1 2 3	Chang	ges in body con	nposition following haemodialysis as assessed by bioimpedance spectroscopy
4			
5	¹ Kamonwan T	angvoraphonk	chai MD, ² Andrew Davenport FRCP
0 7	¹ Eaculty of A	Aedicine Maha	asarakham University. Maha sarakham Thailand
8	² UCL Centre	for Nephrolog	av Roval Free Hospital University College London
9	Medical Sch	ool. London NV	N3 2PF. UK
10		, -	
11	short title	change in bo	dy composition post dialysis
12			
13			
14	key words	bioimpedanc	e haemodialysis fat mass
15	fat free mas	ss extro	acellular water intracellular water
16			
17 10			
18			
19 20	word count	abstract	250
20	wor a courr	body	2146
22		figures	4
23		tables	2
24		references	28
25			
26	Funding	Royal Free H	lospital
27	Neither auth	hor has any coi	nflict of interest
28			
29	<u>Abstract</u>		
30	Background		
31	Patie	nts with chron	ic kidney disease treated by haemodialysis (HD) are
32	at increased	risk of sarcop	penia. Bioelectrical impedance spectroscopy (BIS) can
33	be used to d	etermine body	composition, and is one of several potential screening
34	tools for sar	copenia. The r	newer generation of portable hand held devices can be
35	readily used	in dialysis cen	tres. The results from BIS devices using a two
36	compartmen	tal model of b	ody composition can be affected by hydration status

37	and so ideally measurements should be made when patients are not
38	overhydrated. More recently BIS devices using a three compartmental body
39	model, which separate normally hydrated lean tissues from extracellular water
40	(ECW) excess. We wished to determine whether body composition measured
41	using such a BIS device was affected by hydration status.
42	Methods
43	We performed BISs pre and post-haemodialysis using a three body
44	compartmental model .
45	Results
46	BISs were recorded in 48 patients; 68.8% male; mean age 67.70±14.21
47	years, weight pre dialysis 70.54±18.07, which fell post to 68.58±17.78 kg,
48	Extracellular water fell (16.92±4.76 vs 15.66±4.43 L, p<0.001), whereas there
49	was no change for intracellular water (14.84±4.27 vs 14.90±4.68 L).Fat free mass
50	index (FFMI) fell (7.87±3.98 vs 16.78±3.97 kg/m ^{2.} p<0.001), whereas fat mass
51	index(FMI) increased from (7.87±3.98 vs 8.12±3.81 kg/m², p=0.002). A fall in
52	FFMI was associated with an increase in FMI (r=0.804, p<0.001).
53	Conclusion
54	FMI and FFMI measured by BIA are both confounded by hydration
55	status. Although pre-dialysis measurements are more convenient, we suggest
56	BIS should preferably be performed post-dialysis when patients are less over-
57	hydrated and have less electrolyte imbalances.
58	

60	
61	
62	
63	
64	
65	
66	
67	
68	
69	
70	
71 72	
73	The authors have no conflict of interest
74 75	None of the data presented has been published in whole or part form
76	Introduction
77	Patients with chronic kidney disease (CKD) at increased risk of
78	sarcopenia, and once sarcopenia has developed then patients are at increased
79	risk for mortality. Muscle mass can be determined from anthropomorphic
80	measurements and muscle wasting assessed as part of the subjective global
81	assessment (SGA) [1]. However these methods are relatively insensitive in
82	detecting early changes, observer dependent, and potentially time consuming. As

83 such other screening tests including dual energy X ray absorptiometry (DXA)

and bioelectrical impedance assessment (BIA) have been recommended as
alternatives [2,3].

