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The diminutive middle ear ossicles (malleus, incus, stapes) housed
in the tympanic cavity of the temporal bone play an important role
in audition. The few known ossicles of Neandertals are distinctly
different from those of anatomically modern humans (AMHs), despite
the close relationship between both human species. Although not
mutually exclusive, these differences may affect hearing capacity or
could reflect covariation with the surrounding temporal bone. Until
now, detailed comparisons were hampered by the small sample
of Neandertal ossicles and the unavailability of methods combining
analyses of ossicles with surrounding structures. Here, we present an
analysis of the largest sample of Neandertal ossicles to date, including
many previously unknown specimens, covering a wide geographic
and temporal range. Microcomputed tomography scans and 3D
geometric morphometrics were used to quantify shape and functional
properties of the ossicles and the tympanic cavity and make compar-
isons with recent and extinct AMHs as well as African apes. We find
striking morphological differences between ossicles of AMHs and
Neandertals. Ossicles of both Neandertals and AMHs appear derived
compared with the inferred ancestral morphology, albeit in different
ways. Brain size increase evolved separately in AMHs and Neandertals,
leading to differences in the tympanic cavity and, consequently, the
shape and spatial configuration of the ossicles. Despite these different
evolutionary trajectories, functional properties of the middle ear of
AMHs and Neandertals are largely similar. The relevance of these
functionally equivalent solutions is likely to conserve a similar auditory
sensitivity level inherited from their last common ancestor.
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The hominin fossil record can only provide indirect information
about auditory capacities of our extinct relatives. Inferences

about the evolution of the human sense of hearing require un-
derstanding of the interplay between form and function in extant
species. When auditory capacities are visualized as audiograms,
plotting the sensitivity for different frequencies, anatomically
modern humans (AMHs) differ from the W-shaped pattern
found in most anthropoid primates. AMHs are characterized by
a drastically lowered high-frequency cutoff and maintaining high
sensitivity in the low to midfrequencies, resulting in a U-shaped
audiogram (1–7). In primates, such hearing variability is as-
sumed to be partly related to forms of vocalization and habitat
acoustics (8–10). Diverse hearing capabilities are also related
to the morphology of the diminutive middle ear ossicles housed
in the tympanic cavity (11, 12). The malleus, incus, and stapes
form the ossicular chain that connects the tympanic membrane
to the oval window of the inner ear. These bones play an im-
portant role in audition by amplifying and regulating the sound
waves transmitted to the cochlea (11, 13–15). In particular, the
middle ear acts as a transformer that matches the impedances
between the air and the perilymph of the cochlea (16), partici-
pating in the tuning of the sensitivity levels.
Recent analyses have emphasized a distinctly derived mor-

phology of the ossicles of AMHs compared with extant great apes
(17, 18), suggesting that the ossicles of extinct hominins may provide
insights into the origin of the distinct auditory capacities of AMHs.

Until recently, only a few isolated Neandertal ossicles were known,
and their morphology differs consistently from AMH ossicles (19–
25). Because the external acoustic meatus and cochlea have nearly
identical dimensions in AMHs and Neandertals (26–28), such shape
differences of the ossicles could indicate differences in auditory
capacities and with it, potential implications for habitat preference
and aspects of vocal communication. However, the temporal bone
housing the ossicles is well-known to differentiate Neandertals
from AMHs, and some of its structures express morphological
covariation (29, 30). Therefore, differences in ossicle morphol-
ogy between Neandertals and AMHs could also reflect variation
in the spatial relationship of the ossicles within the tympanic
cavity because of differences in the placement of either the oval
window or the tympanic membrane (24).
Comparative and functional investigations of Neandertal os-

sicles were previously limited by the small sample size. High-
resolution computed tomography (CT) has made it possible to
study the morphology of ossicles trapped in the tympanic cavity.
Here, we analyze the largest sample of Neandertal ossicles to
date (22 ossicles from 14 individuals), covering a wide geo-
graphic and temporal range. We compare these fossils with
Holocene and Pleistocene AMHs and African apes and in-
vestigate how previously observed ossicle characteristics fit into
the Neandertal bauplan and how it evolved. Studying ossicles is
methodologically challenging because of their small size and
complex 3D shapes. To quantify ossicle shape, we apply a 3D
geometric morphometric approach (18). We also test how dif-
ferences in ossicle morphology affect the impedance matching
function of the middle ear. As a functional measure, we chose an
ideal transformer ratio (ITR), namely the pressure gain, which is
the product of the area ratio between the tympanic membrane
and stapes footplate and the lever ratio of the malleus and incus
functional lengths (31–33). Finally, we analyze how ossicle shape
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covaries with the surrounding tympanic cavity, looking into the
angular orientation and distance between the tympanic sulcus
and oval window as well as their respective sizes.

