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Antonio, Lüttjohann, Annika, van Luijtelaar, Gilles, De Sarro, Giovambattista,
Upholding WAG/Rij rats as a model of absence epileptogenesis: Hidden mechanisms
and a new theory on seizure development.Neuroscience and Biobehavioral Reviews
http://dx.doi.org/10.1016/j.neubiorev.2016.09.017

This is a PDF file of an unedited manuscript that has been accepted for publication.
As a service to our customers we are providing this early version of the manuscript.
The manuscript will undergo copyediting, typesetting, and review of the resulting proof
before it is published in its final form. Please note that during the production process
errors may be discovered which could affect the content, and all legal disclaimers that
apply to the journal pertain.

http://dx.doi.org/doi:10.1016/j.neubiorev.2016.09.017
http://dx.doi.org/10.1016/j.neubiorev.2016.09.017


 

Upholding WAG/Rij rats as a model of absence epileptogenesis: hidden 

mechanisms and a new theory on seizure development 

 

Emilio Russo
a,*

, Rita Citraro
a
, Andrew Constanti

b
, Antonio Leo

a
, Annika Lüttjohann

c,d
, 

Gilles van Luijtelaar
c
, Giovambattista De Sarro

a
. 

 

a
Science of Health Department, School of Medicine, University of Catanzaro, Italy; 

b
Department of Pharmacology, UCL School of Pharmacy, 29/39 Brunswick Square, London, 

United Kingdom; 
c
Donders Institute for Brain, Cognition and Behaviour, Radboud 

University, Nijmegen, The Netherlands; 
d
Institute of Physiology I, Westfälische Wilhelms 

University, Münster, Germany 

 

*Author for correspondence:  

Prof. Emilio Russo, PhD,  

Chair of Pharmacology,  

Department of Science of Health,  

School of Medicine, 

University of Catanzaro, Italy 

Viale Europa-Germaneto; 88100 Catanzaro, ITALY.  

Phone +39 0961 3694191; Fax +39 0961 3694192 

e-mail: erusso@unicz.it 

  

mailto:erusso@unicz.it


 

Highlights 

 WAG/Rij rats should be considered a model of genetically determined epileptogenesis 

 Genetically determined epileptogenesis might differ from post insult epileptogenesis 

 Drug effects on seizure development might not be persistent 

 No clear neuroinflammation has been proven during epileptogenesis in WAG/Rij rats 



 

Abstract 

The WAG/Rij rat model has recently gathered attention as a suitable animal model of absence 

epileptogenesis. This latter term has a broad definition encompassing any possible cause that 

determines the development of spontaneous seizures; however, most of, if not all, preclinical 

knowledge on epileptogenesis is confined to the study of post-brain insult models such as 

traumatic brain injury or post-status epilepticus models.  WAG/Rij rats, but also synapsin 2 

knockout, Kv7 current–deficient mice represent the first examples of genetic models where an 

efficacious antiepileptogenic treatment (ethosuximide) was started before seizure onset. In 

this review, we have critically reconsidered all articles published regarding WAG/Rij rats, 

from the perspective that the period before SWD onset is considered as the latent period. In 

our new theory on seizure development, it is proposed that genes might be considered as the 

initial „insult‟ responsible for all plastic changes underpinning the development of 

spontaneous seizures. According to this idea, in WAG/Rij rats, genetic predisposition would 

lead to the development of abnormal bilateral cortical epileptic foci, which would then non-

genetically stimulate the rest of the brain to rearrange networks in order to phenotypically 

develop seizures similarly to what happens during electrical kindling. 
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1. Introduction 

Wistar-Albino-Glaxo from Rijswijk (WAG/Rij) rats, a strain of Wistar origin, is a widely 

used and validated genetic model of generalized absence epilepsy (Coenen and Van 

Luijtelaar, 2003). All rats of this strain, older than 2-3 months, start to develop highly 

synchronous, bilateral spike-wave discharges (SWDs; 7-10 Hz) in the cortical 

electroencephalogram (EEG) accompanied by concomitant behavioral episodes of vibrissae 

twitching and accelerated breathing, head tilting, and, often, eye twitching as in human 

absence epilepsy (van Luijtelaar and Sitnikova, 2006; van Luijtelaar and Zobeiri, 2014). At an 

age of six months, all WAG/Rij rats show SWDs, on average 16-20 per hour (Coenen and 

Van Luijtelaar, 1987). Despite validation, the WAG/Rij rat phenotype differs in some aspects 

from human absence epilepsy: i) absence epilepsy is characteristically a childhood disease, 

which may disappear or transform into other types of epilepsy around or after puberty, while 

in WAG/Rij rats, SWDs appear after puberty (>P50) reaching a plateau at 6 months of age; ii) 

patients with typical absence epilepsy have SWDs of about 3Hz while in WAG/Rij rats, but 

also in GAERS (Genetic Absence Epilepsy Rats from Strasbourg) and in mouse absence 

models, seizure frequency is higher, varying between 7-11Hz (Drinkenburg et al., 1993; van 

Luijtelaar and Coenen, 1986). 

The SWDs in the WAG/Rij rats are bilaterally symmetrical and generalized over the entire 

cortex (Midzianovskaia et al., 2001). Frontal regions show more, and sometimes larger, 

SWDs than occipital regions. Moreover, the waves are more clearly expressed in the occipital 

cortex (Midzianovskaia et al., 2001). The tendency for SWDs to occur during drowsiness and 

light slow-wave sleep closely corresponds to what is observed in humans (Drinkenburg et al., 

1991; Smyk et al., 2012).  

WAG/Rij rats, in addition to being a validated model of absence epilepsy, have been more 

recently validated as a model of a chronic low-grade depression (dysthymia) accompanying 



 

the development of absence seizures (Sarkisova and van Luijtelaar, 2011); therefore, it can be 

considered as an animal model of absence epilepsy with depressive-like comorbidity. In this 

light, behavioral alterations are temporally linked to the development of absence epilepsy 

(Russo et al., 2011a) and disappearance of these symptoms accompanying the prevention of 

SWDs suggested that seizures might be necessary for the appearance of depressive-like 

behavior (Sarkisova et al., 2010); however, this latter point still remains to be completely 

clarified, considering that also some opposite results have been obtained (see Section 4). 

Finally, WAG/Rij rats have been recently identified as a potential animal model of absence 

epileptogenesis (Blumenfeld et al., 2008; Giblin and Blumenfeld, 2010; White and Loscher, 

2014). This review article aims at critically analyzing previously published articles in order to 

identify potential alterations in WAG/Rij rat brain, not previously considered, which might 

contribute to the epileptogenic process underlying the development of spontaneous absence 

seizures; furthermore, the actual experimental results of various antiepileptogenic treatments 

are critically reconsidered and a new hypothesis for a genetically-based absence 

epileptogenesis in these animals is proposed. 

 

2. WAG/Rij rats as a model of absence epileptogenesis 

This section of the review will discuss a new hypothesis on the perspective of a genetically- 

driven epileptogenesis and the possible involvement of some distinct brain areas in this 

process. Also, the current knowledge on the efficacy of some tested treatments (summarized 

in Figure 1) for the prevention of seizure development in this animal model will be critically 

reviewed. 

 

2.1 Hypothesis for genetically-determined epileptogenesis 

Epileptogenesis refers to the development as well as structural and functional extension of 

brain tissue capable of generating spontaneous seizures, resulting in the development of a 



 

chronic epileptic condition and/or progression of epilepsy after the condition is established 

(Pitkanen and Engel, 2014).  The latency period of epileptogenesis currently refers to the time 

between an initial brain insult and the appearance of the first spontaneous seizure (Pitkanen 

and Lukasiuk, 2011). Most of the currently available studies focus on identifiable brain insults 

such as traumatic brain injury or stroke, while the possibility that the process of 

epileptogenesis also occurs in genetic epilepsy still remains a possibility or at least a 

suggestion (Giblin and Blumenfeld, 2010; Goldberg and Coulter, 2013; Guerrini et al., 2014; 

Pitkanen and Engel, 2014). 

Several mechanisms leading to the development of spontaneous seizures have been identified 

in animal models and suggested as potential therapeutic targets; however, this knowledge has 

been mainly obtained in epilepsy models where an initial well-defined insult can be identified 

(Goldberg and Coulter, 2013). It is clear that during any process of epileptogenesis, despite 

the cause, a possible sensitive time window for treatment and prevention might exist; for 

example, it has been demonstrated that in heterozygous Na
+
 channel subunit (NaV1.1) knock-

out mice (a model of Dravet syndrome, or Severe Myoclonic Epilepsy of Infancy) seizures 

can only be elicited by hyperthermia after postnatal day 19 (P19), while between P14 and 

P18, there is less hippocampal hyperexcitability, indicating that during the period between 

P10, when this channel begins to be expressed, and P19, some kind of adaptive changes 

occur, suggestive of epileptogenesis (Guerrini et al., 2014; Liautard et al., 2013). Similarly, in 

WAG/Rij rats, the pre-seizure period (up to the age of P50-60) might be considered as the 

respective “latent period” necessary for the development of spontaneous absence seizures; 

furthermore, considering that the number of absence seizures keeps on increasing between 2 

and 4-5 months of age or even after (Coppola and Moshe, 2012; van Luijtelaar and Zobeiri, 

2014), it could be hypothesized that the underlying epileptogenic process implies continuous 

adaptive/plastic changes which are not necessarily dependent on seizures. This latter idea 



 

arises from the assumption that before the appearance of the first seizure, some epileptogenic 

processes are already present. This does not exclude the possibility that the seizures generated 

by these processes can contribute to the overall epileptogenic process. In agreement with this 

notion, it was previously suggested that interictal spikes recorded on the EEG are both the 

result of cellular changes during epileptogenesis and the cause of further subsequent changes 

reinforcing the epileptic circuit (Lillis et al., 2015; Staley et al., 2005; Staley and Dudek, 

2006). 

WAG/Rij rats indeed undergo an epileptogenic process and this is supported by the fact that 

several brain alterations are observed before and after seizure onset and that several 

treatments have been shown to prevent/reduce seizure development (see following sections 

for details). To date, the mechanisms underlying the epileptogenic process in this animal 

model are unknown, as well as the exact sensitive time window for preventive treatments. 

Indeed, some alterations such as increased expression of Nav1.1 and 1.6 subtype Na
+
 channels 

and decreased expression of slow inward rectifier HCN1 channels (which parallel the 

development of spontaneous seizures; these channels were also recently found to have an N-

terminal deletion of 37 amino acids in WAG/Rij rats, see section 3.3), have been identified, 

but it still remains to be clarified whether such alterations are the cause or a consequence of 

the epileptogenic process and seizures (Blumenfeld et al., 2008); on the other hand, the time 

window for intervention also appears very broad ranging, from P8 to P45 up to 5 months of 

age, and yet it is not possible to exclude that therapeutic intervention during another life 

period might have a beneficial long-term effect (see Section 4). 

WAG/Rij rats are a fully inbred strain sharing all autosomal genes; all individuals exhibit 

spike-wave discharges (SWDs) on their EEGs suggesting a dominant transmission with no 

differences between sexes, similar to what has been found in GAERS (van Luijtelaar et al., 

2014). Variability exists in the number and/or duration of SWDs between rats which supports 



 

the idea that inheritance is unlikely to be due to a single gene locus; this is further supported 

by the influence played by the environment and epigenetic factors (Schridde et al., 2006; 

Schridde and van Luijtelaar, 2004; van Luijtelaar and Sitnikova, 2006). Finally, only 

quantitative trait loci on chromosomes 5 and 9 of WAG/Rij rats have been identified 

(Gauguier et al., 2004) and no identified specific gene mutation accounts for the development 

of spontaneous seizures in this model (van Luijtelaar and Sitnikova, 2006); this latter point 

creates a clear difference between the above-mentioned model of Dravet syndrome (with a 

single defined (loss-of-function) mutation on Na
+
 channels) and WAG/Rij rats. Nevertheless, 

the same hypothetical mechanism can be suggested; namely, in genetic models, one or more 

factors may create (directly or indirectly; i.e. predominant loss of interneuron function) 

abnormal brain areas of hyperexcitation, which will not be initially easily identifiable but will 

drive a continuous stimulus to interconnected areas leading to the development of fully 

functional „abnormal‟ networks responsible for the phenotypic appearance of spontaneous 

seizures. In other words, defined areas of genetically-predetermined hyperexcitation will 

induce adaptive changes in an already expressed network (e.g. cortico-thalamo-cortical 

network) or generate new circuits with the ability to engender seizures. 

In this light, it has been demonstrated and widely confirmed that the WAG/Rij rat model 

possesses a focal area(s) localized in the perioral facial region of the somatosensory cortex 

where SWDs are initiated. Therefore, it has been suggested that absence seizures in this strain 

may in fact, have a bi-lateral focal origin (Luttjohann et al., 2011; Meeren et al., 2002; van 

Luijtelaar and Sitnikova, 2006). In agreement with this, it has recently been demonstrated that 

the removal of only both foci completely abolishes SWDs (Scicchitano et al., 2015) while 

fMRI (functional magnetic resonance imaging) studies have confirmed the presence of 

bilateral activated regions in the somatosensory cortex (Nersesyan et al., 2004). Based on this 

background, we can then suppose that these focal epileptic areas may be genetically 



 

predetermined to be hyperexcitable (D'Antuono et al., 2006; Kole et al., 2007; Luttjohann et 

al., 2011; Strauss et al., 2004) from a certain developmental age onwards. These areas might 

then trigger neuroadaptive changes into the cortico-thalamo-cortical network, which will then 

become responsive to the hyperexcitable stimulus generating seizures. In other words, the foci 

will be responsible for inducing the plastic changes into the circuit, phenotypically generating 

and initiating SWDs and driving and maintaining these bilateral synchronous SWDs in this 

absence model. It is most likely that similar processes occur in other rodent genetic models 

such as GAERS as well (David et al., 2008). 

