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Abstract: Supplementary feeding has proven to be a successful conservation tool for many 

species, including New Zealand’s hihi (stitchbird, Notiomystis cincta). Previous research has 

shown supplementary feeding to substantially increase hihi reproductive success at regenerating 

forest sites, but suggested that it would have reduced benefit in mature forest habitat. Here we 

report the first direct test of the effect of supplementary feeding on hihi reproductive success in 

mature forest, using data from the recently reintroduced population at Maungatautari Ecological 

Island. Eight feeder-using females and nine non-feeder-using females were monitored during the 

2012/13 breeding season at Maungatautari to determine how feeder use affected reproductive 
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success (nest success, number of first-clutch fledglings per female and total number of fledglings 

per female). Feeder-using females fledged 3.7 times as many fledglings as non-feeder-using 

females in their first-clutch attempts (95% CI 1.6–8.8), and 1.8 times as many fledglings in total 

(95% CI 1.0–3.5). No feeder-using female experienced nest failure, whereas 7 of the 16 nest 

attempts of non-feeder-using females failed to fledge any young. The results suggest that, counter 

to expectations, supplementary feeder use has a significant impact on reproductive success in 

mature forest habitat. At least for Maungatautari, providing supplementary food in mature forest 

habitat appears to greatly reduce the probability of hihi nest failure, and increases the number of 

young a female can fledge. 
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Introduction 

Threatened species often require supportive management in order to recover populations and 

sustain positive population growth (e.g. Shea 1998; Blanco et al. 2011; Ewen et al. 2015). The 

need for supportive management can be particularly true for reintroduced populations because 

their small population size during establishment makes them particularly vulnerable to stochastic 

extinction and potentially Allee effects (Converse et al. 2013). Supplementary feeding has 

proven to be an effective technique for management, both for reintroduced and natural 

populations of a wide variety of mammal and bird species (Ziegltrum 2008; Cortés-Avizanda et 

al. 2010; Makan et al. 2014), encouraging population growth through both increased 
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reproduction (e.g. Hansen 1987; Pérez‐González et al. 2006; Schoech et al. 2008) and survival 

(e.g. López-Bao et al. 2010). 

The use of supplementary food is not always accompanied by critical evaluation of its 

need or success at improving population growth (Oro et al. 2008; Blanco et al. 2011) however, 

and this has led to supplementary feeding being criticised as a dogmatic approach in conservation 

(Martinez-Abrain & Oro 2013). In addition, some studies have reported negative effects on the 

species being fed, or on other species in the wider recipient ecosystem (Gonzalez et al. 2010; 

Blanco et al. 2011; Robb et al. 2011). In addition, conservation of threatened species is costly 

and funding is limited; so managers need to critically evaluate how resources are allocated 

against the objectives of management (Armstrong et al. 2007). For example, supplementary 

feeding in high quality habitats where species are not food limited would be a misallocation of 

resources.  

Supplementary feeding is an important component of the management of reintroduced 

hihi populations (Armstrong et al. 2007; Chauvenet et al. 2012). Hihi became extinct on 

mainland New Zealand by the late 1800s, with a single population surviving on Te Hauturu-o-

Toi (Little Barrier Island; hereafter Hauturu) (Buller 1888; Innes et al. 2010). The conservation 

of this threatened species primarily focused on reintroductions to islands and other reserves free 

of mammalian predators. The poor success of initial reintroductions (Taylor et al. 2005) in 

combination with behavioural data (Castro 1995) suggested that food supply was inadequate at 

release sites, leading to food supplementation experiments in subsequent reintroductions 

(Armstrong & Perrott 2000; Armstrong & Ewen 2001; Armstrong et al. 2007). Strong evidence 

of food limitation at some release sites (Armstrong et al. 2007; Chauvenet et al. 2012) and the 

growth of some populations under supplementary feeding, has led to supplementary feeding 

being conducted at all reintroduction sites since 2000. However, because food limitation is 
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thought to be associated with regenerating forest (Castro 1995), supplementary food is expected 

to have a lesser impact at sites dominated by mature forest, and therefore may be unnecessary. 

