimated with the ML method, we generated a large
number of simulated data and refitted both the linear
and the nonlinear models. For 500 repetitions we

computed the W statistic and examined how well the
simulated distribution is approximated by the v2

1
theoretical density. In Figure 9 we can see that this
approximation is satisfactory in shape and extent. The
log-likelihood for the estimated linear model was
�3,789.31, and the log-likelihood for the estimated
nonlinear model was�3,595.97. This resulted in a value
for W1¼ 386.68. Getting a value of W, which is much
greater than the 95% cut off of the v2

1 distribution, 3.84,
means that we have to reject the linear model in favor
of the nonlinear one. Since the nonlinear transforma-
tion distorts the spacing between the scale values in one
of the two scales, we conclude that no common interval
scale model with Gaussian noise is able to describe both
the discrimination and the difference comparison data.

Discussion

When the discrimination- and difference-based scales
are plotted against the jitter level (Figures 5 and 7), they
present very similar shapes. Similar to Whittle’s
approach, we can rescale one in an attempt to
superimpose them and observe their overlap (Figure
10). If the agreement is sufficient, and we assume a
common transducer function, then the internal noise
can be considered constant across the perceptual
dimension, and a common interval scale could predict
both discrimination and difference data. However, due
to the shape of the curves in Figure 10, the degree of
agreement between the two scales is hard to assess.
Therefore, we prefer to plot one scale against the other
(Figure 11). It is then evident that the plotted curve
deviates smoothly and systematically from a linear
relationship. This provides a visual explanation of the

Figure 9. Simulation of the W statistic distribution for 500

repetitions. The curve corresponds to the probability density

function of the v21.

Figure 10. Magnitude comparison and magnitude difference

comparison scales superimposed versus noise level. Both scales

are rescaled to [0, 1] (standard scale).
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failure of a common interval scale to describe both
tasks. The slope of the curve is higher near the
disordered end and lower near the ordered end. This
indicates that, when matched for discrimination jnd
steps, suprathreshold differences near disorder appear
larger than near order. Conversely, considering the
difference scale as reference, a perceptual difference on
the ordered end corresponds to more jnd steps on the
discrimination scale than the same perceptual differ-
ence on the disordered end. As a consequence, there is
no way of transforming one scale to match the other
without affecting its interval structure.

Allowing varying noise across a common perceptual
scale for the two tasks is expected to affect the spacing
of the stimuli on the two scales to a different degree.
The discrimination scale being sensitive in the local
extent of the noise will be affected more; as mentioned
in the introduction, the difference scales are relatively
robust to whether noise is constant or varying
(Kingdom & Prins, 2009). On such a common scale,
equal differences at different positions on the scale will
not correspond to equal discrimination performances.
However, if the particular function that defines the
extent of the noise distribution at each point is known,
then the jnd width at a particular location can be
computed. The simplest implementation of such a
model assumes a constant rate of change in noise
intensity. Such a model, together with the linear model,
which was examined in the previous section, form a
nested pair, and thus we can repeat the same type of
likelihood ratio analysis we followed for the quadratic
transformation. The varying noise model has one
additional parameter in comparison to the linear
model—the rate of change. Fitting with ML we get a

log-likelihood value of �3,713.11, which results in a
value W2¼ 152.40, a number much greater than the
95% cut off of the v2

1 distribution, which is 3.84. This
means that the linear model should be rejected in favor
of the varying noise model.

Although we can reject a common equal variance
model in both types of analysis—(a) quadratic trans-
formation of the difference scale, and (b) common
perceptual scale with varying noise—it is not possible
to decide between the two options by comparing the
values of W1 and W2. A major reason is that the
proposed functional forms are not necessarily the best
among all possible. The two models offer two different
interpretations: According to (a), we can assume that
observers use different visual mechanisms or employ
different criteria when judging sub- and suprathreshold
differences. Both scales are consistent with an interval
scale structure but are different from each other.
Alternatively, assuming a common mechanism and a
common transducer function, the internal noise has to
vary across the perceptual dimension. For the con-
stantly increasing noise model we examined, (b), there
is approximately a 2-fold increase (1.85) in the standard
deviation of the noise distribution in the direction
towards disorder. Both interpretations agree qualita-
tively on their consequences about how jnd width
varies with respect to the difference scale.