Based on this hypothesis, most of the changes observed in the brains of these rats might be a 

consequence of this continuous stimulation, and the onset of the first spontaneous seizure may 

represent the moment when the network has already reached the minimally necessary 

conformation to phenotypically express SWDs. Theoretically, this process might be similar to 

what happens during experimental electrical kindling stimulation of limbic regions where an 

initial subthreshold stimulus triggers over time, a larger neuronal response resulting in 

generalized seizures with increasing duration and intensity (Morimoto et al., 2004). Several 

mechanisms have been identified that may underlie this process, and it is clear that kindling 

causes functional plasticity in the stimulated focus while also recruiting other networks 

outside the stimulated area (Giblin and Blumenfeld, 2010; Morimoto et al., 2004). 

Accordingly, it is necessary to understand when this endogenous stimulation actually begins 

in WAG/Rij rats, since this will help to guide the search for the best moment for starting a 

treatment aimed at antiepileptogenesis. Furthermore, it is clear that when the first seizure 

appears, although the epileptic network might not be considered completely formed yet, it 

will become more difficult to restore the system to an initial non-hyperexcitable state. Thus, 

once a seizure is phenotypically characterized, the network should be already considered 

epileptic and while progression might be blocked, the alterations observed and the related 



 

consequences may no longer be rescuable. Finally, the last question requiring an answer is 

whether blocking adaptive changes into this network before seizure onset, is really enough to 

prevent seizure development forever; in fact, if the kindling-like electrical activity of the 

focus is maintained over time, after drug suspension, this stimulation might lead again to the 

development of an epileptic phenotype. This latter point is further discussed below when 

reviewing drug effects (see Section 4). 

Critically, we might therefore, theoretically identify three different (not necessarily separated) 

phases involved in the genetic epileptogenesis: 1) initial genetically-determined brain 

alteration leading to the establishment of the focal region(s); 2) beginning of focal activity, 

stimulating other brain areas with no SWDs up to the appearance of the first seizure and 3) 

from first seizure to the complete network maturation leading to chronic stable expression of 

SWDs (Figure 2). While the onset of the first seizure in this strain has been identified in a 

well-defined time window, all other time windows should also be identified. Furthermore, the 

identification of these milieus might also help in identifying possible biomarkers of the 

epileptogenesis process. 

 

2.2 Brain regions of interest 

It  is widely agreed that SWDs in absence epilepsy are generated within the thalamo-cortical 

neuronal network (Huguenard and McCormick, 2007; Meeren et al., 2002; Pinault and 

O'Brien, 2005; Steriade, 1998). As mentioned above, a bilaterally present, hyperexcitable, 

focal area within the deep layers (V and VI) of the perioral somatosensory cortex (S1po) has 

been identified as the seizure onset zone (Meeren et al., 2002; Polack et al., 2007) or rather 

near in the S2 or insular cortex (Zheng et al., 2012) and the necessity of this focal area(s) for 

SWD generation has been validated by several independent research groups exploiting 

different experimental techniques (for review see (van Luijtelaar and Sitnikova, 2006). It can 



 

be noted, that such a focal cortical onset zone, although not located within the somatosensory 

cortex, but rather in fronto-temporal cortical regions, has also been identified in children with 

absence epilepsy in several EEG, MEG (magnetoencephalogram) and EEG-fMRI studies 

(Holmes et al., 2004; Moeller et al., 2008; Westmijse et al., 2009). 

While the presence of a cortical focus might be sufficient for the generation of localized 

SWD-like discharges, which have sometimes been noted in LFP (local field potential) 

recordings obtained in the somatosensory cortex of WAG/Rij and GAERS rats (Luttjohann 

and van Luijtelaar, 2012; Seidenbecher et al., 1998), it is not sufficient for the generation of 

“full blown”, bilaterally synchronous SWDs. Rather, an intact cortico-thalamic network is 

essential for the generation of bilaterally synchronous SWDs. The initial strong excitatory 

activity originating in the somatosensory cortex, activates (via cortico-thalamic (TC) neurons) 

sensory thalamic nuclei including the ventral-postero-medial (VPM) and the posterior 

thalamic nucleus (Po), as well as via collaterals of the TC neurons, the inhibitory reticular 

thalamic nucleus (NRT). Activation of the NRT results in an increased GABAergic output 

from the NRT onto the TC relay neurons, which become slightly more hyperpolarized. 

Indeed, next to the local cortical hyperexcitation, an increased tonic inhibition of TC relays 

has been described as another key-element of absence seizure generation (Cope et al., 2009; 

D'Amore et al., 2015). 

As a result of this hyperpolarization, TC neurons of the VPM and Po respond in a burst-like 

pattern towards the cortical input (Crunelli and Leresche, 2002; McCormick and Bal, 1997; 

(Polack et al., 2009). Since TC neurons of the VPM and Po project to the somatosensory 

cortex, their activity “reactivates” the cortical focus and via these nuclei, provides a 

reverberation circuit, the cortico-thalamo-cortical network, relevant for SWD generation and 

maintenance. Recent network analytical studies (Luttjohann et al., 2013; Luttjohann and van 

Luijtelaar, 2012) demonstrated that the cortex displays a unique coupling profile with each of 



 

the above mentioned nuclei and even subparts of the nucleus (i.e. the cortex was found to 

interact differently with the caudal and rostral part of the NRT) during SWDs and in a short 

period immediately prior to SWD onset, where the network already seems to prepare towards 

SWD generation. Based on these findings, different functional contributions of the different 

thalamic nuclei for SWD preparation, generation and maintenance, as well as a temporal 

SWD generation scenario was proposed (for review see(Luttjohann and van Luijtelaar, 

2015)). 

Considering the occurrence of SWDs is related to the state of vigilance (with the majority of 

SWDs occurring during drowsiness and light slow-wave sleep)(Drinkenburg et al., 1991; 

Smyk et al., 2012), next to the above described thalamic nuclei, the intralaminar thalamic 

nuclei (known to be involved in the regulation of arousal), have also been proposed to be 

involved in SWD generation and maintenance (Gorji et al., 2011; Seidenbecher and Pape, 

2001). Like the Po, these nuclei not only interact with the cortical focus, but also possess a 

widespread projection to other cortical areas, which makes them suitable candidates to be 

involved in SWD generalization. 

Last but not least, structures outside the CTC loop, have also been shown to possess 

modulatory capacities on the expression of SWDs. Two structures will be mentioned here: the 

substantia nigra pars reticulata (SNr), where several pharmacological manipulations as well as 

electrical stimulation have been shown to modulate SWD activity (Deransart et al., 1998; 

Feddersen et al., 2007). Also, drug injection into the hippocampus modulates SWDs 

(Tolmacheva and van Luijtelaar, 2007). 

Overall, several brain structures appear to interact during absence seizures and all of them 

might be susceptible to adaptive changes during epileptogenesis. It is likely that in the 

beginning of the “latent period”, the network is still non-epileptic and that plastic changes due 

to some unknown reasons will modify at least some of the intrinsic properties of the system in 



 

order to generate absence seizures. In the following sections, the current knowledge about 

alterations in several areas of the cortico-thalamo-cortical network in the WAG/Rij rats that 

could contribute to epileptogenesis will be summarized along with a discussion of what is 

understood about the effectiveness of various drug treatments against epileptogentic processes 

in these animals.  

 

3. Potential mechanisms of epileptogenesis: role of neurotransmitters and other 

processes 

WAG/Rij rats have long been studied as a model of absence epilepsy and for this reason, 

several potential neurotransmitter-based and other mechanisms of epileptogenesis have been 

investigated as reviewed below (Table 1). Historically, such experiments mainly followed 

two basic protocols; symptomatic WAG/Rij rats, older than 5 months were usually compared 

with 1) age-matched control rats (i.e. Wistar or ACI rats, a fully inbred strain of rats) and or 

2) presymptomatic WAG/Rij rats 2 to 3 months old or younger, or a combination of both 

protocols. A statistically significant interaction between strains and age is then considered as 

an indication that a certain dependent variable might be involved in epileptogenesis. For the 

purpose of this review, we have included all relevant data also including pharmacological 

manipulation; however, we focus on any kind of difference encountered before and after 

seizure appearance, considering that alterations observed in old rats in comparison to age-

matched controls might be a consequence of seizures more than a cause or an 

epiphenomenon. Finally, despite some alterations that can be identified in the pre-seizure 

period, no studies after long-term antiepileptogenic treatments have been performed except 

some on ion channels (see sections 3.3. and 4) and on mGlu5Rs (D'Amore et al., 2016). 

 

3.1 GABA 



 

The involvement of γ-aminobutyric acid (GABA) in the occurrence and control of SWDs in 

absence epilepsy is widely recognized (Crunelli and Leresche, 2002). GABA-mediated 

mechanisms have been extensively studied within the CTC system, and there is evidence that 

both GABAA and GABAB receptors are involved in the generation of SWDs (Snead, 1995; 

van Luijtelaar and Sitnikova, 2006). GABAergic neurons in the NRT and their projections to 

the specific relay nuclei of the thalamus are involved in the development/regulation of 

absence seizures (Hosford et al., 1997; Snead, 1992; Snead et al., 1992). Interestingly, it has 

been suggested that the balance between GABAA(Cl
-
) and GABAB(K

+
)-mediated 

conductances is essential for the control of SWDs (Kaminski et al., 2001; Marescaux et al., 

1992b; Vergnes et al., 1984). The peak frequency of SWDs might be mainly determined by 

favoring the balance between GABAA and GABAB conductances towards GABAB 

neurotransmission (Bouwman et al., 2007a; Destexhe and Sejnowski, 2003). Different studies 

indicate that in TC neurons during absence seizures, (1) GABAA-mediated events are 

recruited with each SWD, (2) SWD-related activity can be evoked with no significant 

contribution of GABAB receptors, and (3) blockade of GABAA receptors potentiates SWD-

related activity, presumably through an indirect effect mediated by GABAB receptors (Staak 

and Pape, 2001). 

GABAA receptors are of chief importance in the pathogenesis of absence epilepsy because of 

their apparent role in the synchronization and desynchronization of CTC circuitry. Altered 

GABAA receptor function has been described in the cerebral cortex and thalamus of WAG/Rij 

rats and may contribute to abnormal brain states of absence epilepsy (D'Antuono et al., 2006; 

Luhmann et al., 1995). In WAG/Rij rats, GABAergic inhibition is reduced in upper-layer 

frontal cortical neurons (Luhmann et al., 1995), and GABAA receptor-mediated fast 

hyperpolarizing inhibitory postsynaptic potentials (IPSPs) show decreased peak conductances 

in deeper-layer neurons (D'Antuono et al., 2006). WAG/Rij rats in comparison to Wistar rats, 



 

exhibited a significant reduction in the efficiency of intracortical GABAergic inhibition 

concomitant with hyperexcitability (Luhmann et al., 1995) and interestingly, many cortical 

areas are lacking parvalbumin-containing interneurons.   

It has been shown that the properties of GABAergic synaptic transmission in intralaminar 

thalamic nucleus and NRT neurons are altered in GAERS, another established absence 

epilepsy model, at a developmental stage prior to seizure onset, suggesting that alterations in 

the fine tuning of GABAA receptor-mediated inhibition in thalamic networks may be 

significant for absence epileptogenesis (Bessaih et al., 2006). The „gain‟ of intrathalamic 

GABAergic inhibition plays a critical role for CTC oscillations, particularly in relation to 

SWD generation. However, the local enhancement of GABAergic inhibition in the NRT 

(Aker et al., 2006) and in the perioral region of the somatosensory cortex (Citraro et al., 

2006a; D'Amore et al., 2015) results in a decrease in SWDs, suggesting that there is little 

GABAergic inhibition in the cortex.  

Human absence epilepsy is associated with mutations in the genes encoding the 5, 3, or 2 

subunits of the GABAA receptor (Hirose, 2014) and the amount of the 3 subunit in the NRT 

has been shown to be reduced in WAG/Rij rats as compared to non-epileptic control rats 

(Gauguier et al., 2004; Liu et al., 2007); instead, GABAA receptors are preserved in the 

neocortex of WAG/Rij epileptic rats, which are defective in several GABAB receptor 

isoforms (Liu et al., 2007; Merlo et al., 2007).  

It has been reported that the somatosensory cortex of epileptic WAG/Rij rats, that plays a 

major role in the generation of SWDs, exhibits alterations in GABAB receptor subunit 

expression and localization (Crunelli and Leresche, 2002; Inaba et al., 2009; Merlo et al., 

2007). These alterations may lead to hyperexcitability by down-regulating the function of 

(inhibitory) presynaptic GABAB receptors in neocortical networks.  



