FUBAR: Flow Utility Based Routing

Nikola Gvozdiev, Brad Karp, Mark Handley
University College London, initial.lastname @cs.ucl.ac.uk

ABSTRACT

We present FUBAR, a system that reduces congestion and
maximizes the utility of the entire network by installing new
routes and changing the traffic load on existing ones. FUBAR
works offline to periodically adjust the distribution of traffic
on paths. It requires neither changes to end hosts nor precise
prior knowledge of the traffic matrix. We demonstrate that
even in the presence of traffic from all network devices to all
other devices, FUBAR can optimize a real-world core-level
network in a matter of minutes.

Categories and Subject Descriptors

C.2.1 [Computer-Communictaion Networks]: Network Ar-
chitecture and Design

General Terms: Algorithms; Design

1. INTRODUCTION

What should be the role of the routing system in a large
ISP or enterprise network? Traditionally, it was all about en-
suring connectivity, with cost metrics used as a crude way to
spread load. Equal-cost multipath routing [3] added limited
capability to load-balance, and MPLS-TE [4] provided addi-
tional ability to tweak traffic patterns to mitigate congestion.
More recently, OpenFlow and Software Defined Network-
ing [10] have provided a much more flexible data plane. But
how should a routing system resolve applications’ competing,
qualitatively different demands?

Large networks with sufficiently many users tend to have
relatively stable traffic matrices—demand between each entry
point and exit point does not vary very quickly. At the same
time, the demand from each traffic aggregate is elastic, but
not infinitely so. Streaming video, for example, can switch
between different data rates, but once it reaches sufficient
quality, bitrate becomes bounded. Even file transfer, which
ought in principle to be infinitely elastic, is generally not in re-
ality, due to access link capacity, receive window bounds and
I/0O limitations. In fact much web traffic is latency bounded,
as it finishes while still in slowstart. The job of the routing
system should be to satisfy all traffic aggregates, subject to

This work was funded by EU FP7 grant #317756 “Trilogy 2”

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions @acm.org.

HotNets-XIII, October 27-28, 2014, Los Angeles, CA, USA

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-3256-9/14/10 ...$15‘00
http://dx.doi.org/10.1145/2670518.2673886.

there actually being enough capacity available in the network.
But bandwidth isn’t the only factor to be considered. Real-
time flows have much firmer latency requirements—there’s
no point in giving arbitrary bandwidth to videoconferencing
traffic if doing so involves routing it over a high-delay path.
The routing system should instead try to maximize the utility
of the traffic flowing over it, where utility depends on both
delay and throughput. This is a very different problem than
that solved by traditional routing protocols.

In this paper we describe Flow-Utility Based Routing, a
new centralized routing mechanism. Based on information
from switches, FUBAR measures the network’s traffic matrix
and determines how to route the aggregates that comprise that
matrix so as to maximize utility for the network’s users. Not
all traffic is treated equally; real-time traffic must be routed
over lower-delay paths, and even bulk aggregates are routed
over the lowest-delay path if there is sufficient capacity. If
there is not sufficient capacity, FUBAR splits an aggregate,
progressively moving traffic onto less preferred paths until
there is no persistent congestion in the network, or no further
gains in utility can be achieved.

Characterizing the goal of routing in this way makes it into
a difficult problem. The pieces of the puzzle are:

e How to predict the utility of an aggregate, given a traffic
class and a certain amount of bandwidth and delay?

e How to predict how multiple aggregates will share a link?

e Given these, how to choose a set of possible paths for each
aggregate, including paths that avoid congested hot-spots?

o Finally, how to split aggregates between multiple paths in
such a way that overall utility is maximized?

If we can satisfy all of these goals, we will also achieve a

network with no persistent congestion given sufficient pro-

visioning, or one in which there are no severely congested

hotspots if the network is under-provisioned.