Results
Shape of Middle Ear Ossicles.
Malleus. In 3D shape space, Neandertals and Holocene AMHs
form nonoverlapping clusters fully separated from African apes
(Fig. 1A); means of all groups differ significantly (P < 0.01).
Average shape distance between Holocene AMHs and Nean-
dertals (0.120) exceeds distances between AMHs and Pan trog-
lodytes (0.099) and between P. troglodytes and Gorilla gorilla
(0.098). The mean shape of Pleistocene AMHs is closer to that
of Neandertals (0.104) than the mean shape of Holocene AMHs.
Pleistocene AMH specimens fall within the range of variation
of Holocene AMHs. Compared with AMHs, Neandertals pos-
sess mallei with a shorter manubrium, a larger and more ante-
rior–posterior flattened head, a bigger articular facet with a less
developed medioinferior part, and a distinctively wide angle be-
tween the manubrium and the head (Fig. 1D and Tables S1 and S2).
Incus. Neandertals and AMHs form nonoverlapping clusters in
3D shape space and do not overlap with African apes (Fig. 1B).
Mean shapes of all groups differ significantly (P < 0.01). Aver-
age shape distance between AMHs and Neandertals (0.128) is

slightly smaller than that between AMH and Pan (0.136), AMH
and G. gorilla (0.136), and between Pan and G. gorilla (0.135).
Mean shape of Pleistocene AMHs is closer to that of Neander-
tals (0.117) than mean shape of Holocene AMHs. Pleistocene
AMHs fall within the range of variation of Holocene AMHs.
Compared with AMHs, Neandertals possess incudes with a shorter
intercrural distance, a deeper and less symmetrical intercrural
curvature, a distinctively straight long process, and a distinctively
large articular facet (Fig. 1E and Tables S1 and S2).
Stapes.Neandertals separate from all other species, whereas AMHs
overlap with P. troglodytes (Fig. 1C). Mean shapes of African apes
do not differ significantly, but those of Neandertals and AMHs do
(P < 0.05). Average shape distance between Neandertals and
AMHs (0.152) is higher than that between AMHs and P. troglodytes
(0.063). Neandertals separate from AMHs by possessing stapedes
with more asymmetrical and long crura, an anterior–posteriorly
shorter but inferior–superiorly broader footplate, a distinct angle
between the footplate and the crura, and a head facing more an-
teriorly than in any other species investigated (Fig. 1F and Tables
S1 and S2).

Ancestral State Estimation of AMH and Neandertal Ossicle Shapes.
The Euclidean distances between the estimated ancestral scores
and the respective mean scores of AMHs and Neandertals in the
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Fig. 1. Principal component (PC) analysis of the
ossicle (semi)landmark sets in shape space. (A) Mal-
leus. (B) Incus. (C) Stapes. Variance explained by the
PCs is listed in Table S2. Mean shapes of the (D)
malleus, (E) incus, and (F) stapes of AMHs, Nean-
dertals, P. troglodytes, and G. gorilla. Scale has been
standardized by centroid size.
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space of the first three principal components show that the stapes
mean shape is more derived in Neandertals than in AMHs com-
pared with their last common ancestor (SI Text, Text S1, Fig. S1,
and Table S1). Likewise, malleus and incus shape has significantly
changed in both AMHs and Neandertals. Compared with the
inferred morphology of the last common ancestor of Homo and
Pan, the Neandertal mean shape is consistently more derived than
that in AMHs (Fig. S1).

Functionally Important Factors and Ratios of the Middle Ear. All
species differ significantly (P < 0.05) in the functional areas ratio
between the areas enclosed by the tympanic sulcus and the stapes
footplate and the functional lengths ratio (lever ratio) between
the malleus and the incus (Fig. 2), except when comparing the
functional lengths ratio (P = 0.425) of AMHs with that of Nean-
dertals. All species also differ significantly (P < 0.05) in the ITR,
an estimation of the gain in sound energy that is achieved by the
middle ear, except when comparing AMHs with Neandertals (P =
0.960) and P. troglodytes with G. gorilla (P = 0.480) (Table S3).