Our analysis shows that our previous approach for
the construction of the a-scale of order based on
discrimination judgments is not compatible with
perceptual judgments of large differences. The two
views cannot be reconciled in one interval scale for the
measurement of order in point patterns. Although there
is no ordinal disagreement, for practical purposes in the
analysis of evolving systems, differences, and therefore
rates of change, are not consistent across the whole
range for both types of judgment. In our experiment
there is a smooth relationship between the two scales.
However, the actual form may depend on the particular
class of patterns.

The apparent deviation of the curve in Figure 11
from a straight line, although significant, could not
necessarily have practical or testable implications.
However, as Figure 12 illustrates, when focusing on the
midpoints of each scale, this curve offers a simple and
easily testable prediction. By comparing the midpattern
of the discrimination scale with the midpattern of the
difference scale, we see that the first one is noticeably
more ordered than the second. We perceive the
midpattern of the discrimination scale as being more
toward the ordered end, and conversely, the pattern
that we directly perceive as equidistant from the ends is
not placed an equal number of jnds from the ends.

Devinck and Knoblauch (2012) previously made a
comparison of scales based on magnitude and magni-
tude difference comparisons and, contrary to our

Figure 11. Scatter plot of the estimated values of order for the

point patterns (Set B) derived from the discrimination task and

from the magnitude difference comparison task.
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results, found them compatible. They collected com-
parison judgments for the strength of the fill-in percept
of the watercolor effect (Pinna, Brelstaff, & Spillmann,
2001) as they varied the luminance ratio between the
two components of the generating contour. For
magnitude difference comparison data they found it
necessary to construct separate scales for each observer.
They compared the discrimination and difference scales
and claimed that they were compatible, in contrast to
our findings. However, they tested the discrimination
performance of each observer only at a narrow range of
the physical parameter. It is our view that to exclude
the possibility of only a local agreement between the
two scales, verification over a wide range of the scale is
necessary, as the nonlinear relation between the two
scales is only apparent when a larger extent is
considered.

The method of maximum likelihood difference
scaling as suggested by Maloney and Yang (2003)
provides a convenient tool for the construction of
perceptual scales based on suprathreshold judgments.
This method in combination with the traditional
Thurstone-type scaling can address the important
psychophysical questions regarding the existence of a
unique perceptual scale for both discrimination and
appearance, and the form of internal noise. These two
methods do not require the existence of a physical
parameter, and therefore are particularly useful when
such a parameter does not exist or the stimuli are
generated with multiple parameters. The disagreement
between the two scales can be relevant in cases where
the experimental method involves both sub- and
suprathreshold comparisons in the same task. For

example, recently Jogan and Stocker (2014) suggested a
new two-alternative forced choice method for the
characterization of the perceptual bias caused by
stimuli secondary parameters, where a common equal-
variance signal detection model is assumed for both
short and long stimulus distances. Not verifying the
validity of such a model can confound the analysis as
depending on the perceptual dimension under study the
effect may be significant.

Conclusion

In this work we have analyzed judgments of order
for a specific class of point patterns (jittered square
lattice of points). Our proposed method makes
combined use of the Thurstone-type scaling for
subthreshold judgments and the maximum likelihood
difference scaling for suprathreshold judgments. The
method does not rely on the existence of a physical
parameter for the control of the intensity of the
perceptual attribute.

Analysis showed that, within the limits of our
collected data, it is possible to construct separate
interval scales for the description of magnitude
comparison and magnitude difference comparison
data. However, a common interval scale with Gaussian
noise model describing both is not possible. Since the
mismatch between the scales is most apparent in
comparisons involving the endpoints and midpoints,
and the scaling methods are relatively robust to noise
distribution assumptions, it seems unlikely that a

Figure 12. Illustrates the mismatch between discrimination- and difference-based scales by focusing on end- and midpoints of the

scales. We expect that the reader will consider the difference AC as substantially greater than CB, even though they are almost equal

in jnd steps. Also, the difference AD will be considered as similar to the difference DB even though they are different in jnd steps.
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common scale can be achieved by any more complex
model that properly treats the interval structure of the
scales, or the use of Gaussian noise. This signifies that it
is not possible to construct an interval scale for the
quantification of order in agreement with human
judgments for both small and large differences. Our
findings are consistent with either two separate scales
for sub- and suprathreshold judgments of order
implying two distinct perceptual mechanisms, or a
common scale with varying internal noise that increases
in the direction of disorder. Therefore, with regard to
the degree of order in point patterns, the magnitude of
large differences is not determined by the number of jnd
steps.

Keywords: psychophysics, scaling, discrimination
scale, difference scale, signal detection theory, order,
regularity, point pattern
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