To achieve these goals, we make a number of gross sim-
plifications. We start with a very crude utility model and fill
in the model’s parameters based on measurements of how
the traffic actually responds. We classify traffic with crude
heuristics supplemented by operator knowledge when that
is available. We also use a fairly simplistic model of how
traffic aggregates share a congested link. We believe these
rough approximations capture the essence of how real traffic
behaves. Crucially, they allow us to reason about and choose
between options for routing, and require little or no operator
input. Current routing systems do not even take such limited
information into account; if they perform well, it is more due
to luck and manual tuning by operators who rarely know the
real demands of the traffic they are engineering.

Given these models, when the network is congested, we

utility

0.5

Bandwidth component

Delay component

100 200

bandwidth (kbps)

100 200
delay (ms)

utility

Bandwidth component

Delay component

1 | -

100 200

bandwidth (kbps)

100 200
delay (ms)

Figure 1: Real-time flow utility function components

must generate paths that provide alternatives to the default
low-delay paths. Then we must determine the optimal map-
ping of sub-aggregates to paths. This problem is NP-hard,
but given the limitations of the models, there is little point in
being too concerned with always finding an optimal solution.
We care only about finding a good solution, and FUBAR
performs sufficiently well in this respect to provide very
substantial gains in utility over conventional shortest-path
routing. Moreover, by alleviating congestion, FUBAR avoids
building long queues in the network, even when operating at
high network utilization.

2. SYSTEM DESIGN
The four components needed to implement FUBAR are:

e A way to measure the traffic matrix of a network.

e A method to approximate the utility of an individual flow.

e A method to estimate the bandwidth a flow will achieve
given a defined path through the network in the presence
of all the other flows in the network.

o A method to derive policy compliant paths for each flow, in-
cluding the lowest delay path and others that avoid hotspots.

e An optimization algorithm to find the best way to split each
aggregate of flows between the multiple policy compliant
paths so as to maximize the overall utility of the network.

‘We will address each of these in turn.

2.1 Traffic Matrix

Traditionally, measuring the traffic matrix was difficult
because routers did not keep sufficient counters. In an SDN
network, the SDN controller is involved in setting up flows,
so measuring the traffic matrix is much simpler.

FUBAR needs periodic per-aggregate bandwidth measure-
ments and approximate flow counts for each aggregate. We
believe that in real-world deployments FUBAR will be sepa-
rate from the SDN controller and the measurements required
will be taken hierarchically.

2.2 Utility

To capture how useful a flow is to the user application we
borrow Shenker’s concept of utility [11], but extend it to be
a function of both bandwidth and delay. In FUBAR each
flow is associated with a utility function which provides a
mapping from bandwidth and delay to a single unitless real
number in the range [0 — 1]. A utility close to 0 means that

Figure 2: Bulk transfer flow utility function components

the flow does not accomplish any useful work. This may
be because it currently does not have enough bandwidth or
because the path that it takes through the network has too high
a delay. Conversely, a utility close to 1 means that providing
additional bandwidth or reducing the flow’s delay are not
likely to render it any more useful to the application.

The function itself defines a surface whose shape is very
application dependent. Our utility metric consists of a band-
width component and a delay component that are multiplied
together to form the final utility. Examples of the two compo-
nents can be seen in Figures 1 and 2.

For most applications a default delay curve can be used
that slowly decays to zero as delay increases to a few seconds.
Interactive applications tend to be more delay sensitive, so
the operator can specify a non-default delay curve for flows
to a certain port or from a particular server.

Our goal is to minimize the need for operator knowledge,
so we rely on continuous traffic measurements to scale the
bandwidth component as needed. We can infer the inflection
point of the bandwidth curve when an aggregate is using an
uncongested path and fails to utilize it. Our solution will
also work with any non-linear increasing function for either
bandwidth or delay, but for simplicity we chose those shapes
because they are defined by the fewest points.

Figure 1 shows an example utility function of an interactive
flow. At 0kbps the flow gets no bandwidth and is therefore
not useful—its utility is 0. The utility grows as it gets more
bandwidth and maxes out at 50kbps, after which even if the
flow is given more capacity the application is unable to make
use of it. It can also be seen that this flow is delay sensitive—
if the delay it experiences grows above 100ms the overall
utility will drop to O (the two components are multiplied).