 

The cortical hyperexcitability in WAG/Rij rats, measured by extra- and intracellularly 

recorded synaptic responses, is probably due to a decrease in GABA-mediated inhibition 

leading to the hypothesis that the GABA effects on SWDs may depend on regional processes 

and are not homogeneous within the brain (Luhmann et al., 1995). Interestingly, Merlo et al. 

indicate that these molecular changes are not seen in young (about 60days old) WAG/Rij rats 

that do not yet present SWDs (Merlo et al., 2007). In WAG/Rij rats, but also in GAERS, 

bilateral injections of the GABAA receptor agonist muscimol or the GABA reuptake inhibitor 

tiagabine into the medial part of the ventral lateral thalamus, causes a dose-dependent increase 

in SWDs (Liu et al., 1991; Peeters et al., 1989b). However, the known therapeutic efficacy of 

benzodiazepines (GABAA receptor positive modulators) in generalized absence seizures has 

been difficult to reconcile with the consistent finding that experimentally, GABAA agonists 

make absence seizures worse, since benzodiazepines are known to augment GABAA-

mediated inhibition. Thus, administration of diazepam increases SWD activity dose-

dependently in WAG/Rij rats (Peeters et al., 1990a).  

Other systemically administered drugs that enhance GABA activity in the brain, such as VGB 

and tiagabine, aggravate absence seizures in GAERS and WAG/Rij rats (Bouwman et al., 

2007b; Coenen et al., 1995; Russo et al., 2011b) and are also contraindicated in the treatment 

of human absence seizures (Glauser et al., 2013). In agreement, focal bilateral microinjections 

of allopregnanolone or ganaxolone, two neurosteroids acting as positive allosteric modulators 

of the GABAA receptor, into thalamic nuclei, also increase the incidence of absence epileptic 

seizures in WAG/Rij rats (Citraro et al., 2006a). Cortical and thalamic concentrations of the 

most potent endogenous positive modulators of GABAA receptors (allopregnanolone and 

3α,5α-TH-DOC) were compared between pre- (2 months) and post-seizure (6 months) 

WAG/Rij rats. Significant age-dependent decreases in both neurosteroids were found in the 

thalamus but not in the cortex in comparison to non-epileptic control Wistar rats. This 



 

alteration in neurosteroid concentration was accompanied by an increase in α4 GABAA 

receptor subunit expression in some dorsal thalamic nuclei and an age-dependent increase in δ 

subunits. Both α4 and δ subunits are found in extrasynaptic GABAA receptors, where they 

facilitate tonic inhibition. Therefore, it has been hypothesized that the age-dependent increase 

in α4 and δ subunits increases tonic inhibition in thalamic relay neurons, which then 

contributes to the age-dependent increase in SWDs (Pisu et al., 2008). GABAergic 

neurotransmission clearly plays a relevant role during SWDs; in WAG/Rij rats, this 

neurotransmitter system is functionally altered in several areas and this may depend on an 

altered subunit composition of GABA receptors. The actual data, however, suggest that such 

changes mainly occur after seizure development and therefore, they might be a consequence 

of the adaptive changes due to the epileptogenic process more than a cause. 

 

3.2 Glutamate 

N-methyl-D-aspartate (NMDA), α-amino-3-hydroxy-5-methyl-4-isoazolepropionic acid 

(AMPA) and metabotropic-type glutamate receptors are involved in excitatory synaptic 

responses recorded from TC neurons (McCormick and von Krosigk, 1992). NMDA and 

AMPA glutamate receptors may also be involved in the mechanisms of initiation and 

maintenance of SWDs (D'Arcangelo et al., 2002; Filakovszky et al., 2001; Jakus et al., 2004; 

Kaminski et al., 2001; Peeters et al., 1994a). Cortical and/or thalamic excitation of the NRT 

through glutamatergic NMDA and AMPA receptors is essential for synchronous thalamic 

oscillations (Huguenard and McCormick, 2007). There are data concerning excitatory 

neurotransmission in experimental absence seizures suggesting involvement of glutamatergic 

pathways in the production of SWDs (Snead, 1995). Every glutamate receptor subtype and 

their possible contribution to absence generation will be discussed separately in the following 

subsections. 



 

3.2.1 NMDA Receptors 

An increase in synaptic excitability mediated by NMDA receptors in neurons of deep 

neocortical layers in epileptic WAG/Rij rats has been previously demonstrated (D'Antuono et 

al., 2006). Cortical application of NMDA receptor antagonists reduced field potential 

oscillations recorded in WAG/Rij cortico-thalamic brain slices although they persisted 

following application of an NMDA receptor antagonist to the thalamus (D'Arcangelo et al., 

2002). Alterations in the morphological localization of NMDA receptors in the neocortex of 

WAG/Rij rats have also been reported (van de Bovenkamp-Janssen et al., 2006). WAG/Rij 

rats express less NR1 subunits of NMDA receptors in the somatosensory cortex in 

comparison to old non-epileptic ACI rats both at 3 and 6 months of age; considering the 

WAG/Rij strain, an age-dependent decrease was especially observed in cortical layers IV, V 

and VI, which contain the major input-output connections to the thalamus and NRT (van de 

Bovenkamp-Janssen et al., 2006). It was suggested that since 3-month-old WAG/Rij rats do 

not yet show full SWD activity, a low amount of NMDA and AMPA-GluR4 (see section 

3.2.2) receptors might precede the development of SWD activity and perhaps even be the 

cause of it. A lower expression of the NR2B subunit of the NMDA receptors was found in 

both 2-month-old (not yet epileptic) and 6-month-old (epileptic) WAG/Rij rats in different 

layers of the somatosensory cortex in comparison to Wistar rats of the same age (Karimzadeh 

et al., 2013). This subunit also had a decreased expression in the hippocampal CA1 area in 

WAG/Rij rats (6 but not 2 months old) in comparison to age-matched control Wistar rats 

(Karimzadeh et al., 2013). A decrease of the NR2B subunit expression in the somatosensory 

cortex was observed in particular in young animals before the age of seizure onset. It has been 

shown that dysregulation of NMDA-mediated transmission by application of agonists or 

antagonists of NMDA receptors prevents the development of the cortico-thalamo-cortical 

rhythmic activity, which underlies SWDs in GAERS (Koerner et al., 1996). 



 

Intracerebroventricular injections of NMDA increase the number of SWDs in WAG/Rij rats, 

whereas NMDA receptor antagonists decrease the number of SWDs in this strain (Peeters et 

al., 1994a; Peeters et al., 1989a; Peeters et al., 1990b). 

Similarly to GABA, modulation of NMDA receptors is also able to modify SWD incidence. 

NMDA receptors are involved in the cortical hyperexcitability observed in this strain; 

however, the expression of both NR1 and NR2B subunits is lower in comparison to non-

epileptic rats. This alteration is also observed before seizure appearance but it is maintained 

during life; therefore, it would seem that these alterations precede seizure development and 

are not influenced by seizures with the exception of the hippocampus, which is not affected 

before seizure development while it has a decreased expression at 6 months of age. 

 

3.2.2 AMPA receptors 

The AMPA receptor is also a member of the ion channel family of glutamate receptors 

mediating fast excitatory neurotransmission. It is a hetero-oligomer formed from GluA1, 

GluA2, GluA3 andGluA4 subunits (Citraro et al., 2014). AMPA receptor-mediated 

transmission may contribute to the enhancement of cortical excitability and, as a consequence, 

to SWD generation. van de Bovenkamp-Janssen et al. showed that AMPA-GluA4 subunit 

density is lower in WAG/Rij rats than in ACI rats in peri-oral somatosensory cortex (S1po) 

layers independently from age and seizure development. Also an age-dependent increase in 

the numerical density of AMPA-GluA4 subunits was found in the NRT of WAG/Rij rats. 

This increase continued during ageing after 3 months till at least 6 months. An increase in 

extrasomal AMPA-GluA4 receptors seemed to be correlated with the appearance of SWDs, 

since the size of the increase was larger in epileptic than in non-epileptic control rats (van de 

Bovenkamp-Janssen et al., 2006). Therefore, increased AMPA-GluA4 receptor density in the 

NRT of 6 months old WAG/Rij rats may increase the cortico-thalamic drive to the NRT, 



 

promoting the synchronization of SWD activities. Other authors demonstrated that GluA2 

subunits are not expressed around cell bodies in thalamic nuclei with the exception of the 

NRT, whereas, they are widely expressed in the two cortical sites examined (S1po and the 

forelimb region of the primary somatosensory cortex(S1FL))(Citraro et al., 2006b). High 

doses of intracerebroventricularly-administered AMPA produces a dose-dependent increase in 

SWDs (Peeters et al., 1994b; Russo et al., 2008). Citraro et al. found that non-competitive 

AMPA receptor antagonists, CFM-2 and THIQ-10c, showed different effects depending on 

the brain site of administration; in particular, when the two AMPA antagonists were 

administered into the thalamic nuclei ventralis postero-medialis (VPM) and ventralis postero-

lateralis (VPL) or S1FL they did not modify the characteristic EEG recordings from WAG/Rij 

rats, whereas when administered into the NRT and S1po they induced a significant reduction 

of SWDs (Citraro et al., 2006b).  

Despite these findings, AMPA antagonists administered systemically do not seem to be very 

effective drugs against absence seizures, only the highest dose showed a decrease in SWD 

incidence (Kaminski et al., 2001). AMPA receptors are altered in the CTC circuit; alterations 

in the subunit composition appear before seizure onset therefore suggesting that they might be 

involved in the epileptogenesis process. Furthermore, in contrast with what was observed for 

NMDA receptors, the appearance of absence seizures further alters AMPA receptor 

expression. 

 

3.2.3 mGlu Receptors 

Metabotropic glutamate receptors (mGluRs) form a family of eight G-protein-coupled 

receptor subtypes (mGlu1-8), which exert complex modulatory actions on glutamatergic 

neurotransmission. mGluRs are subdivided into three groups on the basis of structural 

homology, pharmacological profile and transduction pathways: group-I includes mGlu1 and -



 

5 receptors (discussed here), which are coupled to Gq proteins (linked to activation of 

phospholipase C (PLC); group-II (mGlu2 and -3) and group-III (mGlu4, -6, -7 and -8) 

receptors (discussed in Section 5) are coupled to Gi proteins (linked to inhibition of cAMP) in 

heterologous expression systems (Nicoletti et al., 2015). These receptors are strategically 

distributed at synapses of the cortico-thalamo-cortical network, which is the anatomical site of 

origin of SWDs underlying absence epilepsy (Ngomba et al., 2011b). mGluRs within the 

cortico-thalamo-cortical loops are particularly positioned to modulate rather than mediate 

synaptic transmission and are therefore potential targets for controlling SWDs (Ngomba et al., 

2011b). 

mGlu1 and mGlu5 receptors show a different pattern of distribution in the cortico-thalamo-

cortical network, which suggests distinct rather than complementary functions of these two 

receptor subtypes (Ngomba et al., 2011b). mGlu1 receptors are highly expressed in thalamic 

relay neurons (Ngomba et al., 2011a; Ngomba et al., 2011b). Thus, mGlu1 receptors are 

critically localized to regulate the firing rate and oscillatory properties of thalamic relay 

neurons. Neurons of the NRT do not express mGlu1 receptor mRNA (Shigemoto et al., 

1992), whereas in the cortex, mGlu1 receptors appear to be exclusively expressed 

postsynaptically on GABAergic interneurons (Stinehelfer et al., 2000). Immunoblotting 

analysis demonstrated lower levels of the thalamic mGlu1α receptors in epileptic 8-month old 

WAG/Rij rats in comparison to 2-month old (pre-seizure) WAG/Rij rats (Ngomba et al., 

2011a). It has been reported that mGlu1 receptors are down-regulated in the ventral basal 

thalamus of symptomatic WAG/Rij rats, and that pharmacological potentiation of mGlu1 

receptors (with the mGlu1 receptor enhancer SYN119) reduces SWDs in these rats, whereas 

treatment with the non-competitive mGlu1 receptor antagonist JNJ16259685, increased the 

incidence of SWDs (Ngomba et al., 2011a).  



 

The downregulation of mGlu1 receptors in the thalamus only occurs in epileptic 8 months old 

WAG/Rij rats (Ngomba et al., 2011a). Therefore, mGlu1 receptors have a protective function 

against SWDs and a loss of this protective mechanism might contribute to the epileptic-prone 

phenotype of WAG/Rij rats while being a consequence of SWDs. Moreover, it has been 

shown that activation of mGlu5 receptors has an excitatory effect similar to that mediated by 

mGlu1 receptors and these receptors can participate in sensory responses of thalamic relay 

cells (Salt and Binns, 2000). Reduced expression and function of mGlu5 receptors in the 

thalamus has been observed in WAG/Rij rats both at 2 and 8 months of age, while an 

increased receptor expression in the sensorimotor cortex was described at the same ages 

(D'Amore et al., 2013). Reduced expression and function of mGlu5 receptors in the thalamus 

is a molecular determinant of the pathological phenotype of WAG/Rij rats, and 

pharmacological amplification of thalamic receptors is sufficient to reduce absence seizures. 

