No evidence that genetic variation in the myeloid-derived suppressor cell pathway influences ovarian cancer survival

* First Co-Authors

Author affiliations

1. College of Pharmacy, College of Veterinary, The Ohio State University, Columbus, OH
2. Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, NY
3. Cancer Genetic Epidemiology, Division of Epidemiology, Mayo Clinic, Rochester, MN
4. Department of Biostatistics and Bioinformatics, Roswell Park Cancer Institute, Buffalo, NY
5. Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, NY
6. Gynecologic Oncology, Roswell Park Cancer Institute, Buffalo, NY
7. Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY
8. Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY
9. Department of Flow & Image Cytometry, Roswell Park Cancer Institute, Buffalo, NY
10. Genetic Epidemiology Research Institute, School of Medicine, University of California Irvine, Irvine, CA
11. Cancer Prevention and Control Program, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ
12. Department of Gynecology and Obstetrics, University Hospital Erlangen, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
13. Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC
14. Department of Gynecology and Obstetrics, Haukeland University Hospital, Bergen, Norway
15. Centre for Cancer Biomarkers, Department of Clinical Science, University of Bergen, Bergen, Norway
16. Department of Obstetrics & Gynecology, Oregon Health & Science University, Portland, OR
17. Cancer Genetics Laboratory, St Andrews Place, East Melbourne, Australia
18. Department of Pathology, University of Melbourne, Parkville, Victoria, Australia
19. Genetics and Computational Biology Department, QIMR Berghofer Medical Research Institute, Herston, Australia
20. Obstetrics and Gynecology Epidemiology Center, Brigham and Women's Hospital, Boston, MA
21. Harvard T. H. Chan School of Public Health, Boston, MA
22. Department of Pathology and Laboratory Diagnostics, the Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
23. Gynecologic Oncology, Laura and Isaac Pearlmuter Cancer Center, NYU Langone Medical Center, New York, NY
24. Department of Epidemiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA
25. Department of Obstetrics and Gynecology, Hannover Medical School, Hannover, Niedersachsen, Germany
26. Department of Epidemiology, The Geisel School of Medicine at Dartmouth, Lebanon, NH
27. Department of Gynecology and Gynecologic Oncology, Kliniken Essen-Mitte/ Evang. Hueyssens-Stiftung/ Knappschaft GmbH, Essen, Germany
28. Department of Gynecology and Gynecologic Oncology, Dr. Horst Schmidt Kliniken Wiesbaden, Wiesbaden, Germany
29. Faculty of Medicine, University of Southampton, UK
30. Wessex Clinical Genetics Service, Southampton University Hospitals Trust, Southampton, UK
31. Department of Oncology, Rigshospitalet, University of Copenhagen, Denmark
32. Center for Cancer Prevention and Translational Genomics, Cedars-Sinai Medical Center, Los Angeles, CA
33. Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA
34. Women's Cancer, Institute for Women's Health, University College London, UK
35. The Beatson West of Scotland Cancer Centre, Glasgow, UK
36. Cancer Prevention and Control, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA
37. Community and Population Health Research Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA
38. International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
39. Department of Gynaecology, Rigshospitalet, University of Copenhagen, Herlev, Denmark
40. Department of Virus, Lifestyle and Genes, Danish Cancer Society Research Center, Copenhagen, Denmark
41. Molecular Unit, Department of Pathology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
42. Division of Cancer Epidemiology, German Cancer Research Center, Heidelberg, Germany
43. University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Heidelberg, Germany
44. Women's Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA
45. Clinic of Obstetrics and Gynecology, Institute of Midwifery and Emergency Medicine, Faculty of Medicine, University of Rzeszów, Poland
46. Vesalius Research Center, Laboratory for Translational Genetics, Department of Oncology, University of Leuven, Belgium
47. The Juliane Marie Centre, Department of Gynecology, Rigshospitalet, University of Copenhagen, Denmark
48. Department of Health Research and Policy - Epidemiology, Stanford University School of Medicine, Stanford, CA
49. Institute of Cancer Sciences, University of Glasgow, Wolfson Wohl Cancer Research Centre, Beatson Institute for Cancer Research, Glasgow, UK
50. Division of Gynecologic Oncology, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA
51. Ovarian Cancer Center of Excellence, Womens Cancer Research Program, Magee-Womens Research Institute and University of Pittsburgh Cancer Institute, Pittsburgh, PA
52. The University of Texas School of Public Health, Houston, TX
53. Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI
54. Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA
55. Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
56. Department of Oncology, Dept of Public Health and Primary Care, University of Cambridge, Strangeways Research Laboratory, Cambridge, UK
57. School of Women's and Children's Health, University of New South Wales, Australia
58. The Kinghorn Cancer Centre, Garvan Institute of Medical Research, New South Wales, Australia
59. Program in Epidemiology, Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
60. Department of Epidemiology, University of Washington, Seattle, WA, USA
61. Department of Public Health Sciences, The University of Virginia, Charlottesville, VA
62. Department of Gynecology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
63. Praxis für Humangenetik, Wiesbaden, Germany
64. Department of Gynaecological Oncology, Glasgow Royal Infirmary, Glasgow, UK
65. Department of Population Health Science and Policy, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
66. Department of Gynecologic Oncology, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
67. Department of Oncology, University of Cambridge, Strangeways Research Laboratory Cambridge, UK
68. Division of Gynecologic Oncology, Department of Obstetrics and Gynaecology and Leuven Cancer Institute, University Hospitals Leuven, Leuven, Belgium
69. Population Health Department, QIMR Berghofer Medical Research Institute, Herston, Australia
70. Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda MD
71. Department of Epidemiology, University of California Irvine, Irvine, CA
72. Department of Health Science Research, Mayo Clinic, Rochester, MN