Figure 2 shows a bulk data transfer flow that can tolerate
relatively large variations in delay, but requires more band-
width. Conventional wisdom is that a single TCP flow with
enough data to send is never satisfied—it will consume the
entire capacity of the network and its bandwidth “peak” will
be the bandwidth of the bottleneck link in its path. In real
networks most TCP flows do not behave this way, especially
in the backbone. The bandwidth demands of large transfers
tend to be limited by the application itself (e.g., the data rate
of a compressed YouTube or Netflix video). Small transfers,
on the other hand, are so small that they barely exit slow
start. Even software downloads tend to be constrained in cus-
tomers’ access networks rather than in the backbone. When

we look at multiplexed aggregates our preliminary measure-
ments show that it is almost always possible to define an
upper bound on the bandwidth requirement at any instant.

2.3 Traffic Model

For any particular allocation of flows to paths, we need to
know how the flows will occupy the network so that we can
estimate their bandwidth and hence their utility.

If there is at least one congested link we are faced with
predicting how its capacity will be split among flows that
cross it. Each congested link truncates the demands of flows
that traverse it, so affects the distribution of flows on other
congested links.

To estimate the traffic distribution we use a TCP-like traffic
flow model. The model assumes a congested flow’s through-
put is inversely proportional to its RTT, and that congestion
control algorithms in use are “compatible” in the sense that
they co-exist reasonably gracefully with TCP traffic.

We imagine the network as a series of empty pipes. We
fill them by having each flow grow at a rate inversely propor-
tional to its RTT. A flow can stop growing either because it
satisfies its demand (obtained from the peak of the bandwidth
component of the utility function) or because there is no
more room to grow because a link along its path has become
congested. In practice we don’t deal with individual flows,
but with bundles of flows that share the same entry point,
exit point, traffic class, and path through the network. The
algorithm proceeds in steps, congesting a link or satisfying a
bundle at each step until each bundle is either congested or
has its demands met.

This flow model is simple enough to run quickly, yet suf-
ficient to provide us with a back-of-the-envelope estimate
of what bandwidth each flow can expect to get given a path
assignment. We use this flow model as the building block of
our optimization algorithm outlined in the next section.

2.4 Choosing Paths

We want to be able to take an aggregate of flows that share
a source, destination and traffic class, and to split this into
bundles of flows that are routed over different paths through
the network. This will allow us to progressively offload an
aggregate from its lowest delay path onto higher delay but
less congested paths, so long as doing so increases utility.

The default path for an aggregate is easy to find—it’s
simply the lowest delay path, as if that is uncongested it will
give the best utility. However, as that path becomes congested,
we want to consider offloading part of the aggregate onto
other paths. An optimal algorithm would need to consider all
the possible policy-compliant paths between that source and
destination. This is clearly computationally infeasible, so we
need to wisely choose paths to add as alternatives.

Unfortunately, the choice of a good alternative path de-
pends not only on the topology but also on which links are
congested, as we want to offload traffic onto uncongested
paths. This leads to a catch 22: we cannot choose paths with-

out knowing congestion, but we can’t know congestion levels
without choosing paths for the traffic to use.

Our solution to this dilemma is to take an iterative approach.
We start with only the lowest delay path in the path set for an
aggregate and run the traffic model. This will predict where
congestion will occur. If there is no congestion, we’re done.

If not, we add new paths to the path set for any aggregate
that experiences congestion. The algorithm queries a path
generator to find three alternative different policy-compliant
paths not currently in the path set for that aggregate:

1. A global path: the lowest delay path that avoids all con-
gested links, regardless of whether they are currently used
by this aggregate.

2. Alocal path: the lowest delay path that avoids all congested
links that are being used by the congested aggregate.

3. A link-local path: the lowest delay path that simply avoids
the most congested link used by the aggregate.

The global path, if one exists, is the alternative giving maxi-
mum additional incremental capacity as it is uncongested, but
it may have high delay. The link-local path is the lowest delay
alternative, but may already be congested. The local path
offers a good middle ground. We tried different approaches
and found this particular choice of three paths to be the best
tradeoff between speed and solution quality.