Changes in mGlu5 receptor expression are antecedent to the onset of epileptic phenotype, 

and, therefore, are not secondary to seizure activity being already visible in pre-seizure 

WAG/Rij rats (D'Amore et al., 2013). The enhanced expression of mGlu5 receptors in the 

cerebral cortex represents a compensatory protective mechanism against SWDs. Acute 

systemic treatment with positive allosteric modulators (PAMs) of mGlu1 and mGlu5 mGluRs  

(RO0711401 and VU030172, respectively) suppress SWDs in WAG/Rij rats (D'Amore et al., 

2013; Ngomba et al., 2011a). Chronic treatment (twice per day for 10 days) induced tolerance 

within 48-72 hrs for RO0711401, but not for VU030172 (D'Amore et al., 2014).  

Modulation of type-1 mGluRs has been suggested as a potential target for the treatment of 

absence seizures; this effect could be based on the dysregulation observed in the expression 

and function of these receptors along the CTC circuit since opposite effects of an orthosteric 

mGlu5R agonist had anti-absence action in the lethargic mice absence model (Chapman et al., 

2000). In conclusion, mGlu1 and 5 are altered before seizure onset in several areas and 



 

therefore participate in the generation of the epileptic network responsible for absence 

seizures; however, the increased expression of mGlu5 in the cortex seems to be a 

consequence of the seizures. 

 

3.3 Ion channels 

Different voltage-sensitive ion channels are highly expressed and involved in CTC brain areas 

responsible for SWD development. Several studies indicate a recruitment of the 

hyperpolarization-activated cation current (Ih) in TC neurons during SWDs (Kanyshkova et 

al., 2012). An increase in the expression of a channel isoform (hyperpolarization-activated 

and cyclic nucleotide-gated cation channel-1; HCN1) in TC neurons of epileptic WAG/Rij 

rats was associated with a decrease in cAMP responsiveness of Ih. This produces an 

impairment in control of the shift from burst to tonic firing, which, in turn, will prolong burst 

activity after recruitment of Ih during absence seizures (Bazyan and van Luijtelaar, 2013). 

Altered HCN channel expression and cAMP sensitivity of Ih has been shown in WAG/Rij rats 

in the postnatal age continuing into the chronic epilepsy state (Budde et al., 2005; Kuisle et 

al., 2006). The Ih-dependent changes in active and passive membrane properties become 

significant at 3 months of age and persist into adulthood(Budde et al., 2005). Although the 

resulting alterations of Ih current density, voltage-dependency, current kinetics, and cAMP-

dependent modulation are mostly compensated in older animals (Kuisle et al., 2006), early 

HCN channel dysregulation has been suggested to contribute to the development of the 

epileptic phenotype (Blumenfeld et al., 2008; Kanyshkova et al., 2012) and therefore they 

might be relevant to absence epileptogenesis.  

In WAG/Rij rats, HCN1 channel expression decreases, mainly in the dendrites of cortical 

layer V pyramidal neurons that occurs temporally before the developmental onset of SWDs, 

and at a cellular level plays a direct role in promoting dendritic Ca
2+

 electrogenesis and burst 



 

firing. This loss of neocortical HCN1 function may contribute to an increased cortical 

excitability since there are substantially few HCN1 subunits in the combined complex of the 

Ih channel in the cortical zone containing the focal region in WAG/Rij rats in comparison to 

non-epileptic rats. Indeed, the density of HCN1 channels in the apical dendrites of the 

subgranular layers in the cortical onset zone determines the somatodendritic excitability and a 

decrease of these dendritic HCN1 channels is accompanied by an age-dependent increase of 

SWDs (Bazyan and van Luijtelaar, 2013; Strauss et al., 2004). Recently, it was demonstrated 

that HCN1 channels from the thalamus only (not in genomic DNA) of WAG/Rij rats have an 

N-terminal deletion of 37 amino acids; these channels expressed in Xenopus oocytes 

indicated a gain-of-function of about 2 fold which was further accompanied by a suppression 

in HCN2 and HCN4 currents (Wemhoner et al., 2015).  

Pathophysiological oscillations leading to absence seizures have also been shown to be 

dependent on the activity of (transient) T-type Ca
2+

currents (Broicher et al., 2008; Schridde et 

al., 2006; Steriade et al., 1993). It has been established that the amplitude of the T-type Ca
2+ 

current is increased in the NRT in both WAG/Rij and GAERS (Broicher et al., 2008; 

Tsakiridou et al., 1995). Also, immunocytochemical data show that the development of 

absence epilepsy in 6-month-old WAG/Rij rats is concomitant with an increase in presynaptic 

P/Q-typeCav2.1 channel expression in the NRT in comparison to presymptomatic (3 months 

old) WAG/Rij rats (van de Bovenkamp-Janssen et al., 2004). Therefore, the increase in the 

expression of Cav2.1 channels in the NRT of 6-month-old WAG/Rij rats correlates with the 

manifestation of SWD activity in this animal model. Other studies suggest the involvement of 

other Ca
2+

 channels in generalized absence epilepsy (Burgess and Noebels, 1999). In young 

WAG/Rij rats, an increased peak current density of L-type Ca
2+

 current in the dorsal part of 

the lateral geniculate nucleus (dLGN) TC neurons correlated with up-regulated mRNA and 

protein expression of a particular L-type Ca
2+

channel (Cav1.3)(Kanyshkova et al., 2014).  



 

In WAG/Rij rats, mRNA and protein expression of Na
+
 channel genes Nav1.1 and Nav1.6 are 

upregulated in the perioral region of the primary somatosensory cortex (Klein et al., 2004). 

This upregulation is age-dependent (only in 5-6 months old rats, not in younger rats), and this 

corresponds with the age-dependent increase in SWDs. The age-dependent increase in SWDs 

is closely related to the age-dependent upregulation of certain types of Na
+
 channels in the 

superficial layers of the perioral area of the somatosensory cortex (S1po) only. Overall, this 

increase seems to be subsequent to seizure appearance; therefore, this might be an adaptive 

change to seizures more than based on a genetic predisposition to overexpress these channels. 

Summarizing, several ion channels are altered in WAG/Rij rats; HCN1 seem to be involved in 

the pre-seizure phase also from a genetical point of view while Na
+
 channels are also 

modulated by seizures. 

 

3.4 Glia, neuroinflammation and the mTOR pathway 

Numerous studies have shown that neuroinflammatory pathways contribute to the 

pathogenesis of epilepsy both in terms of epileptogenesis and the long-term consequences of 

seizures (Vezzani et al., 2013). Dutuit et al. (2000) demonstrated that expression of glial 

fibrillary acidic protein (GFAP), the first sign of reactive astrocytosis, and its mRNA levels 

were increased in the cortex and thalamus of both adult and young GAERS suggesting that 

reactive astrocytes are present before the development of absence seizures (Dutuit et al., 

2000). Therefore, reactive astrocytes, already present before the onset of seizures, might 

contribute to the processes giving rise to epileptic seizures by modifying relevant neuronal 

structures. These findings suggest that there is an age-related early malfunction of the neuron-

glia interactions in rats with genetic absence epilepsy. In addition, the potential role of 

astrocytic abnormalities in the expression of absence seizures is demonstrated by production 

of IL-1β (interleukin-1 beta), a prototypical inflammatory molecule, in activated astrocytes, 



 

specifically in the somatosensory cortex of GAERS prior to seizure onset (Akin et al., 2011). 

In WAG/Rij rats, a deficit in glial cells and a lower glia-neuron index was found in the 

somatosensory cortex (Sitnikova et al., 2011); this impairment of glia-neuron interactions in 

this area may well underlie the pathological processes in the primary epileptic foci of absence 

epilepsy (Sitnikova et al., 2011).  

Bacterial lipopolysaccharide (LPS), the biologically active cell wall component of gram-

negative bacteria, binds to toll-like receptor 4 (TLR4) of the innate immune system and 

induces proinflammatory cytokine release from systemic immune cells (Vezzani and Granata, 

2005). It has been reported that both peripheral and central LPS administration facilitates 

SWD generation in the WAG/Rij rat in parallel with increased brain and/or plasma cytokine 

levels (e.g. IL-1β, IL-6 and TNF-α [tumor necrosis factor alpha])(Kovacs et al., 2011; Kovacs 

et al., 2014; Kovacs et al., 2006; Russo et al., 2014a). Analysis of the brain and blood plasma 

levels of IL-1β and TNF-α of 2-, 4-, and 6-month-old WAG/Rij rats and of age-matched 

control ACI rats revealed higher levels of TNF-α in blood serum of the youngest (2 months) 

WAG/Rij rats while in the brain, the only significant difference was observed in rats of 4 

months of age (van Luijtelaar et al., 2012). Overall therefore, neuroinflammation does not 

seem to actively participate in epileptogenesis in this model; however, neuroinflammatory 

modulators can regulate seizures and are probably regionally enrolled in the CTC circuit. 

The role of cytokines and neuroinflammation in absence seizure generation is also supported 

by the acute anti-absence effects of non-steroidal anti-inflammatory drugs, both indomethacin 

and etoricoxib (Citraro et al., 2015b; Kovacs et al., 2014; Rimoli et al., 2009), even though no 

clear dose-response relationship was observed, suggesting that prostaglandins only partially 

contribute to absence seizures; however, etoricoxib possesses antiepileptogenic properties in 

this model (see above section 4 and Table 1).  



 

Astrocytes in the adult brain are connected to each other via gap junction channels composed 

of connexin 43 (Cx43) and Cx30 (Nagy and Rash, 2000), allowing the intercellular exchange 

of ions, second messengers, metabolites, and amino acids. The gap junction blocker 

carbenoxolone reduces absence seizures in adult WAG/Rij rats (Gareri et al., 2005) although 

this drug is known to exert several other non-specific effects which may complicate 

interpretations (Connors, 2012). Several connexins are expressed in the brain of WAG/Rij 

rats, namely Cx30, 36, 43 and 45, but none was found to be altered in comparison to Wistar 

rats at the age of 6 months (Gareri et al., 2005). 

The mammalian target of rapamycin (mTOR) signaling pathway, a conserved 

serine/threonine kinase and member of the phosphatidylinositol 3-kinase-related kinase 

(PIKK) family, has been recently indicated as a suitable drug target for the prevention of 

epileptogenesis in view of its activation during the epileptogenic phase of several epilepsy 

models and the ability of its specific inhibitor, rapamycin (RAP), to prevent the development 

of spontaneous seizures (Russo et al., 2012). Recently, the involvement of the mTOR 

pathway in absence seizures of WAG/Rij rats was demonstrated; chronic oral treatment with 

rapamycin (see Section 4), started prior to the onset of seizures, reduced the subsequent 

development of SWDs in adult WAG/Rij rats, thus displaying antiepileptogenic properties 

(Russo et al., 2013b). These effects were linked to the ability of mTOR to modulate 

neuroinflammation, which was studied in this strain following the pharmacological 

interaction between rapamycin and LPS (see below); furthermore, it has been demonstrated 

that WAG/Rij rats in comparison to Wistar rats, have higher levels of total mTOR in several 

brain areas, including the cortex, hippocampus and thalamus (Russo et al., 2014b). In a 

subsequent study it was reported that in the early phases of the inflammatory response 

induced by LPS, there is an interaction between AMPK (AMP-activated protein kinase) and 

AKT (protein kinase B) through the mTOR pathway (Russo et al., 2014a). Rapamycin 



 

treatment, 30 min after LPS infusion in the WAG/Rij rat brain, regulated the LPS-induced 

neuroinflammatory processes in line with its effects against absence seizures and LPS-

dependent sickness behavior. Based on the current knowledge, a clear involvement of glial 

cells in absence seizures has been demonstrated; however, neuroinflammation seems to be 

more a seizure companion than part of the epileptogenic process, probably contributing to 

plastic adaptive changes. On the other hand, mTOR appears to be constantly activated before 

and after seizures; indeed, both neuroinflammation and mTOR might represent good targets 

for the development of novel antiepileptogenic drugs. 

 

3.5 Endogenous cannabinoids 

Endogenous cannabinoids (eCBVs) are generated and released on demand following 

sustained postsynaptic neuron excitation (Alger and Kim, 2011) and they may be involved in 

the modulation of seizures in absence as well as other models of epilepsy (Fezza et al., 2014). 

Thus, in adult WAG/Rij rats, focal microinjections of the eCB anandamide into the thalamic 

nuclei or somatosensory cortical foci (S1po) reduced the number and duration of absence 

seizures, supporting the notion that a dysfunctional eCB „tone‟ could contribute to the 

generation and maintenance of absence oscillations in the TC network of these animals 

(Citraro et al., 2013a; Citraro et al., 2013b). In contrast, focal administration of the CB1R 

antagonist/inverse agonist SR141716 (rimonabant) had pro-convulsant effects and blocked 

the anti-absence effects of anandamide in this model (Citraro et al., 2013b). Accordingly, 

cannabinoid CB1 receptors (CB1Rs) are known to be downregulated in the NRT of WAG/Rij 

rats suggesting a generally lowered sensitivity to released eCBs (van Rijn et al., 2010). 