Running Title: MDSC Genes and Epithelial Ovarian Cancer Survival

Keywords: Myeloid Derived Suppressor Cells (MDSCs), Epithelial Ovarian Cancer Survival, Epithelial Ovarian Cancer Prognosis, Genetic Variation

FINANCIAL SUPPORT:

The Ovarian Cancer Association Consortium is supported by a grant from the Ovarian Cancer Research Fund

This study used shared resources supported by RPCI’s Cancer Center Support Grant from the NCI (P30CA016056) and was also supported by the NCI Ovarian SPORE grant P50CA159981 and Roswell Park Alliance Foundation

L.E. Sucheston-Campbell is supported by P50CA159981 and Roswell Park Alliance Foundation

K.B. Moysich is supported by P50CA159981 and Roswell Park Alliance Foundation, NIH/NCI R01CA095023, and NIH/NCI R01CA126841

K.H. Eng was supported by the Roswell Park Alliance Foundation

S.I. Abrams was supported by (R01CA140622)

B.H. Segal was supported by R01CA188900

P.K. Wallace and this work was supported by 1P50CA159981-01A1 Roswell Park Cancer Institute Ovarian Spore

J.B. Szender was supported by 5T32CA108456

Albina Minlikeeva was supported by Interdisciplinary Training Grant in Cancer Epidemiology R25CA113951

AUS (G. Chenevix-Trench, P.M. Webb). U.S. Army Medical Research and Materiel Command (DAMD17-01-1-0729), National Health & Medical Research Council of Australia (199600 and 400281), Cancer Councils of
New South Wales, Victoria, Queensland, South Australia and Tasmania and Cancer Foundation of Western Australia (under Multi-State Applications 191, 211 and 182).

BAV (P.A. Fasching) ELAN Funds of the University of Erlangen-Nuremberg

BEL (D. Lambrechts) Nationaal Kankerplan

DOV (M.A. Rossing) National Institutes of Health R01-CA112523 and R01-CA87538

GER (J. Chang-Claude) German Federal Ministry of Education and Research, Programme of Clinical Biomedical Research (01 GB 9401) and the German Cancer Research Center (DKFZ)

HAW (M. Goodman) U.S. National Institutes of Health (R01-CA58598, N01-CN-55424 and N01-PC-67001)

HOP (F. Modugno, K. Moysich, R. Ness) DOD: DAMD17-02-1-0669 and NCI: K07-CA080668, R01-CA95023, P50-CA159981; NIH/National Center for Research Resources/General Clinical Research Center grant MO1-RR000056; R01-CA126841.

LAX (B.Y. Karlan) American Cancer Society Early Detection Professorship (SIOP-06-258-01-COUN) and the National Center for Advancing Translational Sciences (NCATS), Grant UL1TR000124.