The algorithm iterates, finding the best way to split each
aggregate across the paths in the path set, as described in
the next section, then adding more paths to the path set of
any aggregates still congested, and so on, until either no
improvement is found or all aggregates are uncongested. In
our experiments we usually find that three or four iterations
are sufficient, so we end up with approximately ten to fifteen
paths in the path set for each aggregate.

2.5 Flow Allocation

Given a network topology and a set of aggregate flows, plus
for each aggregate, a utility function and a path set, we’ve
finally reached the heart of the problem: how to split each
aggregate across paths so as to maximize overall utility. An
optimal solution is NP-hard, but given all the other approx-
imations we have made to get this far, optimality is not of
great importance. What we want is simply a good solution.

For this we use a polynomial-time heuristic. The main
intuition is that at first flows are allocated on low delay paths
and are gradually moved to higher delay paths until conges-
tion disappears. The algorithm proceeds in steps, increasing
utility at each step until no progress can be made. This greedy
approach guarantees termination, but it can converge to a lo-
cal optimum. We will come back later to what we do when it
does this.

Initially all flows for each aggregate are allocated to the
shortest delay path (line 1 from Listing 1). The traffic model
is evaluated at this point and if there is no congestion the
solution is optimal. In this case all flows have their bandwidth
demand satisfied and are on the shortest policy-compliant
delay path, which results in maximal attainable overall utility.

Listing 1: Main entry point

1 move all flows to lowest-delay path in aggregate

2 while there are congested links do
3 progress-made «— false
4 links <— all congested links
5 sort links by oversubscription
for link in links do
7 progress_made <— step(link)
8 if progress_made then
9 | break
10 if not progress_made then
1 | break

If there is congestion the algorithm will try to alleviate it
by moving some flows of each aggregate away. It looks at
congested links one at a time, starting with links where a
change is likely to result in the best utility gain—the ones
that are the most oversubscribed (lines 4-5 from Listing 1).

Focusing on a single congested link (Listing 2), the algo-
rithm goes over all aggregates crossing that link; for each it
estimates the gain of moving some or all of the flows away.
For a given flow path there are two main choices to be made—
how many flows to evict and where to move the flows to.

The number of flows to move (N) depends on how large
the aggregate is in terms of traffic volume. Small aggregates
are moved in their entirety because they are unlikely to have
a big impact on the final solution. For large aggregates there
is a tradeoff between speed and utility—the more flows are
moved at a time the faster the algorithm will converge, but
the lower the overall utility of the solution will be.

Flows will have to be moved to an alternate path that
excludes the congested link. As described in Section 2.4,
the algorithm obtains three alternative paths (lines 4-6 from
Listing 2).

At each step all three new alternatives are tested for each
aggregate that crosses the congested link (lines 7-9 from
Listing 2). When an aggregate is tested, N flows are removed
from the original path and added to the alternative. The traffic
model is evaluated to estimate the utility of the new solution.
The best move is committed (line 12 of Listing 2). At the end
of the step, if no move improves utility, no progress can be
made and the algorithm terminates.

Escaping local optima

The flow allocation problem is not convex and it is possible
for the greedy algorithm above to get stuck in a local optimum.
In this case no progress can be made, even though there is
still congestion in the network. There is a simple tweak that
can help us escape—when the algorithm gets stuck we can
try to move larger and larger numbers of flows. In particular
while we are in a local optimum we can tweak line 3 from
Listing 2 to progressively give more and more flows. This
will help us explore the state space more aggressively. This
algorithm is motivated by simulated annealing [9], but we
have found it gives similar results in a much shorter time than
a naive simulated annealing solution.

Listing 2: step(link) — a single step of the algorithm

input :link — a congested link
output : true if progress was made, false otherwise
1 Uppit «— run_model ()

2 for flow_path in all flow paths that go over link do
N <— fraction of flows in flow_path’s aggregate

4 Pgiobal +— find global uncongested path
Piocal +— find local uncongested path
Plink-local <— find link-local uncongested path

5
6

7 test utility of moving N flows t0 Pgiopal
8 test utility of moving N flows to Piocal
9

test utility of moving N flows to Pink-1ocal

10 if best is still empty then
1| return false

12 commit the best utility change
13 return true

It is also possible that even though there is still congestion
in the network we have reached the global optimum. In this
case the algorithm will give up after having tried to move
even large aggregates in their entirety and failing to improve
overall utility.