86 DXA scanning and most bioimpedance devices divide the body into 2 87 compartments; fat mass and fat free mass [4]. Previous reports have 88 demonstrated a strong correlation between body composition as assessed by 89 multi-frequency BIA and DXA scanning in dialysis patients [5,6]. However BIA 90 assessments of body hydration status and body composition can be affected by 91 localised fluid, such as ascites and intra-peritoneal fluid [7,8], and also by over 92 hydration [9]. Haemodialysis patients gain fluid between dialysis sessions, and 93 then this excess fluid is removed during the haemodialysis session. This 94 relatively rapid change in body fluid following dialysis has been demonstrated to 95 lead to a change in body composition as determined by BIA [10]. As such BIA should preferably be made when the haemodialysis patient is closest to their 96 97 dry or target weight and not pre-dialysis when they are volume overloaded. 98 In clinical practice it is much more convenient to make BIAs prior to the 99 haemodialysis session, rather than asking patients to remain behind for BIAs. 100 More recently BIS devices using 3 compartmental body composition models have 101 been developed [11]. These devices determine the normally hydrated lean body 102 mass, and as such should not be affected by the changes in hydration that occur 103 with haemodialysis. We therefore decided to review body composition data from 104 patients who had corresponding pre and post haemodialysis BIS to determine 105 whether there were no changes in body composition with dialysis, so that pre-106 dialysis measurements of body composition alone would suffice.

108 <u>Methods</u>

109	We audited the results of body composition estimations taken pre and
110	post haemodialysis using bioimpedance spectroscopy (BodyStat multiscan 5000
111	,BodyStat, Douglas, Isle of Man). Four electrodes were placed according to the
112	manufacturer's instructions on the dorsal surface of the contra-lateral hand and
113	foot and ankle to the arterio-venous fistula or arterio-venous graft. Patients
114	were weighed and height recorded prior to dialysis (Marsden Weighing Group,
115	Rotherham, UK). Pre dialysis measurements were made with patients lying supine
116	on a bed. Patients dialysed using Fresenius 4008H (Fresenius Bad Homberg,
117	Germany) or Dialogue R+ (BBraun, Melsungen, Germany) with high flux
118	polysulfone dialyzers (Elisio, Nipro Corporation, Osaka, Japan) [12] and
119	anticoagulated with bolus low molecular weight heparin (Tinzaparin, Leo
120	Laboratories, Hurley, Berkshire, UK) [13]. Dialysis machines were regularly
121	serviced and dialysate conductivity checked against flame photometry [14]. We
122	audited 48 consecutive patients attending for haemodialysis with corresponding
123	pre and post dialysis measurements. Patients were not allowed to eat during
124	dialysis and were restricted to one small drink (180 ml). After the
125	haemodialysis session had been completed and the fistula needle sites had
126	stopped bleeding, then patients were reweighed using the same scales, returned
127	to lying supine on their bed, rested and then post dialysis measurements were
128	repeated. There was no change in the position of the electrodes between
129	measurements.

131 Ethics

132	Standard of care for haemodialysis patients at the Royal Free Hospital
133	has been to measure bioimpedance pre and post dialysis sessions. We audited
134	the results of pre and post haemodialysis BIS measurements to determine
135	whether bioimpedance derived body composition should be measured pre or post
136	dialysis to be the standard of care for routine clinical practice. Ethical approval
137	fulfilled UK NHS clinical service development and audit (UK NHS guidelines for
138	clinical audit and service development (http://www.hra.nhs.uk/documents
139	/2013/09/ defining-research.pdf)) with all patient data being anonymised.
140	
141	Statistical methods
142	Statistical analysis was by parametric or non-parametric pair testing by
143	Student's t test or Mann Whitney U test, and Anova. Univariate correlation was
144	by Pearson or Spearman correlation (Prism 6.0, Graph Pad, San Diego, USA), and
145	Bland Altman analysis (version 3.0, Analyse It, Leeds, UK), with significance at
146	the p<0.05 level. Data is reported as mean \pm standard deviation, median and
147	interquartile range or percentage.
148	
149	Results
150	BIS was measured pre and post-dialysis in 48 patients; 68.8% male; mean
151	age 67.70±14.21 years (mean ± standard deviation), attending for in-centre

152 haemodialysis treatments. Median urine output was <50 (<50-58) ml/day, Stoke-