Linking Middle Ear Morphometrics to Ossicle Shape. Compared with
the African apes, AMHs and Neandertals share a smaller tym-
panic sulcus area and a larger middle ear length. Oval window area
is less variable across the entire sample, with significant differences
only between AMH and P. troglodytes and between G. gorilla and
P. troglodytes (Tables S3 and S4). The two human groups differ
significantly in the angles between the middle ear axis and the
planes of the tympanic sulcus and oval window (Tables S3 and
S4). Neandertals show distinctly smaller angles compared with
AMHs, particular when considering the angle of the plane of the
oval window and the middle ear axis. The differences in the
spatial relationship between the tympanic sulcus and oval window
are best visualized when looking at the oval window from a
perspective parallel to the plane of the tympanic sulcus (Fig. 3).
Here, the position of the oval window relative to the tympanic
sulcus is more eccentrically in Neandertals. Table 1 lists middle
ear parameters that explain significant amounts (P < 0.01) of
ossicle shape. Middle ear length has the highest influence on
the shape of the incus and the stapes, whereas malleus shape is
most strongly affected by the area enclosed by the tympanic
sulcus. Both angles, measured between the middle ear axis and
the planes of the tympanic sulcus and oval window, explain
a significant amount of the shape variance of each of the
three ossicles.

Discussion
Our results show striking differences between Neandertal and
AMH ossicles. Previously shown metric overlap of these groups
(24) likely reflects allometric scaling caused by similarities in
body size (34, 35). As in the skull (36, 37), the amount of shape
distance between AMHs and Neandertals is comparable with
(incus) or even exceeds (malleus and stapes) the distances be-
tween AMHs and African apes. Hence, just like the inner ear
(38, 39), the ossicles are valuable taxonomic discriminators of
late Pleistocene fossil human remains.
Despite distinct differences in ossicle morphology, functionally

relevant parameters of the ossicles and the surrounding middle
ear structures are largely similar between AMHs and Neander-
tals, particularly compared with the African apes (Fig. 2 and
Tables S3 and S4). At first, this similarity seems surprising, be-
cause ossicle shape differences between AMHs and Neandertals
affect the biomechanical characteristics of the ossicles when
analyzed individually. Particularly, the more open angle between
the manubrium and the head seen in the Neandertal malleus
causes the bones’ centers of mass to shift more superiorly,
thereby increasing its functional length. However, we also found
an increase in functional length of the incus that is of similar
magnitude. Consequently, the ITR as an estimate for the im-
pedance matching function by the middle ear is nearly identical
between AMHs and Neandertals.
ITRs are simple but straightforward estimates for understanding

the impedance matching function of the middle ear (33, 40). Al-
though ITRs do not result in an accurate prediction of auditory
sensitivity levels of the entire hearing range, they can be seen as an
approximation for the pressure gain achieved by the middle ear at
lower frequencies (33). An increase in such theoretical measures
has been shown to be correlated with an increase in experimentally
measured values when comparing a number of mammals (16). At
higher frequencies (>10 kHz), ITRs are less reliable, because the
rotational behavior of the ossicular chain becomes more complex
(41, 42). The impedance matching function of the middle ear is
informative about the sensitivity level but not the frequency range
of hearing, because the latter depends strongly on other parame-
ters and structures, like the cochlea (43, 44). In light of nearly
identical dimensions of the external acoustic meatus and cochlea
in AMHs and Neandertals (26–28), our data, thus, show no support
for differences in hearing capacities between AMHs and Nean-
dertals. This finding corroborates recent studies showing similar
auditory capacities between AMHs and fossils from Atapuerca