MAL (S. Krüger Kjær) Funding for this study was provided by research grant R01-CA61107 from the National Cancer Institute, Bethesda, MD; research grant 94 222 52 from the Danish Cancer Society, Copenhagen, Denmark; and the Mermaid I project.

MAY (E.L. Goode): National Institutes of Health (R01-CA122443, P30-CA15083, P50-CA136393); Mayo Foundation; Minnesota Ovarian Cancer Alliance; Fred C. and Katherine B. Andersen Foundation

NCO (J. Schildkraut, A. Berchuck): National Institutes of Health (R01-CA76016) and the Department of Defense (DAMD17-02-1-0666)

NEC (D. Cramer and K. Terry) National Institutes of Health R01-CA54419 and P50-CA105009 and Department of Defense W81XWH-10-1-02802

NJO (E.V. Bandera) National Cancer Institute (NIH-K07 CA095666, NIH-K22-CA138563, and P30-CA072720) and the Cancer Institute of New Jersey

NOR (L. Bjorge) Helse Vest, The Norwegian Cancer Society, The Research Council of Norway

ORE (T. Pejovic) OHSU Foundation

POC (J. Gronwald) Pomeranian Medical University

POL (N. Wentzensen) Intramural Research Program of the National Cancer Institute

PVD (E. Høgdall and C. Høgdall) Herlev Hospitals Forskningsråd, Direktør Jacob Madsens og Hustru Olga Madsens fond, Arvid Nilssons fond, Gangsted fonden, Herlev Hospitals Forskningsråd and Danish Cancer Society

RMH (P. Pharoah) Cancer Research UK (no grant number is available), Royal Marsden Hospital

SEA (P. Pharoah) Cancer Research UK (C490/A10119 C490/A10124); UK National Institute for Health Research Biomedical Research Centres at the University of Cambridge
Corresponding author:

Dr. Kirsten B. Moysich
Department of Cancer Prevention and Control,
Roswell Park Cancer Institute,
352 Carlton House,
Elm and Carlton Streets,
Buffalo, NY 14263
Phone: 716-845-8004
Fax: 716-845-1126
Email: Kirsten.moysich@roswellpark.org

CONFLICT OF INTEREST STATEMENT

M. Goodman was a consultant for Johnson and Johnson

Word count: 799 without headers

Total number of figures and tables: 1 table; 1 figure
ABSTRACT

Background: The precise mechanism by which the immune system is adversely affected in cancer patients remains poorly understood, but the accumulation of immune suppressive/pro-tumorigenic myeloid-derived suppressor cells (MDSCs) is thought to be one prominent mechanism contributing to immunologic tolerance of malignant cells in epithelial ovarian cancer (EOC). To this end, we hypothesized genetic variation in MDSC pathway genes would be associated with survival after EOC diagnoses.

Methods: We measured the hazard of death due to EOC within 10 years of diagnosis, overall and by invasive subtype, attributable to SNPs in 24 genes relevant in the MDSC pathway in 10,751 women diagnosed with invasive EOC. Versatile Gene-based Association study (VEGAS) and the Admixture Likelihood method (AML), were used to test gene and pathway associations with survival.

Results: We did not identify individual SNPs that were significantly associated with survival after correction for multiple testing (p<3.5 x 10^-5), nor did we identify significant associations between the MDSC pathway overall, or the 24 individual genes and EOC survival.

Conclusions: In this well-powered analysis, we observed no evidence that inherited variations in MDSC-associated SNPs, individual genes, or the collective genetic pathway contributed to EOC survival outcomes.

Impact: Common inherited variation in genes relevant to MDSCs were not associated with survival in women diagnosed with invasive EOC.
INTRODUCTION

Survival after a diagnosis of epithelial ovarian cancer (EOC) has seen only modest improvements in recent decades, making the identification of novel mechanisms and pathways associated with EOC prognosis imperative. EOC is associated with immunosuppressive pathways including regulatory T cells and myeloid derived suppressor cells (MDSC) that can be barriers to anti-tumor immunity and adversely affect clinical outcomes. To this end, MDSCs suppress the antigen-specific T cell response by both CD4+ and CD8+ T cells, and elevated concentrations of MDSCs have been detected in the peripheral blood of cancer patients when compared with normal controls [1, 2]. We hypothesized that common inherited genetic variation in genes involved in the MDSC pathway is associated with survival following ovarian cancer diagnosis.