  A comparison of reproduction data among sites varying in maturity has given some 

support to this site maturity hypothesis (Makan et al. 2014). For example, only about a third of 

Kapiti Island has remnant tall forest that has not been logged since the early 1900s, and this is 

where the hihi population has established. This area consists of six forest types: kohekohe 

(Dysoxylum spectabile), kānuka (Kunzea ericoides), a mix of tawa (Beilschmiedia tawa) and 

hīnau (Elaeocarpus dentatus), five-finger (Pseudopanax arboreus), māhoe (Melicytus 

ramiflorus), and a mix of tawa and kāmahi (Weinmannia racemosa) (for more detail see Makan 

et al. 2014); and supplementary feeding of hihi is required (Chauvenet et al. 2012). Tiritiri 

Matangi (dominated by replanted pōhutukawa (Metrosideros excelsa), taraire (Beilschmiedia 

tarairi), kohekohe and puriri (Vitex lucens)) and Mokoia (dominated by māhoe, mapou (Myrsine 

australis) and cabbage tree (Cordyline australis)) Islands are in intermediate stages of forest 

succession with low canopies (<10 m high) and a less diverse understory. Both of these island 

populations of hihi require supplementary feeding for persistence (Armstrong & Perrott 2000; 

Armstrong & Ewen 2001; Armstrong et al. 2007). Hauturu remains the only hihi population that 

persists without supplementary feeding. A more detailed description and comparison of habitat 

between sites with hihi is provided by Makan et al. (2014). 

This study evaluated the effects of supplementary feeding on female hihi reproductive 

success at Maungatautari Ecological Island (hereafter Maungatautari), which consists primarily 

of mature forest (McQueen et al. 2004). More than any other release site, Maungatautari’s mature 

forest makes it the most similar habitat to Hauturu. Hauturu’s remoteness has meant its diverse 

old-growth tall forest (>20 m high) has remained mostly undisturbed for more than 150 years. Its 

understory is shaded primarily by rata (Metrosideros robusta), tawa, kauri (Agathis australis), 
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pōhutukawa and kānuka forest (Makan 2006). Maungatautari is similar to Hauturu in its size 

(3363 vs 3083 ha), forest maturity (>20 m high), and canopy composition (rimu (Dacrydium 

cupressinum), rata, tawa, rewarewa (Knightia excelsa), pukatea (Laurelia novae-zelandiae)) 

(McQueen et al. 2004). Therefore, Maungatautari is thought to represent the most likely site to 

establish a second hihi population that is not dependent on supplementary feeding (Ewen et al. 

2011). Here, we aim to assess whether supplementary feeding has a lesser impact on 

reproductive success than we would predict from our knowledge of other reintroduction sites 

characterised by younger vegetation. Using a natural experiment, we compared the reproductive 

success (nest success, and number of fledglings produced in both first clutches and overall during 

the breeding season) of breeding females that utilised supplementary food, with those that did 

not. Maungatautari offers habitat of comparable quality to individuals nesting both near to and 

distant from the supplementary feeders. Estimates from both groups are compared to literature 

reporting reproductive success from other hihi populations (nest success and number of 

fledglings produced; Makan et al. 2014). We also incorporated age as a variable into our 

analysis, because previous studies on hihi found age to influence reproductive success 

(Armstrong et al. 2002; Low et al. 2007).   

 

Methods 

The hihi is the sole representative of the Notiomystidae family (Ewen et al. 2006; Driskell et al. 

2007) and are small (males c. 40 g, females c. 32 g) sexually-dimorphic cavity-nesters (Higgins 

et al. 2001). Although hihi are considered to be nectarivorous/frugivorous, invertebrates also 

account for a substantial portion of their diet, particularly during the breeding season (September 

to February). Hihi are generally socially monogamous, with females carrying out nest 
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construction and incubation (~15 days), and both sexes feeding young in the nest (the male to 

varying degrees; Low et al. 2006). Fledging occurs at ~28 days. 

 

Study site 

Maungatautari (3363 ha, 797 m a.s.l.) is a volcanic cone located in the Waikato region of the 

North Island of New Zealand (38°03′08″S, 175°33′58″E). Large-scale logging of the site has 

been restricted to the lower slopes, leaving the slopes above ~300 m a.s.l. covered with largely 

intact mature broadleaf-podocarp forest (McQueen et al. 2004). The surrounding landscape is 

dominated by dairy pasture, offering little to no habitat for native species, essentially making 

Maungatautari an island. The construction of a 47 km XcluderTM pest-proof fence around the 

reserve has allowed for the eradication of all introduced mammals, except for mice (Mus 

musculus), and low numbers of rabbits (Oryctolagus cuniculus) and hares (Lepus europaeus) 