153	Davies co-morbidity grade 1 (0-1), and Canadian Society of Geriatrics frailty
154	score 4 (4-5.8). Fourteen patients had diabetic nephropathy, 13 undetermined
155	cause, 5 interstitial renal diseases, 4 hypertensive nephropathy, 4 primary
156	glomerular disease, 3 myeloma kidney, 2 systemic lupus erythematosus, one each
157	of haemolytic uraemic syndrome, pre-eclampsia, and amyloid. All patients were
158	prescribed folic acid and B vitamin supplements, and 50% of patients were
159	additionally prescribed anti-hypertensive medications and 22% diuretics.
160	Mean weight pre dialysis was 70.54±18.07 kg, height 165.80 ±11.34 cm,
161	and body mass index (BMI) was 25.52 ±6.11 kg/m².
162	The median dialysis session time was 4.0 (3.5-4) hours, dialysate
163	temperature 35 (35-35.5)°C, sodium 137 (136-138) mmol/l, potassium 2.0 (1.0-
164	2.0) mmol/l, calcium 1.35 (1.25-1.35) mmol/l, magnesium 0.5 mmol/l, bicarbonate
165	32 mmol/l, acetate 3.0 mmol/l.
166	Weight fell post dialysis, as did extracellular water (ECW), but there was
167	no overall significant change in intracellular water (ICW) (Table 1). Assessments
168	of body composition showed an increase in measurements for body fat and a fall
169	in fat free tissues (table 1). As changes in ECW and ICW lead to corresponding
170	changes in BIS derived body composition, we then looked for differences at the
171	individual patient level, by Bland Altman analysis comparing the differences
172	between corresponding pre and post-dialysis values
173	There was an overall negative mean bias for ICW (Figure 1), suggesting a
174	small increase in ICW following dialysis and a positive bias for ECW (Figure 2)
175	showing a loss of ECW. As such there was a mean negative bias for fat mass

176	index (FMI) of -0.23 (95% limits of agreement -1.16 to 0.71 kg) corresponding to
177	an increase in FMI post-dialysis, and a mean positive bias for fat free mass
178	index (FFMI) of 0.83 (-0.4 to 1.79), with a loss of FFMI post-dialysis. The
179	corresponding coefficient of variation for FMI and FFMI were 0.49 and 0.24
180	respectively.
181	There were positive correlations between the change in pre and post
182	dialysis ICW and the change in fat free mass (r= 0.29, p=0.042) and muscle mass
183	(r=0.31, p=0.031), and a negative correlation with the change in fat mass (r=-
184	0.30, p=0.037)). There were positive correlations between the change in pre and
185	post dialysis ECW and change in fat free mass (r=0.95, p<0.001), muscle mass
186	(Figure 3) lean dry mass (r=0.37, p=0.01) and a negative correlation with fat
187	weight (r= 0.78,p<0.001). There was a strong correlation between the change in
188	muscle mass and fat mass (r=0.82, p<0.001) (Figure 4).
189	To ensure that patients had re-equilibrated post-dialysis, and that
190	measurements did not change following dialysis, two additional BIS
191	measurements were made post-dialysis . There were no significant differences
192	between 1 st , 2 nd or 3 rd post-dialysis measurements (table 2).
193	
194	Discussion
195	BIA devices have advanced from single frequency to multiple frequency
196	and bio-impedance spectroscopy (BIS) devices [15] with measurements
197	comparable to isotopic methods [16]. Standard BIA devices use a 2

198 compartmental model of body composition, dividing the body into fat and fat

199 free mass. However this approach is affected by hydration status, and as muscle 200 contains more water than fat, when over hydrated then muscle mass is over 201 estimated [9,10,17]. As such we made measurements with a BIS device using a 3 202 compartmental model approach which aims to distinguish normally hydrated 203 muscle mass from pathologic fluid overload when assessing body composition 204 [11]. This is based on comparing measured ECW and that estimated using the 205 slope of ECW volume and body weight at normovolaemia, where the slope is 206 0.239 L/kg for men and 0.214 L/kg for women [11]. As such these bioimpedance 207 devices potentially have the advantage of being able to assess body composition 208 using a single pre-dialysis measurement, as there should be no change in fat free 209 index or fat index with dialysis, whereas standard bioimpedance devices using a 210 2 compartment model require post-dialysis measurements to prevent errors due 211 to hydration status [10].

212 We observed that whereas both weight and ECW fell post dialysis there 213 was no significant change in ICW. Associated with weight loss there were 214 changes in body composition following haemodialysis, with a fall in fat free mass, 215 muscle and dry lean tissue, and an increase in fat mass. The changes in muscle 216 mass we observed are in keeping with an earlier version of the BodyStat [18], 217 but differ from studies using other manufacturers 3 compartmental BIS 218 devices [18]. When we looked at the individual patient basis, then the greater 219 the fall in ECW, there was a corresponding greater fall in fat free mass and 220 muscle mass, but with a negative correlation with fat mass. We observed that a 221 fall in ICW following haemodialysis was associated with a reduction in muscle

9

222 mass, whereas a gain in ICW was associated with an increase in muscle mass,

223 which is in keeping with studies using 3 compartmental BIS devices from

224 different manufacturers [18].