Furthermore, levels of AEA but not 2-arachidonoylglycerol (2-AG) in 2 months old WAG/Rij 

rats were lower than those observed in both Wistar and ACI rats only in the thalamus and not 

in the cortex (Citraro et al., 2013b). Interestingly, anandamide has also been shown to inhibit 



 

T-type Ca
2+

 channels directly (Chemin et al., 2001) independent of CB1Rs, which is akin to 

the known therapeutic effectiveness of the T-type Ca
2+

 channel blocker ethosuximide in 

absence epilepsy (Patsalos, 2005). 

Overall, whether eCBs have any significant role to play in absence epileptogenesis remains to 

be tested; this could perhaps be examined with experiments aimed at elevating eCB tone 

using inhibitors of eCB reuptake (AM404, AM1172, UCM707) and/or degradation via the 

fatty acid amide hydrolase (FAAH; AM3506)(Beltramo et al., 1997; Godlewski et al., 2010). 

In view of the recent suggestion that dysregulated eCB signaling could also be a feature of 

major depressive disorder (MDD)(Ogawa and Kunugi, 2015), it would be of interest to see 

whether such experiments with WAG/Rij rats would influence epileptogenesis as well as the 

depression-like symptoms that co-exist in these animals (Sarkisova &  van Luijtelaar, 2011). 

 

4. Drug efficacy against the development of spontaneous absence seizures in WAG/Rij rats 

The first paper demonstrating drug-dependent antiepileptogenic effects in a genetic absence 

model appeared in 2008 (Blumenfeld et al., 2008). The question was whether a 

pharmacological intervention at a certain point of development in a genetic absence epilepsy 

model would influence the course of epileptogenesis. This latter point is in keeping with the 

future possibility to determine whether a known genetic predisposition to develop epilepsy in 

patients can be used to prevent this phenomenon pharmacologically. Therefore, genetic 

models of epilepsy might be considered a different approach to the study of potential 

antiepileptogenic treatments in comparison to post-traumatic or induced models (e.g. 

traumatic brain injury or kindling). In this light, drugs effective in genetic models will not be 

necessarily efficacious in these latter models and furthermore, they will point to a different 

clinical area, namely genetic epilepsies.  



 

Ethosuximide: In this first study by Blumenfeld et al., the classical anti-absence drug 

ethosuximide (ETH; a T-type Ca
2+

 channel blocker; 300 mg/kg/day) was administered 

through drinking water and treatment was started at P21 lasting up to 5 months of age in one 

group or continuously up to the age of 8 months in a second group of WAG/Rij rats. 

Therefore, drug treatment was started early after weaning and before seizure onset (P50-60); 

in any case, before complete central nervous system (CNS) development. Drug choice was 

based on the possibility that a “seizures beget seizures” process would be responsible for the 

time-dependent increase in absence seizures in this model; in fact, the dose was chosen 

according to its ability to completely suppress absence seizures in adult WAG/Rij rats. In this 

study, ETH treatment markedly suppressed the development of absence seizures; this effect 

was observed up to 3 months (8 months of age) following drug withdrawal. The data 

presented demonstrated an effect on the number but not on the mean duration of SWDs.  

Therefore, despite an effect of the treatment on the changes observed in the expression of Na
+
 

channels and hyperpolarization-activated cation channels (HCN1), which accompanies the 

development of SWDs in this strain (see below Section 3.3) (Klein et al., 2004; Strauss et al., 

2004), ETH treatment did not seem to influence the function of the circuit in the maintenance 

of a single seizure once it is started, but only their generation at the focal site(s).  

Although no statistically significant difference in SWD incidence was found by Blumenfeld 

et al., between rats where ETH treatment was stopped and those where ETH was continued 

for several months (2nd group; continuous treatment up to 8 months), in the graphs presented, 

a „rebound‟ effect appeared to be present when comparing the number of seizures/hour at 1 

and 14 days to 30 days after ETH withdrawal. Furthermore, a time-dependent increase at 60 

and 90 days after ETH suspension was noticeable. Others also found a gradual increase in 

SWD incidence in 4 months-treated rats, 2 months after the treatment had stopped (van 

Luijtelaar et al., 2013). All together, these data indicate that ETH effects might be transient, or 



 

that ETH treatment suspended only temporarily, the age-dependent increase in SWD 

incidence. Longer-lasting studies after drug suspension should ideally be performed in order 

to determine whether the observed effects are permanent or only due to an incomplete 

maturation of the epileptogenic circuit, which requires seizures to become fully active. In this 

light, even a small residual number of SWDs might again start a remodeling process, even in 

adulthood when the brain is less plastic, leading to the development of the full epileptic 

phenotype. Indeed, a recent retrospective clinical study demonstrated that ETH is associated 

with a higher rate of remission than valproic acid in children with typical absence epilepsy 

(Berg et al., 2014).  

The results of Blumenfeld et al. were later confirmed by another research group using an 

identical protocol (Sarkisova et al., 2010); in this case, the development of absence seizures 

was associated with the development of behavioral depression-like comorbidity, and when 

rats were followed up to 47 days after ETH withdrawal, a 74% seizure reduction was still 

observed at that age. To be noted in the Blumenfeld et al. study at 30 days, an ~85% seizure 

decrease (Figure 2) was observed while at 60 and 90 days after ETH suspension, about 50% 

and 60% reduction was seen respectively, in comparison to untreated controls as can be 

evidenced from their figures (Blumenfeld et al., 2008).  

ETH effects against epileptogenesis in this model were further confirmed in other studies, 

despite some differences that were evident. In the first study (Russo et al., 2010), ETH 

treatment was started at 6 weeks of age (P42 vs P21 in the Blumenfeld et al. study) and the 

dose used was much lower (80 vs 300 mg/kg/day). The same route of administration was used 

and animals were treated up to the same final age of 5 months; EEG recordings were only 

obtained at 6 months of age (1 month after ETH withdrawal). ETH reduced seizure 

development by about 56% and a reduction in mean SWD duration was also observed in 

contrast to the results of Blumenfeld et al. van Luijtelaar et al. (2013) investigated whether a 2 



 

months treatment with ETH, which either started at PN30 or at PN 90, affected SWDs at 6 

months. They found that only a 4 months‟ treatment affected SWDs. 

Levetiracetam, zonisamide, carbamazepine: The same protocol of administration for the 

antiepileptic drug (AED) levetiracetam (LEV; a selective ligand for the synaptic vesicle 

protein SV2A) was used and this drug also showed marked antiepileptogenic effects (about 

60% reduction in the number of SWDs). Moreover, the rats chronically treated with ETH or 

LEV were, one month after suspension, acutely exposed to the same respective drug:  

surprisingly, while ETH was still effective in reducing the residual SWDs, LEV was nearly 

not as effective, suggesting that residual seizures after LEV treatment were refractory to the 

drug. Notably, LEV is not very effective in this animal model; acute doses of 50 and 100 

mg/kg reduced SWDs by about 40% with no apparent dose-dependent relationship 

(Bouwman and van Rijn, 2004; Russo et al., 2010). As mentioned above, ETH effects, as well 

as those of LEV, were again studied by the same group in a subsequent article published in 

2011; in this case, the authors also studied the effects of the AEDs zonisamide (ZNS) and 

carbamazepine (CBZ) further focusing on drug effects on the development of behavioral 

depression-like comorbidity (Russo et al., 2011a). The protocol of this second study differed 

from the previous, since rats started drug treatment at 1 month of age (P30 vs P42 in the 

previous study and P21 in the Blumenfeld study), drug treatment duration and dose of ETH 

and LEV were identical; however, in this case, rats at 6 months of age (1 month after 

treatment suspension) underwent the forced swimming test (FST) for the evaluation of 

depression-like behavior whereas EEG recordings were performed at 45 days after drug 

suspension. Under these experimental conditions, ETH reduced seizures by only about 31% 

while LEV by about 43%; for both drugs, a lower efficacy in comparison to the previous 

study was underlined (Russo et al., 2011a). In the same article, it was demonstrated that at 45 

days after drug suspension, ZNS (40 mg/kg/day) also had antiepileptogenic effects (about 



 

38% reduction) whereas CBZ (20 mg/kg/day) was not effective and no significant increase in 

SWD parameters was observed after the same treatment schedule. Based on all these studies, 

it can be concluded that only drugs effective against absence seizures might be able to 

block/reduce epileptogenesis in WAG/Rij rats.  

In this latter study (Russo et al., 2011a), it was also evident that a reduction in the 

development of spontaneous seizures was not necessarily accompanied by an alteration in 

depression-like behavior and that different drugs might have differential effects on the two 

parameters (i.e. absence seizures and depressive-like behavior). This point still needs further 

clarification; in fact, subsequent studies have reported opposite effects. To be noted is a study 

of  Kovacs et al. (2012). These authors administered clomipramine (20 mg/kg i.p.; a tricyclic 

antidepressant) in neonatal WAG/Rij rats between P8 and P21 (before weaning); SWD 

activity was found to be attenuated (about 60% reduction) at 8 months of age whereas, 

WAG/Rij rats showed signs of worsened anhedonia with reduced sucrose solution intake (this 

is in agreement with the common reported effects of neonatal clomipramine in rats) (Kovacs 

et al., 2012; Vogel et al., 1990). Accordingly, antiepileptogenic effects (maybe via REM sleep 

deprivation, since all tricyclic antidepressant drugs reduce REM sleep) did not seem to be 

associated with the development of depression-like comorbidity. From this study, another 

possibility arises suggesting that also short-term treatment very early in life might influence 

the development of absence seizures in this strain. While this point still needs to be clarified, 

it is already known that experimental febrile seizures (induced between P21 and P42) in this 

strain do not alter the development of absence seizures in adulthood (Ates et al., 2005); 

neonatal sensory deprivation however, does promote the development of SWDs (Sitnikova, 

2011), and WAG/Rij rats fostered by Wistar dams have less SWDs than rats fostered by their 

epileptic mothers (Sitnikova et al., 2015). These data further support the idea that early short-

term intervention might alter the development of absence seizures. Not surprisingly, a few 



 

months after the first article published by Blumenfeld et al. (2008), another study 

demonstrated that WAG/Rij rats born from dams treated with ethanol starting from the first 

week of pregnancy up to 1 week after delivery had ~ 64% less SWDs than the control group 

at the age of 6 months. In  this study, it was also suggested that ethanol would influence the 

formation of neuronal circuits and depending on the genetic background, this could lead either 

to development or worsening of epilepsy (as demonstrated in the same article for genetically 

epilepsy prone (GEPRs) rats) or to an inhibition of circuit reorganization, blocking the 

development of an epileptic neuronal network as might also be the case in WAG/Rij rats 

(Russo et al., 2008b). 

Vigabatrin: Surprising effects were found when the AED vigabatrin (VGB; an inhibitor of 

GABA transaminase: GABA-T) was tested for potential antiepileptogenic effects in this 

model. Similarly to CBZ, VGB administered acutely in symptomatic WAG/Rij rats increased 

SWDs (Russo et al., 2011b); however, when the usual long-term treatment (starting at P30 

ending at 5 months) with a dose of 100 mg/kg/day was performed, VGB reduced the 

development of spontaneous SWDs (~52%) at 1 month after suspension and this effect was 

accompanied by a reduction in immobility time in the FST. Therefore, it seems that a drug 

that when acutely administered aggravates SWDs, might, when administered long-term, have 

antiepileptogenic effects, supporting the notion that drugs with no clear anti-absence (or even 

pro-absence) effects might also possess potentially useful mechanisms of action which can 

modulate the epileptogenic process; in line with this finding, it was later demonstrated that 

VGB can inhibit the mTOR (mammalian target of rapamycin) signaling pathway (Zhang et 

al., 2013), which is known to be involved in the epileptogenic process (Russo et al., 2012a). 

Furthermore, a subsequent study in WAG/Rij rats demonstrated that rapamycin (RAP), an 

mTOR inhibitor, is also an effective antiepileptogenic treatment in WAG/Rij rats (Russo et 

al., 2013b). 



 

Rapamycin: The mTOR signaling pathway has recently gained attention in view of its 

demonstrated involvement in both genetic and acquired epilepsy syndromes (Citraro et al., 

2016; Russo et al., 2012a). mTOR inhibitors have demonstrated consistent protective effects 

in various animal models of epileptogenesis, however, mTOR should not be considered as a 

universal target for any epileptogenic process (Citraro et al., 2016; Galanopoulou et al., 2012). 

In WAG/Rij rats, chronic oral treatment with RAP (1 mg/kg/day), started at P45 and 

continued for 17 weeks, decreased (about 52% reduction) the incidence of SWDs at 6 months 

of age (1 month after drug suspension); furthermore, the same rats were again EEG monitored 

at 10 months of age (5 months after suspension) and RAP effects were still maintained with a 

reduction of about 49% in comparison to their respective untreated controls. To be noted, 

RAP did not affect the mean duration of a single SWD. Moreover, this chronic RAP treatment 

also showed unexpected pro-depressant effects in both WAG/Rij rats and Wistar rats (non-

epileptic controls) at the age of 6 months, whereas at the age of 10 months, no differences 

were noted (Russo et al., 2013b). In this and in a subsequent study by the same group, RAP 

effects were suggested to be also dependent on the modulation of neuroinflammation by the 

mTOR signaling pathway (see section 3.4)(Russo et al., 2014a). In agreement, RAP was also 

effective in reducing absence seizures in 6 months old WAG/Rij rats without a clear dose-

dependent response, while RAP dose-dependently inhibited the increase in SWDs produced 

by intracerebral injection of the pro-inflammatory bacterial lipopolysaccharide (LPS) in this 

strain (Russo et al., 2014a; Russo et al., 2013b). 