(Richardson & Ewen 2016). Six supplementary feeders (20% sugar water solution) are provided 

for hihi, all within 150 m of the release site (Fig. 1). Both the supplementary feeders and release 

site are located in the southern sub-enclosure; this release site was selected largely because it 

provides easiest access for the general public and is the site of the most commonly used public 

walking tracks. This location also facilitates the regular maintenance of the supplementary 

feeders by staff and volunteers. Species distribution modelling has shown that hihi at 

Maungatautari tend to select breeding territories in close proximity to streams, and the majority 

of nests are located in pukatea (Richardson & Ewen 2016) regardless of whether nesting close or 

far from feeders. Given the similarity in habitat selection for all hihi at Maungatautari we assume 

little difference between feeder and non-feeder user territories.  

Over a series of three translocations, a total of 155 hihi (82 males, 73 females) were 

released at Maungatautari between 2009 and 2011. To maximise genetic diversity, birds were 
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sourced from both Hauturu (20) and Tiritiri Matangi Island (135). By 2012/13, there were 68 

banded hihi in the population, and seven known unbanded hihi (see Richardson & Ewen 2016 for 

details of monitoring at the site). None of the unbanded hihi were known to use supplementary 

feeders. Of the banded population, 26 (16 males, 10 females) were translocated (founders), and 

of these 17 (13 males, 4 females) were known feeder-users. The remaining 42 (26 males, 16 

females) were hihi that had been bred at Maungatautari, and of these 16 (12 males, 4 females) 

were known feeder-users. Founder hihi were known to travel from one side of the reserve to the 

other to access supplementary food (>5 km); however, Maungatautari-bred feeder-using hihi 

were largely those breeding within relatively close proximity of the feeders (<1 km). The use of 

distant feeders by founder hihi may be a result of these birds having greater awareness of the 

feeder locations as they were released close to them. In contrast, hihi with both natal and first 

breeding sites several kilometres from supplementary feeders likely never encountered them 

during natal dispersal movements and therefore were less likely to be aware of their presence to 

learn to use them.  

 

Sampling design and data collection 

Data were collected during the 2012/13 breeding season (September to March). Thirty-minute 

observations at each feeder were performed throughout the study approximately three to four 

times per week to quantify which individuals were feeder-users. Feeder observations were 

carried out at different times of the day to avoid bias. Reproductive success was measured in 

terms of the number of fledgling(s) per female throughout the breeding season.  

This study included eight feeder-using females and nine non-feeder-using females (all 

except three were individually colour-banded, and the three unbanded individuals were located 

>1 km apart; Table 1). We were aware of at least another 11 females that were present at 
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Maungatautari that season (10 of which were first-year females), but did not include these to 

keep the sample size manageable. We selected the females to monitor so that the number of 

feeder-users vs non-feeder-users was balanced, and the number of first-year vs older females was 

as balanced as possible. However, it was not possible to completely avoid an imbalance in age 

structure. Of the eight feeder-using females, seven were aged between two and four years, and 

the eighth was in her first year. Four were founders and four Maungatautari-bred. Of the nine 

non-feeder-using females, five were aged between two and four years (two were founders) and 

four were first-year Maungatautari-bred birds. This difference is probably due to young females 

establishing territories further from feeders and being unfamiliar with them.   

Territory locations were known from a concurrent study (Richardson & Ewen 2016). The 

17 selected territories were closely monitored in order to determine nest initiation dates (usually 

by back-counting once incubation/hatching was confirmed) and to obtain an accurate count of the 

number of young fledged by each female over the breeding season. Nests were located through 

the use of behavioural cues, such as females frequently returning to the same location or males 

concentrating their territorial calling around a specific tree. Once a nest was located, weekly 1.5 

hour observations were conducted to determine nest stage. As fledging time grew closer nests 

were checked daily, so that fledglings could be counted either on the day, or the day after 

fledging. Fledglings were located and counted by listening for their distinctive high-pitched 

begging calls and observing adult provisioning behaviour. If fledging was asynchronous, the 

observer would return daily to count the fledglings until the adults no longer visited the nest. 