225 So in keeping with other 2 and 3 compartmental BIA and BIS models this 226 device over estimated muscle mass and under estimated fat mass pre dialysis compared to post dialysis values. As such despite a model designed to separate 227 ECW excess from normo-hydrated fat free tissues this model was affected by 228 229 over hydration. This may not be surprising as these models use predictive 230 models based on ECW relative to ICW, and the relative increase in ECW and 231 ICW between dialysis sessions varies between patients due to differences in 232 sodium and water gains. In addition, previous reports have suggested that BIA 233 measurements can also be affected by body temperature, electrolyte 234 imbalances, and haematocrit [19]. 235 Previous studies of patient pre dialysis, when patients were over hydrated, showed that the BIS over estimated total body skeletal muscle mass 236 237 compared to magnetic resonance in patients with lower muscle mass and 238 conversely under estimated total body skeletal muscle mass in those patients 239 with greater muscle mass [20]. These differences may be due to errors in 240 estimating normo-hydrated fat free tissue [11], as muscle in dialysis patients may not simply just contain more water pre dialysis, but also urea and other 241 242 azotaemic toxins, and more recently studies have additionally reported higher 243 sodium content, and that sodium can be removed from tissue stores during a 244 haemodialysis session [21].

Following a haemodialysis session there is redistribution of urea and 245 246 other electrolytes, and fluid, which tends to be greater with faster blood flows 247 [22]. To overcome this rebound phenomenon, dialysis adequacy studies based on 248 changes in serum urea concentrations advocate taking a delayed post dialysis serum urea sample to overcome this effect [23]. It is therefore important that 249 BIS is performed after re-equilibration [24,25]. We waited for fistula needle 250 251 sites to have stopped bleeding, and then re-weighed patients, waited for 252 patients to return to their beds, resume the supine posture, allowed additional 253 time for the postural change and then performed BISs [26]. We then repeated 254 BISs to ensure that there were no discernible changes to establish that 255 patients were in a stable state post dialysis. 256 Patients with chronic kidney disease are at increased risk of sarcopenia, 257 and portable hand held BIS devices could be used to screen patients for 258 sarcopenia [2]. Although there are different classifications for defining sarcopenia, many simply use a cut-off point of more than 2 standard deviations 259 260 from the normal healthy adult lean body mass index. As such, there could 261 potentially be a difference in the number of patients being classified with 262 sarcopenia depending upon whether BIS is measured pre or post haemodialysis, 263 with fewer patients being recorded as having sarcopenia when using pre-dialysis 264 compared to post dialysis estimations. 265 Bioimpedance measurements are dependent upon the length of the circuit 266 and the cross sectional area. As such, moving the electrode placements changes

the results, so one advantage of the Multiscan 5000 was that the larger

268	electrodes remained in position during dialysis, and no electrodes had to be
269	replaced. However this device measures whole body fluid volumes and body
270	composition using paired ipsi-lateral hand and foot electrodes, with the
271	assumption that patients are symmetrical. However dialysis patients may be
272	asymmetrical due to amputations, previous deep venous thrombosis, or central
273	venous occlusion, stroke, polio etc.
274	Most haemodialysis patients are over hydrated and following a
275	haemodialysis session there are changes in ICW and ECW [27,28]. Despite using
276	a BIS device based on a 3 compartmental body model, there were still changes in
277	body composition associated with over hydration. So although pre dialysis BIA
278	measurements are more convenient to both patients and dialysis centre staff,
279	for greater reliability BIS measurements should preferably be made when a are
280	closest to their normo-hydrated state to reduce errors in estimation of body
281	composition when patients are over hydrated.
282	
283	
284 285	<u>References</u>
285	1. Chinical practice guidelines for nutrition in chronic renal failure. NDOQ1, National Kidney Foundation Am T Kidney Dis 2000:35(6 Suppl 2):51-140
280	 Kondrup T Allison SP Elia M Vellas B Plauth M: Educational and Clinical
288	Practice Committee European Society of Parenteral and Enteral Nutrition
289	(ESPEN). ESPEN auidelines for nutrition screening 2002. Clin Nutr.
290	2003;22(4):415-21
291	3. Kyle UG, Bosaeus I, De Lorenzo AD, Deurenberg P, Elia M, Gómez JM, et
292	al ; Composition of the ESPEN Working Group. Bioelectrical impedance
293	analysis-part II: utilization in clinical practice Clin Nutr. 2004; 23(6):
294	1430-53
295	4. Kyle UG, Bosaeus I, De Lorenzo AD, Deurenberg P, Elia M, Gómez JM,
296	Heitmann BL, Kent-Smith L, Melchior JC. Pirlich M. Scharfetter H. Schols