Etorixicob: The role of neuroinflammation in the epileptogenic process underlying the 

development of absence seizures in WAG/Rij rats is an important issue, but not yet 

conclusive and further studies are needed (see section 3.4); however, some of the drugs tested 

so far suggest the possibility of non-AEDs acting on neuroinflammatory cascades as potential 

antiepileptogenic treatments in this model. For example, etoricoxib, a selective 



 

cyclooxygenase-2 (COX-2) inhibitor, prevented the development of SWDs (Citraro et al., 

2015b). Etoricoxib (10 mg/kg/day) treatment was started at P45 and as usual, lasted up to 5 

months of age; also in this study, EEG recordings were obtained at both 6 and 10 months of 

age (1 and 5 months after drug withdrawal). Etoricoxib significantly and persistently reduced 

the number of SWDs by ~50%. However, although the % seizure reduction was maintained, it 

should be noted that the total number of seizures increased proportionally both in treated and 

untreated rats, therefore, this might indicate that the etoricoxib effect is not necessarily 

permanent, similar to what was found for the effects of ETH (see above). Interestingly, 

etoricoxib non dose-dependently reduced absence seizures in 6 months-old WAG/Rij rats by 

~50%; this effect was apparently all-or-none, since a dose of 5 mg/kg had no effects, whereas 

both 10 and 20 mg/kg had similar effects (Citraro et al., 2015b).  

Statins: Based on the known neuroprotective effects and anti-inflammatory properties of 

some statins (Scicchitano et al., 2015a), Citraro et al. (2014b) studied the effects of some of 

the drugs of this class in the WAG/Rij model. All statins used were administered from P45 up 

to 5 months of age and EEG effects on SWDs were measured at both 6 and 10 months of age 

(1 and 5 months after drug withdrawal). Atorvastatin and pravastatin at the doses of 5 and 10 

mg/kg/day, respectively, were not effective whereas, atorvastatin (10 mg/kg; SWD reduction 

~57%), simvastatin (10 mg/kg/day; SWD reduction ~59%) and pravastatin (30 mg/kg/day; 

SWD reduction ~45%) were all effective in reducing the development of SWDs at 6 months 

of age and this reduction was still significant at 10 months of age. However, also in this case, 

the number of SWDs increased proportionally in treated and untreated rats between 6 and 10 

months of age; therefore, as observed for etoricoxib but not for RAP, the antiseizure effects of 

statins might not be long-lasting (Citraro et al., 2014b). To be underlined, the observed effects 

were very similar between all statins and therefore, it could be considered a drug class effect 

linked to their known mechanism of action in inhibiting HMG-CoA (3-hydroxy-3-methyl-



 

glutaryl-CoA) reductase, involved in cholesterol biosynthesis. Furthermore, all statins at 6 

months, reduced immobility time in the FST showing modulating properties on depressive-

like comorbidity; however, this effect disappeared at 10 months of age. This latter observation 

suggests that statins‟ effects might be only temporary if we consider that depressive-like 

behavior is linked to the development of SWDs. 

Antidepressants: It is an accepted view that psychiatric comorbidity should be considered part 

of the epileptogenic process and it is somehow related to seizure development or worsening 

(Brooks-Kayal et al., 2013; Cardamone et al., 2013; Sankar and Mazarati, 2012). 

Furthermore, the role of AEDs or drugs effective against psychiatric symptoms has only been 

infrequently studied in animal models of epileptogenesis, thus it is not yet possible to draw 

any firm conclusion on their effects on seizure development and/or psychiatric comorbidity. 

A recent study evaluated the effects of some drugs used for the treatment of psychiatric 

diseases in WAG/Rij rats for both epileptogenesis and depression-like comorbidity (Citraro et 

al., 2015a). In this study, all drugs were administered between P45 and 5 months of age; EEG 

was only recorded at 6 months of age together with immobility time in the FST. Two standard 

antidepressant drugs were used; i) fluoxetine, a selective serotonin reuptake inhibitor, at a 

dose of 10 mg/kg/day did not modify the development of absence seizures while administered 

at a dose of 30 mg/kg/day, it reduced them (~46%); likewise, ii) duloxetine, a dual-acting 

serotonin-noradrenaline reuptake inhibitor, both at 10 and 30 mg/kg/day, reduced the 

development of SWDs by ~20 and 37%, respectively. Of note, the effects on SWDs of both 

drugs were also studied after chronic 7 weeks treatment in 6 month-old rats and fluoxetine 

was pro-epileptic while duloxetine at a dose of 30 mg/kg/day only reduced absence seizures; 

therefore, the antiepileptogenic effects of these drugs seem not to be necessarily related to 

their anti-absence effects. Furthermore, opposite effects of both drugs were observed on 

depression-like comorbidity; duloxetine did not modify immobility time at either dose 



 

whereas, fluoxetine at the lower dose (not effective as an antiepileptogenic treatment) was 

pro-depressant, and at the highest dose (effective as an antiepileptogenic treatment) it reduced 

immobility time. These controversial results on comorbidity are currently unexplainable and 

unfortunately considering all data published up to date, no final conclusions can be outlined. 

Notably, other mechanisms of action might have also contributed on the observed effects for 

these drugs; e.g. fluoxetine inhibits TREK channels which have been recently indicated as a 

suitable target for the development of drugs with antidepressant properties and possibly other 

neurological diseases (Borsotto et al., 2015). Nevertheless, overall, current data suggest that a 

link between absence seizures, epileptogenesis and depression-like behavior does exist, that 

needs to be further explored.  

Indeed, these drugs acting on central serotonin and serotonin/noradrenaline systems may 

modulate the epileptogenic process and this is also supported by the results obtained in 

WAG/Rij rats after orally administering a milk whey protein rich in tryptophan (α-

lactoalbumin; ALAC), which is known to increase tryptophan blood levels and possibly 

serotonin levels in the brain (Citraro et al., 2011). Despite the fact that the mechanism of 

action of ALAC has not yet been completely clarified, its administration at a dose of 250 

mg/kg/day starting at P30 up to 5 months of age in WAG/Rij rats reduced the development of 

SWDs by ~28% (Russo et al., 2012b). This effect might be related to an increase in cerebral 

serotonin and indeed serotonin brain tissue levels correlated with SWD activity 

(Midzyanovskaya et al., 2006); however, it was also suggested that part of its action may be 

due to an interaction at the glycine binding site on NMDA receptors through the possible 

conversion of tryptophan to kynurenic acid (Russo et al., 2012b). Interestingly, a deficit of 

endogenous kynurenic acid has been found in the frontal cortex of symptomatic WAG/Rij 

rats, but not in younger WAG/Rij rats and in age-matched controls (Kaminski et al., 

2003)(Kaminski et al., 2003).    



 

 

Finally, in a different study, WAG/Rij rats were also treated from P45 to 5 months of age with 

three different antipsychotic drugs and EEG recordings obtained 1 month after withdrawal (6 

months of age) together with immobility time in the FST. None of the drugs tested, namely 

haloperidol (1 mg/kg/day), risperidone (0.5 mg/kg/day) and quetiapine (10 mg/kg/day), 

modified the development of SWD seizures (a slight but not significant increase was noted 

with haloperidol and risperidone); furthermore, haloperidol and risperidone were pro-

depressant while quetiapine had no effects on immobility time (Citraro et al., 2015a). Of note, 

after 7 weeks of oral treatment at the same doses in 6 month-old rats, only haloperidol and 

risperidone were pro-absence, while quetiapine did not modify the number of SWDs.  Based 

on this observation, it could be argued that during long-term treatment, a continuous increase 

in SWDs was present in WAG/Rij rats up to 5 months of age and this might be responsible of 

the pro-depressant effects observed. Therefore, antipsychotics might not give rise to a 

permanent increase in SWDs but they would only aggravate depressive-like comorbidity 

(Citraro et al., 2015a). At odds, CBZ treatment did not modify immobility time in the FST 

(Russo et al., 2011a). Furthermore, it seems that drugs increasing SWDs during treatment do 

not induce a pro-absence effect leading to an increased number of SWDs after the end of 

treatment; namely, no pro-epileptogenic effects seem to be based on a possible increased 

seizure frequency in the long term. 

In conclusion: overall, several drug treatments, if administered early, seem to be efficacious in 

preventing absence seizure development in this animal strain and in particular, the recently 

published results on ETH for childhood absence epilepsy are in agreement with the results 

obtained in WAG/Rij rats (Berg et al., 2014) about the potential disease-modifying effects of 

this AED. The age of drug intervention also needs to be reevaluated, considering that most 

studies were performed with long-term (about 4 months) drug treatments started mainly after 



 

1 month of age; shorter periods with ETH were not effective, possibly earlier intervention 

might require shorter treatment periods as suggested by the effects on WAG/Rij rat seizure 

development after clomipramine administration earlier in life (P8) and for only 14 days 

(Kovacs et al., 2012). Finally, persistence of drug effects has not always been reassessed long 

after drug withdrawal and in some cases, drug effects were not convincingly maintained over 

time. 

 

5. Potential adaptive changes appearing after seizure onset 

5.1 Dopamine 

Dopaminergic neurotransmission/modulation has been shown to participate in the control of 

absence seizures (Citraro et al., 2015a; de Bruin et al., 2000; Russo et al., 2013a) very likely 

through its action on the nigrostriatal pathway and control of the activity of GABAergic 

neurons in the substantia nigra (Deransart et al., 2000; Warter et al., 1988). 

In WAG/Rij rats, a low dopaminergic reactivity of the nigrostriatal system and the lesser 

amounts of disinhibition of TC neurons contribute to the high incidence of SWDs (de Bruin et 

al., 2000). In agreement, dopamine antagonists enhance SWDs and dopamine agonists reduce 

SWD incidence (Midzianovskaya et al., 2001), which suggests that reduced dopaminergic 

activity in the nucleus accumbens (core) might enhance SWDs, and that ventral pathways of 

the basal ganglia system are involved in the modulation of absence seizures (Deransart et al., 

2000). The anatomical pathways through which this occurs might be the projections from the 

nucleus accumbens (shell) and core of the ventral accumbens to various thalamic nuclei, 

including the NRT (Groenewegen et al., 1999). 

In WAG/Rij rat‟s brain at 7 months of age in comparison to age-matched ACI rats, the 

density of dopamine D1-like and D2-like receptors is lower in the striatal and hippocampal 

subregions. D1-like receptor density is decreased in dorsal caudate-putamen and core of 



 

nucleus accumbens, while D2-like receptor density is lower in dorsal caudate-putamen and 

hippocampus CA3. At odds, an increased density of D2-like receptors has been found in 

cortical areas: frontal (motor and somatosensory areas) and parietal cortices. Therefore, it has 

been proposed that the mesocortical dopaminergic system might be involved in the 

pathogenesis of SWDs (Birioukova et al., 2005). 

Compared to non-epileptic Wistar rats, WAG/Rij rats show enhanced susceptibility to 

catalepsy and the lowered density of DA receptors found in the dorsal caudate-putamen of 

these rats has been considered as a neurochemical basis of this susceptibility. Enhanced 

susceptibility to catalepsy was found even in young (8-week-old) WAG/Rij rats in which 

SWDs could not yet be detected (Kuznetsova et al., 1996). This indicates that the 

dopaminergic deficiency appears prior to the development of absence seizures and therefore 

could not be attributed solely to a consequence of repeated absence seizures but directly 

associated with the appearance of absence seizures. It will be necessary to understand whether 

these alterations are confirmed in the pre-seizure period and whether they are also linked to 

the depressive-like behavior and epileptogenesis (Sarkisova and van Luijtelaar, 2011; 

Sarkisova et al., 2008); however, the lack of effects of antipsychotic drugs acting on 

dopamine receptors suggests that dopamine might not have a direct role in epileptogenesis 

and that all these observed differences might only be an adaptation to the underlying 

epileptogenic process or an epiphenomenon. 

 

5.2 Glutamate receptors 

5.2.1 Group-II (mGlu2/3 receptors)  

Epileptic 6-month-old WAG/Rij rats have an increased expression of mGlu2/3 receptors in 

the ventrolateral portion of the somatosensory cortex, which includes the putative “triggering 

zone(s)” of SWDs (Meeren et al., 2002; Ngomba et al., 2005). The expression of these 



 

receptors is also increased in ventrobasal thalamic nuclei and in the hippocampus, but not in 

the NRT. Instead, no changes in mGlu2/3 receptors expression and function were found in 

pre-seizure 2-months-old WAG/Rij rats. Pharmacological blockade of mGlu2/3 receptors 

with LY341495 reduces and treatment with a selective mGlu2/3 receptor agonist (LY379268) 

increases the incidence of SWDs in WAG/Rij rats  (Ngomba et al., 2005). mGlu2/3 receptors 

are involved in absence seizures in this strain; the up-regulation of these receptors in the 

somatosensory cortex and other areas being evident only in adult epileptic rats indicates that 

this might be a consequence of repetitive seizures or an epiphenomenon. 