 

Data analysis 

Generalised linear models were used to estimate the effect that feeder-use and age (first-year vs 

older) had on the reproductive success and initiation dates of first clutches of female hihi at 
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Maungatautari. For models that examined reproductive success, Poisson regression (log link and 

Poisson error term) was used. The model that examined nest initiation date used a linear 

regression (identity link function and normal error term). Two separate analyses were performed 

for reproductive success. In the first, reproductive success was measured in terms of the number 

of young fledged by each female in her first clutch, allowing comparison with similar data from 

Hauturu (Makan et al. 2014). In order to obtain the most useful measure for population growth, 

the second analysis defined reproductive success as the total number of young fledged across all 

clutches within the breeding season. 

 

Results   

Feeder-use had the most pronounced effect on the number of fledglings a female produced in her 

first-clutch attempt. Feeder-using females fledged an average of 3.0 fledglings from their first 

clutches, whereas non-feeder-users fledged an average of 0.9. Taking age into account, feeder-

using females were estimated to fledge 3.7 times as many first-clutch fledglings than non-feeder-

users (95% CI 1.6–8.8) (Table 2, Fig. 2). The effect of feeder-use on the total number of 

fledglings was less pronounced. Feeder-using females had an average of 3.4 fledglings over the 

season whereas non-feeder-users had an average of 2.0. Taking age into account, feeder-users 

were estimated to produce 1.8 times as many fledglings over the breeding season (95% CI 1.0–

3.5) (Table 2, Fig. 2). This less pronounced difference over the whole season was largely due to 

non-feeder-using females increasing their total number of young fledged through a second clutch. 

All non-feeder-using females observed after their first-clutch attempt (7 of the 9 females) 

attempted a second clutch, whereas only two of the eight feeder-using females attempted a 

second clutch. The difference in reproductive success between the two groups is primarily 
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explained by nest success, i.e. the proportion of nests fledging one or more young. The 10 nest 

attempts by feeder-using females were all successful, compared to the failure of seven of the 16 

nest attempts of non-feeder-using females. This difference was especially pronounced in first 

nest attempts, with five of the nine nest attempts of non-feeder-using females failing. There was 

no indication that age affected reproductive success, either for first clutches or for the whole 

season (Table 2).  

Although there were no statistically significant effects on nest initiation (Table 3), feeder-

using females began their first clutch attempt on average 10 days sooner than non-feeder-using 

females, and second-year or older females initiated their first clutch attempt on average 7 days 

sooner than first-year females (Tables 1 & 3). The lack of significant results is potentially due to 

the two effects working in the model reducing power so that sample sizes were insufficient.  

 

Discussion 

Feeder-use influenced hihi reproductive success at Maungatautari, mainly by significantly 

increasing the number of chicks fledged from first clutches. No feeder-using female experienced 

a nest failure, whereas 44% of all non-feeder-using female nests failed during the 2012/13 

breeding season. Feeder-use appeared to have a particularly strong impact on first clutch success, 

since without its use 56% of first clutches failed. The inaccessibility of the nests prevented us 

from determining the cause of nest failure. However, hihi nestling mortality may be caused by 

starvation, as well as a variety of pathogens, heavy nest mite (Ornithonyssus bursa) loads, or 

some combination of these factors (Armstrong et al. 2007; Ewen et al. 2009; Rippon 2010). The 

improved success of feeder-using females is presumably due to supplementary feeding increasing 

nestling provisioning rates (Makan 2006).  



 

11 
 

 

Effect of supplementary feeding in mature vs regenerating forest 

Makan et al. (2014) compared first-clutch reproductive success between Hauturu (mature forest) 

and three other island sites at varying levels of forest regeneration (Mokoia, Tiritiri Matangi, 

Kapiti). Their analysis suggested an interaction between effects of habitat complexity (which 

increases with forest maturity) and supplementary feeding on hihi reproductive success. We 

predicted that because of Maungatautari’s complex forest structure, supplementary feeding 

would have less impact on reproductive success than in the three regenerating forest sites where 

it has previously been assessed. Due to apparent similarities in forest maturity, we expected the 

first clutches of Maungatautari’s non-feeder-using females to be comparable with the number of 

fledglings produced in first clutches by females nesting on Hauturu. Counter to expectations, our 

results were most similar to Mokoia (the site with the lowest forest maturity) with non-feeder-

using females fledging 0.9 chicks at Maungatautari and 0.8 chicks on Mokoia; and with feeder-

using females fledging 3.0 chicks at Maungatautari and 2.8 chicks on Mokoia (Fig. 3). This result 

suggests that it is more than forest complexity that is vital to reproductive success.  