298		impedance analysispart I: review of principles and methods. Clin Nutr.
299		2004;23(5):1226-43.
300	5 .	Fürstenberg A, Davenport A. Comparison of multifrequency bioelectrical
301		impedance analysis and dual-energy X-ray absorptiometry assessments in
302		outpatient haemodialysis patients. Am J Kidney Dis. 2010;57(1):123-129
303	6.	Fürstenberg A, Davenport A. Assessment of body composition in
304		peritoneal dialysis patients using bioelectrical impedance and dual-energy
305		x-ray absorptiometry. Am J Nephrol. 2011;33(2):150-6
306	7.	Davenport A. Does peritoneal dialysate affect body composition
307		assessments using multi-frequency bioimpedance in peritoneal dialysis
308		patients? Eur J Clin Nutr. 2013;67(2):223-5
309	8 .	Davenport A, Argawal B, Wright G, Mantzoukis K, Dimitrova R, Davar J,
310		Vasianopoulou P, Burroughs AK. Can non-invasive measurements aid clinical
311		assessment of volume in patients with cirrhosis? World J Hepatol.
312		2013;5(8):433-8
313	9 .	Konings CJ, Kooman JP, Schonck M, van Kreel B, Heidendal GA, Cheriex
314		EC, van der Sande FM, Leunissen KM Influence of fluid status on
315		techniques used to assess body composition in peritoneal dialysis patients.
316		Perit Dial Int. 2003;23(2):184-90
317	10	Panorchan K, Nongnuch A, El-Kateb S, Goodlad C, Davenport A. Changes in
318		muscle and fat mass in haemodialysis patients detected by multifrequency
319		bioelectrical impedance analysis. Eur J Clin Nutr. 2015;69(10):1109-12
320	11	. Chamney PW, Krämer M, Rode C, Kleinekofort W, Wizemann V. A new
321		technique for establishing dry weight in haemodialysis patients via whole
322		body bioimpedance. Kidney Int. 2002;61(6):2250-8
323	12	. Vernon K, Peasegood J, Riddell A, Davenport A. Dialyzers designed to
324		increase internal filtration do not result in significantly increased platelet
325		activation and thrombin generation. Nephron Clin Pract. 2011;117(4):c403-
326		8
327	13	. Davenport A. Low-molecular-weight heparin as an alternative
328		anticoagulant to unfractionated heparin for routine outpatient
329		haemodialysis treatments. Nephrology (Carlton). 2009;14(5):455-61
330	14	. Sandhu E, Crawford C, Davenport A. Weight gains and increased blood
331		pressure in outpatient haemodialysis patients due to change in acid
332		dialysate concentrate supplier. Int J Artif Organs. 2012;35(9):642-7
333	15	. Davies SJ, Davenport A. The role of bioimpedance and biomarkers in
334		helping to aid clinical decision-making of volume assessments in dialysis
335		patients. Kidney Int. 2014;86(3):489-96
336	16	. Raimann JG, Zhu F, Wang J, Thijssen S, Kuhlmann MK, Kotanko P,et al .
337		Comparison of fluid volume estimates in chronic haemodialysis patients by
338		bioimpedance, direct isotopic, and dilution methods. Kidney Int.
339		2014;85(4):898-908
340	17	Chua HR, Xiang L, Chow PY, Xu H, Shen L, Lee E, et al. Quantifying acute
341		changes in volume and nutritional status during haemodialysis using
342		bioimpedance analysis. Nephrology (Carlton). 2012;17(8):695-702