3. EVALUATION

To better understand FUBAR’s potential, we set out to
answer the following questions:

o Is it computationally tractable for real-world deployments,
at least for an offline system?

e How good are the routing solutions it finds?

e Does it manage to alleviate congestion?

e [s it able to prioritize some flows, while still retaining good
overall performance?

e How do the utility functions affect performance?

To answer those questions we run FUBAR using Hurri-
cane Electric’s core topology [1]. This contains 31 POP
nodes and 56 inter-POP links. For each of all 961 aggre-
gates we randomly pick either a real-time utility function or
a bulk-transfer one. To reflect real-world traffic we also add
a 2% probability of there being a large aggregate using a file
transfer utility function with a higher max bandwidth (1 or
2 Mbps). Delay utility functions are as shown in Figures 1
and 2. We examine two main cases:

Provisioned: each link of the topology has a capacity of
100 Mbps. This is enough capacity to make it possible
to alleviate congestion, but not enough capacity for every
flow to be satisfied on its shortest path

Underprovisioned: each link of the topology has a capacity
of 75 Mbps. In this case there is not enough capacity to
completely eliminate congestion.

Figures 3 and 4 present a single run of FUBAR in each
of these two cases running on a 1.3 GHz Core i5. The cur-
rent implementation is single-threaded and implemented in
Java. The graphs show how the algorithm progressively opti-
mizes the computed solution in real-time. Utility values are
predicted utilities based on the traffic model described in 2.3.

The leftmost graph shows how utility evolves over time.

Average utility

Utility of large flows

Link utilization

1.0 1of 0.7
| | =— Large flows average
0.6
0.9t c
2 2 S
= = 505
5 0.8 — Upper bound 5 =
_________ — Total average > 04 — Demanded
07 - - Shortest path — Actual
00:00 00:20 00:40 01:00 00:00 00:20 00:40 01:00 00:00 00:20 00:40 01:00
time (min:sec) time (min:sec) time (min:sec)
Figure 3: A run in the provisioned case
1.0 Average utility Utility of large flows 1.0 Link utilization
. : : Lof : : . . - -
— Large flows average |
R 0.9} . 50 8:__
£ — Upper bound = g
5 0.8f — Total average > Zo6l]
- = Shortest path 05 — Demanded
[R - — Actual
00:00 01:40 03:20 05:00 00:00 01:40 03:20 05:00 00:00 01:40 03:20 05:00
time (min:sec) time (min:sec) time (min:sec)
Figure 4: A run in the underprovisioned case
10 Average utility Utility of large flows 10 Link utilization
. : ; 1of ‘ : . ‘ ‘
0.9t Al
2 2 0%
= — Upper bound = g
> 08p — Total average > Epl |
- - Shortest path 0.5¢ 1 — Demanded
0.7 — Large flows average| — Actual
00:00 01:40 03:20 05:00 00:00 01:40 03:20 05:00 00:00 01:40 03:20 05:00

time (min:sec)

time (min:sec)

time (min:sec)

Figure 5: A run in the underprovisioned case with large flows prioritized

The “total average” is the overall utility of the network—the
average of utilities of all aggregates, weighted by number
of flows in the aggregate. The other two lines are for ref-
erence. To produce the “upper bound” curve we isolate an
aggregate by removing all other aggregates from the network
and determine what the single aggregate’s utility would be if
there were no other traffic. We repeat this for each aggregate
and then take the mean. The “shortest path” line shows what
utility would be if all the traffic takes its shortest path through
the network.

The second graph on each row shows the utility of large
flows, as these are harder to provide for and put dispropor-
tionate strain on the network.

In the right graphs we show link utilization. The “actual
utilization” curve represents total used capacity divided by
total network capacity'. The “demanded utilization” curve
shows total demand? divided by total network capacity. De-
manded utilization decreases as the optimization runs because
total network capacity increases as more links are brought
into play. If the two curves meet, demand has been satisfied.