It is important to be aware that comparisons based on first clutches may be slightly 

misleading. Makan et al. (2014) necessarily used first-clutch data because data on total numbers 

of fledglings over the breeding season were not available for Hauturu or Kapiti. However, this 

assessment may exaggerate the impact of supplementary feeding, because it does not account for 

the ability of females to improve their reproductive output through second clutches, an issue 

recognised by Makan et al. (2014). Our results illustrate this distinctly, as feeder-using females 

produced 3.7 times as many fledglings in first clutches in comparison to 1.8 times as many 

fledglings over the whole breeding season. It is clearly preferable to consider the entire breeding 

season, as it is the total number of fledglings produced that is important to population growth. 
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Although non-feeder-using females were able to compensate for their lower first-clutch success 

by attempting second clutches, their breeding efficiency was still much lower than feeder-using 

females. Reproduction is costly and this additional effort may have long-term negative effects, 

such as decreased survival (Verhulst 1998).  

 

Effects of age and confounding factors 

The lack of a strong age effect was unexpected, since previous studies have found that second- 

year and older females had improved reproductive success in comparison to first-year females, 

primarily due to delayed territory establishment in first-year birds (Armstrong et al. 2002; Low et 

al. 2007). The only suggestion of an age effect from our models, though at a non-significant 

level, was on first-clutch initiation. Second year and older females initiated their clutches on 

average 7 days earlier than first year females, similar to findings from Low et al. (2007). The 

lack of an age effect on numbers of fledglings produced can potentially be explained by the 

differences in either habitat quality or population density between sites, which are known to alter 

age-dependent reproduction (Martin 1995). Potentially there are a greater number of territories 

available at Maungatautari, which would decrease competition between females allowing 

younger individuals, who are typically subordinate to older individuals, to secure territories 

earlier in the breeding season (Low et al. 2007).  

Our results show that future studies need to include the total number of fledglings 

produced in the breeding season to gain the most accurate understanding of the effects of 

management on hihi reproductive success. Duplicating a study over multiple years would also be 

useful because it would eliminate some of the uncertainty caused by seasonal variation in 

fruit/flower abundance. It was incidentally observed during this study that it was a very dry 

breeding season and that some of the common flowering species at Maungatautari had a low 
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yield year (e.g. rewarewa and toropapa, Alseuosmia spp.). This dryness could potentially mean 

that food availability was lower than normal, exacerbating the effects of supplementary feeding 

during the 2012/13 breeding season. By running the study for multiple years it would provide a 

clearer picture of female reproductive patterns at a specific site. 

As with any uncontrolled experiment, there is potential for confounding factors to exist. 

The availability of the hihi’s preferred breeding habitat across the lower slopes of Maungatautari 

led us to believe that differences in habitat quality would not significantly affect female hihi 

reproductive success. Regardless, we attempted to locate nests of feeder-using and non-feeder-

using females in close proximity to each other in an effort to account for variations in 

microclimate and habitat quality. Unfortunately, this was not always possible, especially on the 

southern side of the mountain where the majority of females present were feeder-users. Thus, we 

could not rule out the possibility that the southern portion of Maungatautari’s habitat may have 

some undetermined characteristic(s) that benefits reproductive success. Furthermore, high-

quality females could be more likely to secure territories close to feeders, so their greater 

reproductive success could potentially be linked to their better quality rather than the use of the 

feeders.  

 

Management implications 

Our results do not support the prediction that supplementary feeder use will have a lesser impact 

at mature forest sites, in comparison to regenerating forest sites. Instead, they suggest that female 

reproductive success may consistently increase where supplementary food is available, regardless 

of forest age or maturity. This outcome has important ramifications for hihi management. 

Supplementary feeders should perhaps be available at all translocation sites regardless of habitat 

type, at least early in the establishment phase. While hihi can clearly reproduce to some extent 
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without supplementary food, it is clear that supplementary food increases reproductive output, 

and may be needed for population growth. In 2012/13, estimates of population growth rate (λ) for 

the Maungatautari hihi population were 1.21 (Richardson 2015). Without supplementary feeding, 

this would certainly have been lower, probably resulting in population decline.  