 

5.2.2 Group-III (mGlu4, -6, -7 and -8 receptors) 

Only mGlu4 receptors have been studied in WAG/Rij rats (Ngomba et al., 2008). Higher 

levels of presynaptic mGlu4 receptors at cortico-thalamic reticular synapses seem to be 

correlated with the appearance of SWDs; an increased mGlu4 receptor expression was 

observed only in the NRT of epileptic 6 months old WAG/Rij rats, but not in the NRT of 

young pre-symptomatic WAG/Rij rats. These mGlu4 receptors in the NRT are localized on 

excitatory cortical afferents. No changes in mGlu4 mRNA or protein levels were found in the 

somatosensory cortex and the selective mGlu4 receptor enhancer (PHCCC) increases the 

incidence of absence seizures (Ngomba et al., 2008). To date, no data exist on the role of the 

other group-III mGluRs in WAG/Rij rats. Similarly to mGlu2/3, mGlu 4 receptors also seem 

to be altered after the appearance of seizures and might not therefore contribute to the initial 

phases of epileptogenesis in this strain.  

 

5.3 Endogenous opioids 

Different biochemical studies have indicated a possible role of the endogenous opioid system 

in the genesis and/or control of absence epilepsy in WAG/Rij rats (Lason et al., 1992; Lason 



 

et al., 1994b). The activity of the endogenous opioid system was studied by measuring the 

levels of proenkephalin (PENK; mainly interacting with µ and δ opioid receptors) and 

prodynorphin (PDYN; mainly interacting with  opioid receptors) and their mRNA, as well as 

the density of opioid receptors (µ, δ and ) in various brain areas of WAG/Rij rats at 3 and 6 

months in comparison to ACI rats.  

A higher level of PENK mRNA and PENK-derived peptide was found in the striatum but also 

in the thalamus and frontal cortex of 6 months old (symptomatic) in comparison to 3 months 

old WAG/Rij rats (indicated as pre-symptomatic at that time, although WAG/Rij rats have 

some seizures at this age) but also age-matched ACI control rats (Lason et al., 1992; Lason et 

al., 1994b). Thalamus and frontal cortex are essential for SWDs, therefore, PENK was 

suggested to participate in the symptomatology and/or pathogenesis of absence epilepsy in 

WAG/Rij rats (Lason et al., 1994b). Moreover, enhanced striatal PENK biosynthesis may 

lead to a more pronounced release of PENK-derived peptides and may influence other 

structures involved in the generation of SWDs (Lason et al., 1994b). It is known that the 

striatum is involved in the control of absence seizures, possibly via the dopaminergic system 

(Buzsaki et al., 1990). A low dopaminergic activity of nigrostriatal fibers may significantly 

contribute to increase SWDs (Buzsaki et al., 1990; Cools and Peeters, 1992), which is in 

agreement with later findings demonstrating that dopamine receptor antagonists increase 

SWDs (Birioukova et al., 2005; Citraro et al., 2015a; Midzianovskaia et al., 2001). 

PENK-derived peptides exert their action through activation of both µ and δ opioid receptors, 

and it has been demonstrated that selective µ receptor agonists increase the number of SWDs, 

while selective δ receptor agonists have no effects on SWDs (Lason et al., 1994a). Different 

effects after activation of the µ and δ receptors may result from a diverse distribution of these 

opioid receptors in the rat brain, especially in the thalamus (Lason et al., 1994a); 

autoradiographic studies showed a high density of  opioid receptors in structures primary 



 

involved in the generation and propagation of SWDs, such as the thalamus, cortex and 

striatum of 6 months old WAG/Rij rats in comparison to 3 months old rats of the same strain 

as well as ACI rats (3 and 6 months old) (Mansour et al., 1987; Przewlocka et al., 1998). 

Instead, a low density of δ receptors has been found in thalamic nuclei and this may explain 

the lack of effect of the δ agonist and antagonist in WAG/Rij rats (Mansour et al., 1987). 

Therefore, epileptic activity in WAG/Rij rats involves µ opioid receptors, while δ receptors 

may not be involved. 

Regarding prodynorphin (PDYN), an increased hippocampal level of PDYN mRNA has been 

found and an increase of PDYN-derived peptide (neoendorphin) in the striatum and 

hippocampus of epileptic 6 months old WAG/Rij rats in comparison to 3 months old 

WAG/Rij rats and ACI control rats (both at 3 and 6 months of age) (Lason et al., 1992; Lason 

et al., 1994b). Instead, a comparable age-related decrease in the PDYN mRNA levels was 

found in the frontal cortex and, to a lesser extent, in the striatum of both WAG/Rij and ACI 

rats (Lason et al., 1994b); this may be an independent additional factor facilitating the 

occurrence of SWDs, since the peptides derived from PDYN, interacting mainly with  

receptors, produce antiepileptic effects (Lason et al., 1994b; Przewlocka et al., 1995). Indeed, 

i.c.v. administration of U50,488H, which like PDYN-derived peptides, stimulates  opioid 

receptors, decreased the number and mean duration of SWDs indicating that activation of the 

 opioid receptor exerts an inhibitory effect on absence-like seizure activity in WAG/Rij rats 

(Przewlocka et al., 1995).  receptor agonists not only act in a way opposite to µ receptor 

agonists (Lason et al., 1994a), but can also attenuate the µ agonist-induced increase of the 

number of SWDs; however, this receptor does not seem to be involved in the epileptogenesis 

process (Przewlocka et al., 1995). 

Concluding, changes in the level of PENK and PDYN in several brain structures may be 

relevant for the occurrence of SWDs in WAG/Rij rats; however, their role in epileptogenesis 



 

(above all for µ receptors) needs to be better defined since the above-summarized experiments 

were carried out comparing 3 months old vs 6 months old WAG/Rij rats and, therefore, 

results may be influenced by the fact that rats at 3 months already may have SWDs which 

might have affected the endogenous opioid system, although tendencies can be inferred from 

the age dependent differences. 

 

5.4 Metalloproteinases 

MMPs (matrix metalloproteinases, MMP1–MMP28) are zinc-dependent proteases which can 

degrade or modify the extracellular matrix components, involved in angiogenesis, 

neurogenesis, regeneration and synaptic plasticity but also in several pathological processes 

such as cerebral ischemia, neuroinflammation and epilepsy, many of which are associated 

with glutamate transmission dysfunction (Jourquin et al., 2003; Wilczynski et al., 2008). 

MMP-9 might be involved in generalized absence epilepsy considering that an elevated 

activity was found in the WAG/Rij rat (Takacs et al., 2010). This elevation is correlated with 

diurnally occurring SWDs in WAG/Rij rats. Nevertheless, no cell death was associated with 

the emergence of absence seizures, which occur in WAG/Rij rats aged about 2-3 months and 

which are associated with an increase in MMP-9 activity. 

In detail, in WAG/Rij rats, MMP-9 levels are significantly elevated 1) in brain areas 

implicated in SWD genesis; 2) at the age at which SWDs were first generated and 3) during 

diurnal changes of SWD genesis, in particular in areas involved in seizure generation. Both 

MMP-9 and its precursor pro-MMP-9 are enhanced during periods of high seizure activity in 

adult (6 months old) WAG/Rij animals, in comparison to young (6 weeks old) rats. At odds, 

the enzymatic activity of MMP-2 was largely reduced in adult rats (Takacs et al., 2010). 

Overall, the role of MMPs needs to be better investigated, but their alteration seems a 

consequence of seizures more than part of the epileptogenic process. 



 

 

6. Other systems or processes 

6.1 Acetylcholine 

The occurrence of SWDs in WAG/Rij rats depends on the presence of combined cholinergic 

input from the brainstem and nucleus basalis of Meynert (NB) to both cortical and thalamic 

areas. Therefore, the NB plays a key role in neocortical arousal by directly activating the 

neocortex, including the somatosensory cortex (Baskerville et al., 1993), the region of origin 

of the SWDs (Meeren et al., 2002).  

The ascending activation from brainstem and basal forebrain weakens during drowsiness and 

light slow-wave sleep and then the neurons of the NRT may start to fire in the bursting mode, 

necessary for the production of and (via widespread ascending projections) synchronization 

across the thalamus and cortex, which can be registered as sleep spindles or paroxysmal 

SWDs (Buzsaki et al., 1988). It has been shown that mainly muscarinic cholinergic 

stimulation of the NB and, to a smaller extent, of the NRT, plays an important role in the 

inhibition of the CTC  synchronous activity, typical for SWDs in WAG/Rij rats (Berdiev et 

al., 2007; Berdiev and van Luijtelaar, 2009). In particular, the administration of the 

cholinergic agonist carbachol in the NB suppressed SWD activity in WAG/Rij rats while the 

muscarinic antagonist scopolamine alone had no effect on SWDs, but antagonized the 

carbachol-induced decrease of cortical discharges (Berdiev and van Luijtelaar, 2009). 

Nevertheless, the selective destruction of cholinergic cells within the NB provokes an 

increase of SWDs in the cortical EEG of adult WAG/Rij rats (Berdiev et al., 2007), 

suggesting that the activity of the cholinergic system indeed inhibits SWDs. Despite these 

data suggesting an involvement of the cholinergic system in seizure modulation, no specific 

studies on the central distribution or function of cholinergic receptors have so far been 



 

performed in this strain of rats. Considering the role of this system in the regulation of SWDs, 

epileptogenic alterations cannot be excluded, therefore further investigations are warranted.  

 

6.2 Noradrenaline 

Little is known about the role of noradrenaline (NA) transmission in absence epilepsy and 

epileptogenesis of WAG/Rij rats, though some rat strains with absence epilepsy have a 

congenital deficit of brain aminergic neurotransmitter systems (Buzsaki et al., 1990). It is 

known that drugs, which interact with β-noradrenergic transmission (salbutamol, isoprenaline, 

propranolol), do not affect absence seizures; instead, SWDs are reduced by the administration 

of the α1-agonist cirazoline or α2-antagonist yohimbine, but aggravated by the α1-antagonist 

prazosin and α2-agonist clonidine (Marescaux et al., 1992a; Micheletti et al., 1987). 

Clonidine aggravates absence seizures in WAG/Rij rats; the administration of clonidine in a 

low dose in WAG/Rij rats results in EEG and behavioral sedation, associated with the 

reduction of noradrenergic neurotransmission (Sitnikova and van Luijtelaar, 2005). Further 

studies are therefore needed to clarify whether this system is involved in the epileptogenic 

process in this model. 

 

6.3 Serotonin 

There are a few studies investigating the role of serotonin (5-hydroxytryptamine, 5-HT) in 

absence seizures/epilepsy (Filakovszky et al., 1999; Gerber et al., 1998; Graf et al., 2004; 

Jakus et al., 2003; Midzyanovskaya et al., 2006; Sander et al., 2000; Sarkisova and van 

Luijtelaar, 2011); it has been suggested that 5HTergic neurotransmission participates in the 

modulation of the occurrence of SWDs in absence epilepsy through various different 5-HT 

receptors, by acting on the main components of the CTC loop. An increase in endogenous 5-

HT produces a dual effect on SWDs; the activation of 5-HT1A receptors enhances 



 

epileptiform activity, and the activation of 5-HT2C receptors inhibits the generation of SWDs 

of absence epilepsy in WAG/Rij rats (Filakovszky et al., 1999; Gerber et al., 1998; Graf et al., 

2004; Jakus et al., 2003). 

Extracellular and intracellular recordings revealed that 5-HT2 receptors are involved in 5-HT-

induced inhibition of rhythmic burst firing of the thalamic neurons, which are closely related 

to the generation of SWDs and/or cortical spindle activity (Pape and McCormick, 1989). 

Thus, these inhibitory functions of 5-HT2 receptors on thalamic neurons seem to be 

responsible for the anti-absence activity of 5-HT2 agonists, although the precise mechanisms 

remain uncertain. In addition, a previous study using WAG/Rij rats showed that the 5-

HT2B/2C agonist (mCPP) reduced the incidence of SWDs and these actions were 

antagonized by the selective 5-HT2C antagonist SB-242084 (Jakus et al., 2003). Despite a 

clear involvement of 5-HT neurotransmission in absence epilepsy, no specific studies exist in 

WAG/Rij rats regarding the distribution and function of its receptors, therefore, no 

conclusions can be drawn about whether 5-HT systems are involved in epileptogenesis. 

 

7. Current limitations and future directions 

WAG/Rij rats are currently considered a plausible model of absence epileptogenesis or more 

generally, a genetic animal model of epileptogenesis (Blumenfeld et al., 2008; Giblin and 

Blumenfeld, 2010; White and Loscher, 2014). This point is strongly supported by the recent 

clinical data demonstrating a potential antiepileptogenic effect of EHT  in childhood absence 

epilepsy, similarly to its effects in this strain (Berg et al., 2014; Blumenfeld et al., 2008). 

Furthermore, the hypothesis that epileptogenesis occurs before two months of age, earlier than 

the development of spontaneous absence seizures, is also highly probable, while not yet 

completely demonstrated and studied. 