Ltotal network capacity is the sum of capacities across all links that
are used.
2this is what the flows would have liked to get, again on links that
are used

Running time. The running times of both cases are within
the five minute limit for an offline system. In the provisioned
case FUBAR finds a solution in less than a minute, whereas it
takes about five minutes to reach an optimum when underpro-
visioned. In the latter case, the algorithm spreads out traffic,
lightly congesting more and more links, taking longer to test
moves over each one of them. Eventually there isn’t a move
that can improve utility, and the algorithm terminates.

Solution quality. In both cases FUBAR improves signifi-
cantly on traditional shortest-path routing. This is expected
as it starts by putting all flows on the shortest paths and im-
proves from there on. Thus shortest-path routing is a lower
bound for total utility. In the provisioned case FUBAR closely
approaches the upper bound. In the underprovisioned case,
although FUBAR improves utility by over 30%, the upper
bound is unreachable.

It is also interesting to observe the utility of aggregates
with large flows. By default all flows are treated equally
regardless of their volume. It is much easier to initially gain
utility by moving the small flows as provisioning for them
results in a quick utility boost. In Figure 3, only after most
small flows have been optimized do chunks of large flows
start being moved; eventually all flows are optimized.

1.0

0.8} L
Ed

"
0.6 P
0.4 L —

— Underprovisioned
0.2y - - Underprovisioned, relaxed delay||
0'00 50 100 150 200 250
delay (ms)

Figure 6: Increase in delay as result of relaxing delay restrictions

1.0
’

0.8 1

!
0.6 .'
o4 /| — Utility
‘ ;| == Shortest-path utility
0.2 S| — Maximal utility

’
0.0 0.75 0.80 0.85 0.90 0.95
Utility

Figure 7: A CDF of 100 runs of the provisioned case
The observation that large flows are hard to optimize is
also evident from Figure 4 where large flows are sacrificed to
better accommodate smaller ones when resources are scarce.
Thus the final utility of large flows is significantly lower than
the global one.

Avoiding congestion. Minimizing congestion not only helps
applications, but it also makes the network more predictable,
as queue sizes are minimized. If there is enough capacity
available we manage to eliminate congestion as is evident
from the link utilization graph in Figure 3. When the two
curves meet the capacity that is consumed by flows equals
the demand of those flows and the network is not congested.

In the underprovisioned case link utilization improves by
80%, but in the end there is still congestion in the network
(as evident from the gap). It would be possible to drive
utilization even higher by saturating the network with large
flows, starving smaller ones, but instead we try to improve
utility for all participants.

Prioritization. Figure 5 shows a single run of the underprovi-
sioned case when priority is given to large flows by increasing
their weighting when computing the network utility. Now the
utility of the large flows grows faster and is able to reach its
peak. This comes with a slight increase of link usage, since
larger flows occupy more network resources. The increase
is not more because the number of small aggregates greatly
outnumbers the number of large aggregates.

Another effect is the slower growth of overall utility be-
cause prioritizing large flows does initially hurt the numerous
smaller ones. In the end, overall utility has not changed a
great deal—the 1% reduction in small flow utility is offset by
the gain in utility of larger ones.

Delay changes. To see the effect of the delay part of the
utility function, we ran the underprovisioned case with small
flows using double the delay parameter from Figures 1 and 2.
Overall the results (not shown) look very similar to the Fig-
ure 4 curve, though utility and utilization increase a little as

longer paths are no longer penalized. Overall run time is
also increased slightly since the algorithm takes more time to
explore now-viable alternatives.

It is also interesting to see how the overall delay distribu-
tion changes. In Figure 6 we present CDFs of the delays of all
flows in the network in the original and the relaxed delay case.
It is evident that even though overall utility has increased,
paths have lengthened, with a median delay increase of about
10ms and tail-end increase of about 50ms. For real-time traf-
fic, every millisecond matters; the ability to trade utilization
for delay by tuning a single parameter is a very useful one
for network operators to have at their disposal.