A B C

Fig. 2. Box–whiskers plots of the (A) functional areas ratio, (B) functional lengths ratio, and (C) ITR of AMHs, Neandertals, P. troglodytes, and G. gorilla.
Sample sizes for each parameter are as follows: (A) AMH n = 54, Neandertals n = 10, P. troglodytes n = 14, and G. gorilla n = 10; (B) AMH n = 27, Neandertals n = 5,
P. troglodytes n = 9, and G. gorilla n = 8; and (C) AMH n = 27, Neandertals n = 5, P. troglodytes n = 9, and G. gorilla n = 8.
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(45, 46), which are considered to be close to the root of the Nean-
dertal lineage (47). It has been shown that primate species living in
different habitats (e.g., rainforest canopy and open landscapes) differ
in auditory capacities, and it is likely that habitat acoustics influence
vocalization and audition (8–10). Our findings, thus, potentially point
to shared aspects of vocal communication in AMHs and Neandertals.
The temporal bone that houses the ear ossicles is known to dis-

criminate between AMHs and Neandertals and among hominids in
general (30, 39, 48). It has been shown that other ear structures, like
the bony labyrinth, covary with changes in the surrounding temporal
bone architecture (29). Our data show a number of ossicle shape
changes that are correlated to variation in tympanic cavity mor-
phology (Table 1). Different ossicle shapes might, therefore, indicate
a covariation with the temporal bone. Compared with the African
apes, AMHs and Neandertals share similar-sized areas enclosed by
the tympanic sulcus and an increase in middle ear length. The ma-
jority of the ossicle shape aspects shared by AMHs and Nean-
dertals are affected by changes in these linear dimensions.

The distinct ossicles shapes of Neandertals and AMHs suggest
differences in their spatial relationship within the tympanic cavity
(24). Those ossicle traits discriminating Neandertals from AMHs
are related to variation in angular relationships between the tym-
panic sulcus, the oval window, and the axis of the middle ear (Table
1 and Tables S3 and S4). One of the most marked differences be-
tween Neandertals and AMHs concerns the orientation of the head
of the stapes relative to its footplate. This configuration is congruent
with the off-center position of the oval window relative to the
tympanic sulcus in Neandertals compared with AMHs shown in Fig.
3. Our results suggest that in these hominins structural requirements
of the tympanic cavity rather than functional differences drive the
evolutionary shape changes in ossicle morphology. A correlation to
other aspects of the surrounding morphology of the cranial base,
like the glenoid fossa, tympanic area, position and orientation of
the external auditory meatus, or orientation of the petrous pyr-
amid, therefore, seems likely (30, 39, 49). Changes in cranial base
morphology are thought to be associated with changes in relative
brain size (50, 51). Hence, distinct differences in middle ear
architecture of AMHs and Neandertals may well reflect brain
expansion that occurred separately in the two lineages (52, 53).
To interpret our findings, we estimated the ancestral shape of

the last common ancestor of AMHs and Neandertals using the
African apes as an outgroup and computed the Euclidean dis-
tances between the AMH and Neandertal mean shapes and their
estimated last common ancestor. Although the stapes seems more
derived in Neandertals, the polarity of malleus and incus shape
changes relative to the inferred morphology of the last common
ancestor of modern humans and Neandertals remains ambiguous.
However, estimation of the last common ancestor of AMHs and
Neandertals does not take into account the shape variation among
extinct hominins after the split from Pan, because only sparse and
fragmentary information exists for late Pliocene Australopithecus
africanus and early Pleistocene Paranthropus robustus. Findings from
these fossils are interpreted as “human-like” in malleus proportions
but “great ape-like” in incus and stapes dimensions (54–56). It is,
therefore, more reliable to compare AMHs and Neandertal mean

Table 1. Shape changes of the malleus, incus, and stapes associated with changes in the computed middle ear parameters and shape
variance explained by these middle ear parameters

Parameter Var, % Shape change of the ossicle when value of the parameter increases

Malleus
i) Angle TS plane–ME axis 14* Narrowing of angle between manubrium and head
ii) Angle OW plane–ME axis 11* Narrowing of angle between manubrium and head
iii) TS enclosed area 20* Increase in manubrium length
iv) OW enclosed area 3* Decrease in manubrium curvature
v) ME length 15* Increase in anterior–posterior flattening of head; increase in articular facet size; decrease in

lateral deflection of spatula
Incus

i) Angle TS plane–ME axis 15* Increase of distance between long and short processes; less deeply rounded intercrural curvature;
more superiorly oriented short process; more inferiorly oriented long process

ii) Angle OW plane–ME axis 11* Increase in distance between long and short processes; less deeply rounded intercrural curvature;
more superiorly oriented short but more inferiorly oriented long process

iii) TS enclosed area 12* Decrease in short process length
iv) OW enclosed area 5* Increase short and long process
v) ME length 21* Increase long process length; increase asymmetry of intercrural curvature; larger articular facet;

more superior oriented short crus
Stapes

i) Angle TS plane–ME axis 12* Decrease in stapes footplate size; longer crura; longer and more distinct head
ii) Angle OW plane–ME axis 10* Larger long axis of footplate
iii) TS enclosed area 11* Larger footplate; smaller head; overall broader stapes
iv) OW enclosed area 8* Larger footplate; smaller head; overall broader stapes
v) ME length 20* Smaller, more kidney-shaped footplate; distinct stapes head; less symmetry between crura