 

Indeed, WAG/Rij rats have long been known and studied as an animal model of absence 

epilepsy and from this point of view much is known (van Luijtelaar, 2011; van Luijtelaar and 

Zobeiri, 2014) even though, as evidenced in this review, most of these data are not helpful to 

understand the process of epileptogenesis in this strain. Genetic analysis of this strain by 

quantitative trait loci (QTL) mapping demonstrated the polygenic control of SWD 

phenotypes, which was earlier hypothesized considering that WAG/Rij rats are a fully inbred 

strain from Wistar rats. Mendelian cross-breeding studies suggested that one dominant gene 

determines the occurrence and other genes modulate the number and duration of SWDs 

(Peeters et al., 1992); subsequently, Gauguier et al. identified the above mentioned QTLs, 

T1swd/wag on chromosome 5 controlling type-1 SWD average duration and T2swd/wag on 

chromosome 9 controlling the total duration of type-2 SWDs (Gauguier et al., 2004). 

Epigenetic changes convincingly contribute (both positively and negatively) to the 

development of absence seizures (see Section 2.1) even if only few studies are currently 

available and none of them has demonstrated the ability to completely suppress the 

development of spontaneous seizures. Further studies may thus aim at a better 

characterization of this aspect.; e.g. Repressor element 1‐silencing transcription (REST) factor 

pathway negatively regulates the expression of several genes including these for HCN1-4 

channels (Goldberg and Coulter, 2013; Roopra et al., 2012) which have been involved in the 

development of absence seizures in this strain (see Section 3.3) among others.  

Overall, the clarification of the mechanisms involved during the epileptogenesis process (e.g. 

neuroinflammation, plastic changes) should be considered as most relevant, considering that 

these kind of studies will highlight both the best time-window for intervention and the best 

targets for drug(s); this latter point should also be considered in light of the concept of 

“network pharmacology” for epileptogenesis and the possibility to use contemporary drugs 

with different mechanisms of action to prevent the development of spontaneous seizures and 



 

to reduce toxicity (Klee et al., 2015). To date, several drugs have already been tested and 

studied in this model, although all studies were based on a hypothetical period of intervention 

and drug-treatment duration and their choice was mostly not based on earlier evidenced 

specific targets. Indeed, several other drugs might be tested, but only by hypothesizing that a 

particular epileptogenic mechanism might be involved or on the basis of their effectiveness in 

other models (i.e. bumetanide, brivaracetam). Therefore, while these kind of experiments are 

also warranted, they appear to be secondary to the need to better study the epileptogenic 

process per se as mentioned above. 

Similarly, a clinical approach cannot yet be hypothesized; the study by Berg et al. is 

undoubtedly encouraging by supporting animal data and vice versa; however, many 

differences exist and several aspects must be considered (Berg et al., 2014). First of all, the 

fact that WAG/Rij rats do not have seizure remission later in life as happens in childhood 

absence epilepsy and that children start drug treatment only after diagnosis (no data are 

available, to date, demonstrating that ETH started in rats after the appearance of the first 

seizure has antiepileptogenic effects) in contrast to the animal model protocol (treatment 

started at least 15 days before seizure development), does not permit us to easily consider the 

potential use of other drugs directly on patients. For example, while rapamycin was found to 

be very effective, it is obviously not yet advisable to start a clinical trial to demonstrate its 

effectiveness in childhood absence epilepsy. On the other hand, the major limitation for the 

treatment of patients who might be affected by genetic epilepsy is the current impossibility to 

predict the development of epilepsy before the appearance of the first seizure; therefore, it is 

currently not possible to start a treatment as early as we do in this animal model. In this light, 

the identification of a possible presymptomatic biomarker in this strain also represents a 

compelling need. 



 

Finally, despite the fact that this rat strain only develops absence seizures, this might not 

necessarily mean that drugs efficacious in this model might not also be effective against 

epileptogenesis leading to other seizure types; for example, rapamycin and levetiracetam are 

both effective in this and other models of epileptogenesis. Furthermore, epileptogenesis 

mechanisms that might be identified in this model might also be present in other genetic 

animal models of epileptogenesis. 

 

8. Conclusions 

The lack of antiepileptogenic therapies is one of the major unmet needs on epilepsy research, 

despite the availability of many animal models (Pitkanen and Engel, 2014; Trinka and Brigo, 

2014; White and Loscher, 2014). To this aim, animal models have been the major source of 

our current understanding and have led to the identification of potential targets for epilepsy 

development prevention and/or progression; however, none of the currently available models 

has been clinically validated (Kobow et al., 2012; Pitkanen and Lukasiuk, 2011; Pitkanen et 

al., 2013). New insights are now coming from so-called genetic animal models which are 

being reconsidered as potential models to study the pathophysiology of the epileptogenic 

process (differently from acquired/post-insult models) and the potential antiepileptogenic 

efficacy of drug treatments (Blumenfeld et al., 2008; Chugh et al., 2015; Liautard et al., 2013; 

Marguet et al., 2015). Our current knowledge suggests that some processes (e.g. 

neuroinflammation) might be in common in the epileptogenesis that occurs in post-insult 

models and genetic models; however, some important differences also exist (e.g. no clear 

neurodegeneration, neurogenesis) and also differences might well be observed between 

different genetic models. 

In WAG/Rij rats, the first seizure appears about the age of 2 months; therefore, we have 

hypothesized that the period of life before seizure appearance in this strain, as well as other 



 

genetic models, might be considered the corresponding latent phase (period) studied in post- 

insult models. Brain insults such as brain injury or stroke are clearly identifiable events, while 

in WAG/Rij rats, altered genes might be considered as the initial „insult‟ leading to the 

development of spontaneous seizures. Indeed, this theory needs to be validated and further 

studies are warranted to better understand and identify differences between epileptogenic 

processes in genetic and post-insult models. 

Starting from this background, we have reconsidered all published articles on WAG/Rij rats 

in order to identify potentially already known processes involved in epileptogenesis. It was 

clear from the beginning, that studies not focused on epileptogenesis could only give partial 

information. However, some interesting results on several systems have been published and 

they present the starting point for future investigations aimed at the study of epileptogenesis 

in this strain or for comparison with other genetic animal models. The major limitation found 

was related to the age when animals were studied, considering that in general, experiments 

were run in 1 month old animals or even worse, at 2 or 3 months of age; furthermore, if we 

believe that the epileptogenic process in genetic animals might start very early, even before 

birth, studies on rats younger than 1 month are completely missing.  

Comparing WAG/Rij rats with what is known for post-insult models, we found that: 1) there 

is not yet a clear demonstration of an involvement of neuroinflammation in epileptogenesis; it 

cannot however, be excluded that local inflammatory processes are involved, as observed for 

GAERS (Akin et al., 2011). The currently published articles confirm that no major 

inflammatory processes are undergoing before and after seizure appearance; 2) no 

neurodegeneration is observed in any brain area of these rats before seizure onset as well as 

any other major brain abnormalities. Both these points clearly differentiate WAG/Rij rats 

from other post-insult models, while mTOR hyperactivation seems to be a common link with 

the latter (Russo et al., 2012). Furthermore, several alterations have been identified in the 



 

glutamatergic systems, which are, the most studied in this strain, while considering pre-

seizure age. Finally, some relevant alterations are observed in the function of several ion 

channels, leading to hyperexcitability, which, together with possible changes in 

endocannabinoids, deserve further confirmatory and explanatory studies. 

On the other hand, the recently published results on ETH  in childhood absence epilepsy are 

in agreement with the antiepileptogenic effects of this drug observed in WAG/Rij rats (Berg 

et al., 2014), although the mechanism by which this is exerted is not yet clear. A variety of 

drug treatments have already been tested in this strain and while antiseizure efficacy was 

demonstrated for some of them, we critically observed that in some studies, drug effects were 

not persistent and seizures tended to reappear some time after drug withdrawal. Drug testing 

protocols for this strain and possibly other genetic models should therefore be structured to 

consider longer-lasting follow-up seizure detection after drug treatment suspension. 

In conclusion, we propose that WAG/Rij rats and other genetic epilepsy models represent a 

unique opportunity to increase our knowledge on epileptogenesis; future studies should 

consider earlier life periods and should be aimed at the identification of early processes that 

could be targeted for future drug therapies. 
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Figure Legends 

Figure 1. Summary of drug effects on the development of absence seizures in WAG/Rij rats 

(see section 4). Data represent the percent variation on the development (incidence) of 

absence seizures in comparison to controls (normalized to 1) as reported in every selected 

study. Only studies where the effects of drugs were evaluated at one month after drug 

suspension were included. The number reported after each drug name is the dose used in the 

study expressed in mg/kg/day. Data were obtained from the following studies: 1 = Citraro et 

al., 2014b; 2 = Russo et al., 2011a; 3 = Citraro et al., 2015a; 4 = Russo et al., 2012b; 5 = 

Russo et al., 2010; 6 = Blumenfeld et al., 2008; 7 = Citraro et al., 2015b; 8 = Russo et al., 

2013b; 9 = Russo et al., 2011b. ALAC = alpha-lactoalbumin. 

 

Figure 2. Schematic representation of the possible epileptogenic process in WAG/Rij rats. 

Genetically-determined epileptogenesis similarly to post-brain insult epileptogenesis, might 

have a latent phase (period) temporally interrupted by the appearance of the first seizure. The 

length of this latent phase is not yet defined and proposing that the altered gene(s) might be 

considered as the initial „insult‟, then the initial insult is not necessarily time-limited. In this 

light, we might hypothesize three different (not necessarily separated) phases: 1) initial brain 

alteration leading to the establishment of the focal region(s); 2) beginning of focal activity, 

stimulating other brain areas with no SWDs up to the appearance of the first seizure and 3) 

from first seizure to the complete network maturation, leading to chronic stable expression of 

SWDs (for more details see section 2.1).  

 



 

Table 

 

Table 1 Summary of known alterations relevant to epileptogenesis in WAG/Rij rats 

System Alteration Ref 

GABA 

Decreased allopregnanolone and 3α,5α-TH-DOC in the cortex 

(Pisu et al., 2008) 
Increase in α4 GABAA receptor subunit expression in some dorsal 

thalamic nuclei and an age-dependent increase in δ subunits 

Glutamate 

Reduced expression of NR1 subunits of NMDA receptors in the 

somatosensory cortex in comparison to non-epileptic ACI rats 

both at 3 and 6 months of age 

(van de 

Bovenkamp-

Janssen et al., 

2006) 

Lower expression of the NR2B subunit of the NMDA receptors 

in both 2-month-old and 6-month-old WAG/Rij rats in different 

layers of the somatosensory cortex in comparison to Wistar rats 

of the same age 

(Karimzadeh et 

al., 2013) 

AMPA-GluA4 subunit density is lower in WAG/Rij rats than in 

ACI rats in S1po layers independently from age and seizure 

development 

(van de 

Bovenkamp-

Janssen et al., 

2006) 

Age-dependent increase in the numerical density of AMPA-

GluA4 subunits was found in the NRT of WAG/Rij rats 

(van de 

Bovenkamp-

Janssen et al., 

2006) 

GluA2 subunits are not expressed around cell bodies in thalamic 

nuclei with the exception of the NRT, whereas, they are widely 

expressed in the two cortical sites examined (S1po and the 

forelimb region of the primary somatosensory cortex 

(Citraro et al., 

2006b) 

Reduced expression and function of mGlu5 receptors in the 

thalamus has been observed in pre-epileptic WAG/Rij rats, while 

an increased receptor expression in the sensorimotor cortex was 

described 

(D'Amore et al., 

2013) 

Ion 

Channels 

Altered HCN channel expression and cAMP sensitivity of Ih has 

been shown in WAG/Rij rats in the postnatal age continuing into 

the chronic epilepsy state; HCN1 channel expression decreases, 

mainly in the dendrites of cortical layer V pyramidal neurons that 

occurs temporally before the developmental onset of SWDs, and 

at a cellular level plays a direct role in promoting dendritic Ca
2+

 

electrogenesis and burst firing 

(Budde et al., 

2005; Kuisle et 

al., 2006) 



 

System Alteration Ref 

In young WAG/Rij rats an increased peak current density of L-

type Ca
2+

 current in the dorsal part of the lateral geniculate 

nucleus TC neurons correlated with up-regulated mRNA and 

protein expression of a particular L-type Ca
2+

 channel (Cav1.3) 

(Kanyshkova et 

al., 2014) 

Cytokines 

The brain and blood plasma levels of IL-1β and TNF-α of 2-, 4-, 

and 6-month-old WAG/Rij rats and of age-matched control ACI 

rats revealed higher levels of TNF-α in blood serum of the 

youngest (2 months) WAG/Rij rats while in the brain, the only 

significant difference was observed in rats of 4 months of age 

(van Luijtelaar et 

al., 2012) 

mTOR 

WAG/Rij rats have higher levels of total mTOR in several brain 

areas, including the cortex, hippocampus and thalamus in 

comparison to Wistar rats 

(Russo et al., 

2014b) 

Endocannabi

noids 

Levels of anandamide but not 2-arachidonoylglycerol in 2 

months old WAG/Rij rats are lower than those observed in both 

Wistar and ACI rats only in the thalamus and not in the cortex 

(Citraro et al., 

2013b) 

3α,5α-TH-DOC = 3α,5α-tetrahydrodeoxycorticosterone; S1po = peri-oral region of the somatosensory 

cortex; NRT = Nucleus Reticularis Thalami; HCN1 = hyperpolarization-activated cation channels; TC 

= Thalamo-Cortical; IL-1β = Interleukin-1β; TNF-α = Tumor necrosis factor-α; mTOR = mammalian 

target of rapamycin. 

 

 






