Cavanagh, SE;
Wallis, JD;
Kennerley, SW;
Hunt, LT;
(2016)
Autocorrelation structure at rest predicts value correlates of single neurons during reward-guided choice.
eLife
, 5
, Article e18937. 10.7554/eLife.18937.
Preview |
Text
Kennerley_Cavanagh2016.pdf Download (2MB) | Preview |
Abstract
Correlates of value are routinely observed in the prefrontal cortex (PFC) during reward-guided decision making. In previous work (Hunt et al., 2015), we argued that PFC correlates of chosen value are a consequence of varying rates of a dynamical evidence accumulation process. Yet within PFC, there is substantial variability in chosen value correlates across individual neurons. Here we show that this variability is explained by neurons having different temporal receptive fields of integration, indexed by examining neuronal spike rate autocorrelation structure whilst at rest. We find that neurons with protracted resting temporal receptive fields exhibit stronger chosen value correlates during choice. Within orbitofrontal cortex, these neurons also sustain coding of chosen value from choice through the delivery of reward, providing a potential neural mechanism for maintaining predictions and updating stored values during learning. These findings reveal that within PFC, variability in temporal specialisation across neurons predicts involvement in specific decision-making computations.
Type: | Article |
---|---|
Title: | Autocorrelation structure at rest predicts value correlates of single neurons during reward-guided choice |
Location: | England |
Open access status: | An open access version is available from UCL Discovery |
DOI: | 10.7554/eLife.18937 |
Publisher version: | http://dx.doi.org/10.7554/eLife.18937 |
Language: | English |
Additional information: | Copyright © Cavanagh et al. This article is distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use and redistribution provided that the original author and source are credited. |
Keywords: | decision-making, evidence accumulation, neuroscience, prefrontal cortex, reward, rhesus macaque, time constant, value |
UCL classification: | UCL UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > UCL Queen Square Institute of Neurology UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > UCL Queen Square Institute of Neurology > Clinical and Movement Neurosciences |
URI: | https://discovery.ucl.ac.uk/id/eprint/1519978 |
Archive Staff Only
View Item |