MATERIALS AND METHODS

We conducted a pooled analysis utilizing individual-level data from 28 studies in the Ovarian Cancer Association Consortium (OCAC) to assess the association of genes in the MDSC associated pathway with EOC survival. Participants included 11,034 women aged 18 years and older with a histologically confirmed primary diagnosis of invasive EOC, fallopian tube cancer, or primary peritoneal cancer who were genotyped on the Illumina iSelect array designed for the Collaborative Oncological Gene-environment Study (COGS) [3]. Clinical, epidemiological, and follow-up data were made available for all analyses.

To assess the association between invasive EOC outcome and inherited variation in the MDSC pathway, we conducted SNP, gene, and pathway-based analyses of 24 candidate genes relevant to the biology of MDSCs, as established from an extensive literature review utilizing the PubMed database (ARG1, CD274, CSF2, CSF3, EIF2AK4, FLT3, IL10RA, IL13RA2, IL4, IL4R, IL5RA, IL6R, IDO, IRF8, KITLG, MMP1, MMP12, MMP3, MMP9, NOS2A, PSME4, STAT1, STAT3, VEGFA). SNP selection and quality control were performed as previously described, yielding a total of 736 SNPs for analyses [4]. We calculated the effective number of independent SNPs tested; this value was used in a Bonferroni correction to determine single SNP significance [4]. We utilized Cox proportional hazards regression models adjusted for age, tumor stage and grade to estimate hazard ratios (HRs) and 95% confidence intervals (CIs) representing SNP associations with EOC overall and by invasive histotype. Survival time was defined as the time from diagnosis of invasive EOC until death from
any cause or time of last follow-up. Analyses accommodated left truncation to account for prevalent cases where appropriate and right censoring was done at > 10 years follow-up time. Analyses and graphics were done using R (https://www.r-project.org). Gene- and pathway-based tests of association with hazard of death were performed using Versatile Gene-based Association Study (VEGAS) and the Admixture Likelihood Method (AML), respectively [5] [6].

RESULTS

The clinical characteristics of the study population are presented in Table 1. As expected, the majority of patients were diagnosed with serous EOCs, had poorly differentiated tumors, and were diagnosed with distant disease.

We considered $p<3.5 \times 10^{-5}$ as the threshold for significance, based on a Bonferroni correction for the estimated number of independent SNPs ($n=288$) across five histotypes. Single SNP associations for EOC overall and by invasive histotype are shown in circular Manhattan style plots in Figure 1 with SNPs showing $p<0.01$ highlighted in red. The most significant single SNP was the C allele of rs6492925 in EIF2AK4 on chromosome 15, with a reduction in hazard of death in women with mucinous tumors ($HR=0.57$, $95\% \ CI= 0.42, 0.78$, $p=3.7 \times 10^{-4}$).

The most significant gene-based associations for all invasive ovarian cancer cases ($KITLG$, $p=.07$), high-grade serous ($VEGFA$, $p=.11$), mucinous ($EIF2AK4$, $p=.015$), endometrioid (CSF, $p=.02$) and clear cell ($CD274$, $p=.037$) did not the pass multiple test correction threshold set for testing the 24 genes. Taken together the 24 genes showed no significant association with any histotype; mucinous cell tumors showed the most significant MDSC pathway association with survival ($p=0.11$).

DISCUSSION

Assuming genotyping captures, on average, 70% of the variation in each gene for tests of association with overall EOC and given the proportion of events at 51%, our study had 80% power at $p<3.5 \times 10^{-5}$ to detect an HR of 1.11 to 1.24 for minor allele frequencies between 40% and 10%, respectively. We conducted a well-powered, hypothesis-driven study to evaluate a role for common inherited variation in MDSC pathway genes...
with EOC survival; we observed no evidence of an association at the SNP, gene or pathway level with EOC survival. To date, neither genome wide analyses of single SNP association with progression free survival nor copy number variation with overall survival showed significant findings and did not report suggestive associations in these genes [7, 8]. It is possible that rare variation in MDSC- associated genes not captured by these analyses could be correlated with EOC outcomes or that the magnitude of effect sizes were below detection. Additionally, recent work has identified an expanding list of genes associated with MDSCs, thus future studies should consider the importance of this emerging knowledge of MDSC biology.
REFERENCES