Repeatability. The results so far have only shown experi-
ments with a single run of the algorithm. Are the results
stable across different traffic matrices? We ran 100 passes
of the provisioned case with the same topology, but with
different random seeds for choosing the traffic matrices. We
present the results in Figure 7 as a CDF. We show curves for
FUBAR’s utility in comparison to shortest-path and the upper-
bound maximal utility. In all runs FUBAR’s performance
closely approached the theoretical limit, as in Figure 3.

4. RELATED WORK

MPLS-TE [4] provides a flexible substrate for placing
flows on paths, and Constrained Shortest-Path First (CSPF) [5]
places flows on MPLS-TE paths that meet operator-pre-defined
constraints. CSPF does not optimize global utility across all
flows, however, as does FUBAR.

There is a rich literature on traffic engineering for IP net-
works [2,6-8, 12]. While several of these prior approaches
maximize global utility, they define utility only in terms of
throughput and/or minimization of maximum utilization. Un-
like FUBAR, none weighs the combined effects of delay and
throughput on applications’ flows. B4 [7] and SWAN [6]
support prioritization of different traffic classes, but priority
alone cannot capture the non-convexity of delay in applica-
tions’ utility functions.

Our goals in FUBAR are related to Winstein’s [13], but
our approach differs. Rather than modifying end-hosts’ con-
gestion control, we modify resource allocation within the
network. We believe this approach to be easier to deploy.

5. CONCLUSION

We have presented FUBAR, a system that provides utility-
based routing for flow aggregates in large ISPs or corporate
networks. FUBAR performs unequal-cost and weighted mul-
tipath routing, taking into account flows’ measured bandwidth
demands and configured delay preferences. It can operate net-
works at high utilization while avoiding congested hotspots
if sufficient capacity is available, or diffusing hotspots if in-
sufficient capacity is available. It is intended to be used as an
offline controller in SDN or MPLS networks, in conjunction
with an online controller to actually admit flows to the paths
that have been computed.

6. REFERENCES

[1] Hurricane Electric IP Transit Network.
https://www.he.net.

[2] D. Applegate and E. Cohen. Making intra-domain
routing robust to changing and uncertain traffic
demands: Understanding fundamental tradeoffs. In
ACM SIGCOMM 2003.

[3] C. Hopps. Analysis of an Equal-Cost Multi-Path
Algorithm. RFC 2992, 2000.

[4] D. Awduche and J. Malcolm. Requirements for Traffic
Engineering Over MPLS. RFC 2702, 2009.

[5] B. Davie and A. Farrel. MPLS: Next Steps. Morgan
Kauffmann, 2008.

[6] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang,

V. Gill, M. Nanduri, and R. Wattenhofer. Achieving
high utilization with software-driven WAN. In ACM
SIGCOMM 2013.

[7] S.Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski,
A. Singh, S. Venkata, J. Wanderer, J. Zhou, M. Zhu,
J. Zolla, U. Holzle, S. Stuart, and A. Vahdat. B4:
Experience with a globally-deployed software defined
wan. In ACM SIGCOMM 2013.

[8] S. Kandula, D. Katabi, B. Davie, and A. Charny.
Walking the tightrope: Responsive yet stable traffic
engineering. In ACM SIGCOMM 2005.

[9] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi.
Optimization by simulated annealing. SCIENCE,
220(4598):671-680, 1983.

[10] N. McKeown, T. Anderson, H. Balakrishnan,
G. Parulkar, L. Peterson, J. Rexford, S. Shenker, and
J. Turner. Openflow: enabling innovation in campus
networks. SIGCOMM Comput. Commun. Rev.,
38(2):69-74, Mar. 2008.

[11] S. Shenker. Fundamental design issues for the future
internet. IEEE JSAC, 13(7):1176-1188, Sept. 1995.

[12] H. Wang, H. Xie, L. Qiu, Y. R. Yang, Y. Zhang, and
A. Greenberg. COPE: Traffic engineering in dynamic
networks. In ACM SIGCOMM 2006.

[13] K. Winstein and H. Balakrishnan. TCP Ex Machina:
Computer-generated congestion control. In ACM
SIGCOMM 2013.