343	18. El-Kateb S, Davenport A. Changes in Intracellular Water Following
344	Hemodialysis Treatment Lead to Changes in Estimates of Lean Tissue
345	Using Bioimpedance Spectroscopy. Nutr Clin Pract. 2015 Dec 18. pii:
346	0884533615621549 PMID: 26684440
347	19. Dehghan M, Merchant AT. Is bioelectrical impedance accurate for use in
348	large epidemiological studies? Nutr J. 2008;7:26. doi: 10.1186/1475-2891-
349	7-26 PMID: 18778488
350	20. Kaysen GA1, Zhu F, Sarkar S, Heymsfield SB, Wong J, Kaitwatcharachai
351	C, Kuhlmann MK, Levin NW. Estimation of total-body and limb muscle mass
352	in haemodialysis patients by using multifrequency bioimpedance
353	spectroscopy1,2,3. Am J Clin Nutr. 2005;82(5):988-95
354	21. Dahlmann A, Dörfelt K, Eicher F, Linz P, Kopp C, Mössinger I, Horn S,
355	Büschges-Seraphin B, Wabel P, Hammon M, Cavallaro A, Eckardt KU,
356	Kotanko P, Levin NW, Johannes B, Uder M, Luft FC, Müller DN, Titze JM.
357	Magnetic resonance-determined sodium removal from tissue stores in
358	haemodialysis patients. Kidney Int. 2015;87(2):434-41
359	22. Abbas SR, Zhu F, Kaysen GA, Kotanko P, Levin NW. Effect of change in
360	fluid distribution in segments in hemodialysis patients at different
361	ultrafiltration rates on accuracy of whole body bioimpedance
362	measurement. J Appl Physiol (1985). 2014;116(11):1382-9
363	23. Daugirdas JT, Depner TA, Gotch FA, Greene T, Keshaviah P, Levin NW,
364	Schulman G. Comparison of methods to predict equilibrated Kt/V in the
365	HEMO Pilot Study. Kidney Int. 1997;52(5):1395-405
366	24. El-Kateb S, Davenport A. Changes in hydration following haemodialysis
367	estimated with bioimpedance spectroscopy. Nephrology. 2016; doi:
368	10.1111/nep.12645 PMID: 26436338
369	25. Kaysen GA1, Zhu F, Sarkar S, Heymsfield SB, Wong J, Kaitwatcharachai
370	C, Kuhlmann MK, Levin NW. Estimation of total-body and limb muscle mass
371	in haemodialysis patients by using multifrequency bioimpedance
372	spectroscopy1,2,3. Am J Clin Nutr. 2005;82(5):988-95
373	26. Gibson AL, Beam JR, Alencar MK, Zuhl MN, Mermier CM. Time course of
374	supine and standing shifts in total body, intracellular and extracellular
375	water for a sample of healthy adults. Eur J Clin Nutr. 2015;69(1):14-9
376	27. Papakrivopoulou E, Booth J, Pinney J, Davenport A. Comparison of volume
377	status in asymptomatic haemodialysis and peritoneal dialysis outpatients.
378	Nephron Extra. 2012 ;2(1):48-54
379	28. Kumar S, Khosravi M, Massart A, Potluri M, Davenport A. Haemo-
380	diatiltration results in similar changes in intracellular water and
381	extracellular water compared to cooled haemodialysis. Am J Nephrol.
382	2013;37(4):320-4
585 284	
384 295	
385 286	
380	
387	

388	
389	
390	
391	
392	
393	
394	
395	
396	
397	
398	
399	
400	
401	
402	
403	
404	
405	
406	
407	
408	
409	
410	
411	
412	
413	
414	Figure 1. Bland Altman analysis comparing pre haemodialysis intracellular water
415	(ICW) and post haemodialysis ICW in litres. Mean bias -0.23, 95% limits of
416	agreement -1.16 to 0.71 L.
417	
418	
419	Figure 2. Bland Altman analysis comparing pre haemodialysis extracellular water
420	(ECW) and post haemodialysis ECW in litres. Mean bias 0.83, 95% limits of
421	agreement -0.39 to 2.83 L.
422	
423	
424	Figure 3. Change in intracellular water (ECW) pre and post-dialysis, comparing
425	with the change muscle mass. Pearson correlation.
426	
427	
428	Figure 4. Change in fat free mass and fat mass following a haemodialysis session.
429	Pearson correlation.
430	
431	
432	