ME, middle ear; OW, oval window; TS, tympanic sulcus; Var, variance.
*Middle ear parameter explains a significant amount of the variance (P < 0.01).

Fig. 3. Surface reconstructions of the right ear region of (A) an AMH
(University of Leipzig Anatomy collection 58) and (B) a Neandertal (La
Chapelle-aux-Saints 1; original left ear mirror imaged) showing the orien-
tational/positional differences between the planes of the tympanic sulcus
(red landmarks) and oval window (blue landmarks). The perspective of this
view is parallel to the plane of the tympanic sulcus, and the long axis of the
oval window is oriented horizontally.
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shapes with the inferred last common ancestor of Homo and Pan.
Here, Neandertals are consistently more derived than AMHs. This
finding is concordant with genetic data that show that genes in-
volved in skeletal morphology have changed more than previously
thought in the line leading to Neandertals (57) and further adds to
the distinctiveness of this archaic human species.
In conclusion, there is no evidence for differences in the au-

ditory sensitivity level in the lower frequencies between AMHs
and Neandertals. The ossicles appear to show tight covariation
with the surrounding tympanic cavity. Distinctly different mor-
phologies, likely associated with convergent brain expansion,
result in similar functional properties of the middle ear of these
hominin species. These functionally equivalent solutions could
indicate selective pressures acting on the middle ear for con-
serving a similar auditory sensitivity inherited from the last
common ancestor of AMHs and Neandertals and may suggest
consistent aspects of vocal communication in the two species.
Our findings should also be the basis for future research on the
evolution of complex human spoken language.

Materials and Methods
Sample and Imaging. Tables S5 and S6 list specimens used in this study and
provide information about morphological structures available for analysis.
Table S7 summarizes the state of preservation of ossicles and surrounding
middle ear structures in the fossil specimens. The complete fossil sample
includes 16 Neandertals and 4 Pleistocene AMHs. The comparative extant
sample comprises 81 mallei, 78 incudes, 37 stapedes, and 78 temporal bones,
including the tympanic sulcus and oval window from AMH, P. troglodytes, Pan
paniscus, Gorilla beringei, and G. gorilla. CT images of specimens housed in the
American Museum of Natural History were provided by Rolf M. Quam,
Binghamton University, Binghamton, NY. CT images of fossil specimens
housed at the Muséum National d’Histoire Naturelle were scanned at
AST-RX (Accès Scientifique à la Tomographie à Rayons X). All other
specimens were scanned with the BIR ACTIS 225/300 or the Skyscan 1173
housed at the Max Planck Institute for Evolutionary Anthropology in
Leipzig. Whenever possible, middle ear structures from the right side of
the skull were analyzed. When necessary, left ones were mirrored. Avizo
7.1 (Visualization Science Group) was used to create 3D surface models
of the ossicles and the temporal bone and place landmarks. In the case
of isolated ossicles and temporal bones free of sediment, the Isosurface
module was used using a single threshold value. Tympanic sulci and
oval windows of sediment-filled temporals as well as ossicles scanned
inside the temporal bone were isolated and visualized using the
Segmentation Editor.

Ossicle Landmarks and Shape Analysis. Landmark coordinates were analyzed
using Mathematica 8 (Wolfram Research, Inc.), with software routines de-
veloped by PG. The measurement protocol for ossicles is described in detail in
ref. 18 and also summarized in SI Text, Text S2.