Table 1. Clinical characteristics of invasive epithelial ovarian cancer cases from the Ovarian Cancer Association Consortium analyzed for association with MSDC genetic variation

<table>
<thead>
<tr>
<th>Patient Characteristics</th>
<th>Vital Status at last follow up</th>
<th>Total invasive EOC cases N=10,751</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Alive N=5243 (48.8%)</td>
<td>Deceased N=5508 (51.2%)</td>
</tr>
<tr>
<td>Age at diagnosis</td>
<td></td>
<td></td>
</tr>
<tr>
<td><50 years</td>
<td>1627 (59.1%)</td>
<td>1125 (40.9%)</td>
</tr>
<tr>
<td>50-69 years</td>
<td>3100 (47.4%)</td>
<td>3445 (52.6%)</td>
</tr>
<tr>
<td>70+ years</td>
<td>516 (35.5%)</td>
<td>938 (64.5%)</td>
</tr>
<tr>
<td>Histology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serous</td>
<td>2765 (39.7%)</td>
<td>4207 (60.3%)</td>
</tr>
<tr>
<td>high grade serous</td>
<td>2210 (38.2%)</td>
<td>3568 (61.8%)</td>
</tr>
<tr>
<td>Mucinous</td>
<td>504 (72.1%)</td>
<td>197 (27.9%)</td>
</tr>
<tr>
<td>Endometrioid</td>
<td>1058 (68.7%)</td>
<td>485 (31.3%)</td>
</tr>
<tr>
<td>Clear Cell</td>
<td>529 (67.1%)</td>
<td>260 (32.9%)</td>
</tr>
<tr>
<td>Mixed Cell</td>
<td>215 (56.7%)</td>
<td>166 (43.3%)</td>
</tr>
<tr>
<td>Undifferentiated/Poorly differentiated</td>
<td>92 (42.6%)</td>
<td>124 (57.4%)</td>
</tr>
<tr>
<td>Unknown Epithelial</td>
<td>70 (49.6%)</td>
<td>69 (50.3%)</td>
</tr>
<tr>
<td>Grade</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Well Differentiated</td>
<td>757 (70.5%)</td>
<td>316 (29.3%)</td>
</tr>
<tr>
<td>Moderately Differentiated</td>
<td>1107 (50.6%)</td>
<td>1079 (49.4%)</td>
</tr>
<tr>
<td>Poorly differentiated</td>
<td>2185 (42.4%)</td>
<td>2969 (57.6%)</td>
</tr>
<tr>
<td>Undifferentiated</td>
<td>284 (46.8%)</td>
<td>323 (53.2%)</td>
</tr>
<tr>
<td>Unknown</td>
<td>583 (58.1%)</td>
<td>419 (41.9%)</td>
</tr>
<tr>
<td>Stage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Localized</td>
<td>1393 (81.3%)</td>
<td>320 (18.7%)</td>
</tr>
<tr>
<td>Regional</td>
<td>1314 (66.4%)</td>
<td>665 (33.6%)</td>
</tr>
<tr>
<td>Distant</td>
<td>2109 (34.3%)</td>
<td>4034 (65.7%)</td>
</tr>
<tr>
<td>Unknown</td>
<td>178 (55.5%)</td>
<td>143 (44.5%)</td>
</tr>
</tbody>
</table>
Figure legend

Figure 1. These five concentric circles are circular standard Manhattan plots. The chromosome is on the outer circle, $-\log_{10}$ p-values are on the (vertical) y-axis with each circle representing the p-value from single SNP tests of association with overall survival adjusted for age, stage and grade. The Manhattan plots are as follows: A) all ovarian cancer cases B) high grade serous C) mucinous cell D) endometrioid and E) clear cell. The red dashed line designates $p=.01$, $-\log_{10}(p\text{-value})=2$, with all red-colored SNPs above that line reflecting SNPs $p<.01$.
No evidence that genetic variation in the myeloid-derived suppressor cell pathway influences ovarian cancer survival

Lara E. Sucheston-Campbell, Rikki Cannioto, Alyssa I. Clay, et al.

Cancer Epidemiol Biomarkers Prev. Published OnlineFirst September 27, 2016.