The need for faster population growth, which could potentially be achieved by using 

additional feeders, needs to be balanced against alternative objectives in hihi recovery including 

reducing management costs and pursuing a more natural setting for hihi populations (i.e. less 

artificial feeding support). Such multi-objective trade-offs have been used to revise feeding of 

hihi on Kapiti Island (Ewen et al. 2015). As the Maungatautari population establishes, 

progressively fewer hihi are using the feeders, presumably an outcome of spatial expansion of the 

population away from the southern part of the mountain. The effects of this on population 

growth, and what response managers should or could take, are the continued focus of hihi 

recovery.  
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Table 1. Reproductive success of hihi in the 2012/13 breeding season at Maungatautari in 

relation to feeder use and age. Zeros (0) indicate non-feeder-using females and first-year females, 

whereas ones (1) represent feeder-using females and older females. Blank cells indicate that no 

second clutch was detected. 

 Feeder Female Nest Number fledged 

Female use age initiation 1st clutch 2nd clutch Total 

UB1 0 0 29/11/2012 0 0 0 

BR-OM 0 0 4/12/2012 2 2 4 

UB2 0 0 5/12/2012 0 1 1 

OO-OM 0 0 6/12/2012 2 0 2 

UB3 0 1 26/11/2012 3 2 5 

OY-GM 0 1 4/12/2012 0  0 

RN-GM 0 1 6/12/2012 1 2 3 

WM-ON 0 1 12/12/2012 0 3 3 

OY-WM 0 1 18/12/2012 0  0 

GW-OM 1 0 24/12/2012 4 2 6 

RR-GM 1 1 2/11/2012 3  3 

VM-R 1 1 15/11/2012 1  1 

YM-RB 1 1 18/11/2012 4  4 

HM-JO 1 1 22/11/2012 2  2 

OW-GM 1 1 23/11/2012 3  3 

GY-VM 1 1 23/11/2012 4 1 5 

WN-RM 1 1 2/12/2012 3  3 
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Table 2. Effects of feeder-use and age on reproductive success of female hihi at Maungatautari, 

as estimated using Poisson regression. Real values show the mean number of fledglings for the 

intercept (non-feeder-using first-year females), and the proportional effects of age (older/first-

year) and feeder use (users/non-users). 

 

  Log-transformed Real  

Response var. Parameter Est. 2.5% 97.5% Est. 2.5% 97.5% P 

Fledged 1st clutch Intercept 0.04 -0.77 0.84 1.0 0.5 2.3  

 Age -0.29 -1.15 0.56 0.8 0.3 1.8 0.502 

 Feeder use 1.32 0.46 2.17 3.7 1.6 8.8 0.005 

Fledged total Intercept 0.81 0.23 1.39 2.2 1.3 4.0  

 Age -0.21 -0.91 0.48 0.8 0.4 1.6 0.551 

 Feeder use 0.59 -0.05 1.24 1.8 1.0 3.5 0.070 
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Table 3. Effects of feeder-use and age on nest initiation dates of female hihi at Maungatautari, as 

estimated using linear regression. Values show the mean number of days since 2 November for 

the intercept (non-feeder-using first-year females), and additive effects of age and feeder use. 

 

Parameter Estimate 2.5% 97.5% P 

Intercept 37.53 27.48 47.58  

Age -7.15 -19.60 5.29 0.279 

Feeder use -9.65 -21.00 1.71 0.118 
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Figure 1. Map showing: (a) location of Maungatautari Ecological Island (MEI) in the North 

Island of New Zealand, (b) locations of sugar-water feeding stations which are restricted to the 

southern sub-enclosure of MEI, and (c) locations of hihi females in the 2012/13 breeding season 

at MEI. 

 

Figure 2. Effect of feeder-use on productivity of female hihi at Maungatauri Ecological Island 

based on the parameter estimates shown in Table 2. White bars show first-year females and grey 

bars show older females. Vertical bars show standard errors. 

 

Figure 3. Numbers of chicks fledged (mean ± SE) from first clutches in different hihi 

populations. For Maungatautari (MEI), closed circles show number of fledglings of feeder-using 

individuals and open circles show number of fledglings from non-feeder-using individuals. For 

the other sites, closed circles show years when feeders were available and closed circles show 

years when no feeders were available. The estimates for MEI are from the data shown in Table 1, 

and the estimates from the other sites are copied from Makan et al. (2104). Habitat age and 

management increases from right to the left. 