Measurement Protocol and Computation of Middle Ear Parameters. Using
surface models of the temporal bone, ∼25 landmarks were placed along
the tympanic sulcus starting at the level of the anterior tympanic spine
(slightly laterally from this point) and going in a clockwise direction when
seen from medial. No landmarks were placed in the area of the tympanic
notch. Along the inwardly projecting edge of the oval window, ∼15
landmarks were digitized starting from its most posterior oriented pro-
trusion and going in a clockwise direction when seen from lateral. From
these landmark sets, the following parameters were computed: maximal
areas enclosed by the tympanic sulcus, the oval window, and the stapes
footplate; centers of maximal areas enclosed by the tympanic sulcus and
the oval window; the distance between these centers (e.g., middle ear
length) and the axis running through these centers (e.g., middle ear axis);
and angles between tympanic sulcus and oval window planes, with the
middle ear axis. Detailed formulas for these computations are provided
within SI Text, Text S3. It is noted that the maximal area enclosed by the
tympanic sulcus is not equal to the functional surface area of the tym-
panic membrane for reasons outlined in SI Text, Text S3. However, as
detailed in SI Text, Text S3, we show that the maximal area enclosed by
the tympanic sulcus provides an estimate for the functional area of the
tympanic membrane.

To increase the sample of temporal bones, infant and juvenile (erupted
M1) specimens were included. Because ontogenetic erection of the tympanic

ring ends at 4–5 y in AMHs (58), values for these specimens were compared
with those of adults. No difference was found for the angle between the
tympanic sulcus plane and the middle ear axis (AMHs, P = 0.522; Neander-
tals, P = 0.762) and between the oval window plane and the middle ear axis
(AMHs, P = 0.681; Neandertals, P = 0.143).

To assess whether the area enclosed by the oval window can be used to
assess stapes footplate area, the ratio between these two parameters was
calculated in AMH, Neandertals, P. troglodytes, and G. gorilla. On average,
the stapes footplate area was found to represent 90% (±5.2%) of the area
enclosed by the oval window (SI Text, Text S4)—confirming what is found in
the literature (54). This value was then used to estimate stapes footplate
area from oval window area.

Functional Parameters. The functional areas ratio RΛ was computed based on
the work in ref. 31:

RΛ =
ΛTS

ΛST
,

where ΛTS is the area enclosed by the tympanic sulcus, and ΛST is the area
enclosed by the stapes footplate outline.

The functional lengths ratio RFL was computed based on the work in
ref. 11:

RFL =
FLM
FLI

,

where FLM is the length from the malleus’ center of mass (CoM) to the tip of
the manubrium, and FLI is the length from the incus’ CoM to the tip of the
long processus.

CoM determination was done by transforming surface mesh models into
volumetric models and averaging coordinates of individual volume ele-
ments (59). Computation was done in MATLAB (The MathWorks, Inc.) using
the implementation of Aitkenhead (www.mathworks.com/matlabcentral/
fileexchange/27390-mesh-voxelisation).

Comparing estimated middle ear impedance function of fossil Nean-
dertals with extant species was done using a simple ideal transformer
ratio (ITR) (31, 33):

ITR=RΛ ·RFL.

Statistics. Permutation tests based on Procrustes distance between group
means were used to test statistical significance of mean shape differences
between groups (60). To this end, we compared the Procrustes distance
between two group means, with average differences computed after ran-
domly reshuffling group affiliations 10,000 times (61). To assess the in-
fluence of the morphology of the tympanic cavity on ossicle shape, we
performed a multivariate regression of the Procrustes shape coordinates
on each of the middle ear parameters that we have computed. Statistical
significance of these correlations was tested using a permutation test
based on the explained variance of the regression. Mann–Whitney–
Wilcoxon tests were used in R, version 3.1.0 (The R Foundation for
Statistical Computing) to assess statistical significance of interspecific
differences in tympanic cavity parameters and functional ratios, onto-
genetic differences in middle ear angles, and differences between stapes
footplate and oval window areas (SI Text, Text S4 and Table S3). Dataset
S1 lists the values of the morphological and functional parameters
measured in our sample.

Ancestral State Estimations. To estimate ancestral coordinates along the
first three principal components describing malleus, incus, and stapes
shape variation, for the successive nodes of the African hominid tree, we
applied the Phylogenetic Comparative Method and particularly, the
models in refs. 62–64. For AMHs and Neandertals, the mean principal
component scores weighted by fossil age were used. Comparison of the
Euclidean distance in the shape space of the first three principal com-
ponents makes it possible to compare how each group differs from the
estimated ancestral state. A detailed description of the process is pro-
vided in SI Text, Text S5.
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