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ABSTRACT 

Fully nonlinear numerical interaction of a transient wave with a three dimensional structure has 

been analysed based on a higher-order boundary element method (BEM). The BEM mesh on the 

free surface is generated through a combination of the structured and unstructured meshes. Through 

some auxiliary functions, the mutual dependence of fluid/structure motions is decoupled, which 

allows the body acceleration to be obtained without the knowledge of the pressure distribution. The 

solitary wave is used as the case study for the transient wave. It is obtained by the third order theory 

and the fully nonlinear theory. The accuracy of the present numerical model is verified through the 

steady propagation of a solitary wave and comparison with the published results for solitary wave 

interaction with a vertical wall. Simulations are then made to study solitary wave interaction with a 

truncated cylinder. Numerical results are provided for motions, forces and run-ups on the cylinder 

and comparison between results for the fixed cylinder and the freely floating cylinder is also made. 

 

Keywords: Solitary wave; Transient wave-structure interaction; Fully nonlinear theory; 

Higher-order boundary element method 

1. Introduction 

For an offshore platform installed in the sea, it will encounter a variety of ocean waves. A good 

understanding of the mechanism of wave interaction with a structure is of vital importance for the 

safety of the personnel and the platform, the protection of the environment and investment. When 

the wave is small, which means that its amplitude is small relative to its length and the typical 
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dimension of the structure, the problem can be linearized in the simulation. In such a case, linear 

superposition can be used. An incoming wave can be decomposed into a various components. When 

the interactions of the structure with some typical wave components have been established, their 

combinations can then be used for a variety of waves. However, in large waves which in fact pose 

the major threat to the operation of the platform, the linear theory is no longer valid and 

superposition is no longer applicable. In such a case, each wave has to be considered separately.    

There has been extensive work on a structure in nonlinear periodic waves, in particular the Stokes 

waves. Typical work includes Ferrant [1, 2], Ferrant et al. [3], Ducrozet et al. [4], Zhou et al. [5] and 

Zhou & Wu [6], where the total wave elevation and the total velocity potential are separated into 

two parts, based on the incoming wave from infinity and the disturbed potential by the body. The 

other type of work on the nonlinear problems in simulation is to follow the practice in the 

experiment in a physical tank. Wave is generated on one side while an artificial beach is installed on 

the other side. Typical work includes those by Ma et al. [7] , Wu & Hu [8] , Wang & Wu [9] and Ma 

& Yan [10] using the finite element method (FEM), and those by Liu et al. [11], Bai & Eatock 

Taylor [12], Bai et al. [13], Yan & Liu [14] based on the boundary element method (BEM).  

The research on the nonlinear periodic waves has greatly improved our understanding of their 

interactions with a platform. A particular example is that the natural frequencies of tension-leg 

platform (TLP) and gravity-based platform (GBS) constructed from vertical cylinders are well 

above the dominant frequency of the wave. Although TLP and GBS with this kind of design avoid 

the linear resonance, resonance may be excited by higher order nonlinear force [6]. This can have 

serious implication to springing which usually refers to the resonant response of a platform in the 

stochastic sea state, when the stochastic properties of the motion have become steady. It is highly 

relevant to the fatigue analysis of the structure. A platform with such a design may also experience 

ringing, which is a transient response dominated by high frequency components. Ringing is more 

likely to be excited by a transient wave with a large peak or few peaks. It can last for a while even 

when the wave has well passed the structure [15-17].  

The present work aims to shed some lights on how a nonlinear transient wave will interact with a 

floating structure. We choose the interaction between the solitary wave and a freely floating vertical 

cylinder as the example. The work can be readily extended to other types of transient waves and 

some realistic offshore structures [6]. There has been extensive research on propagation of the 
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solitary wave, based on KdV equations with first order theory [18], second-order theory [19] and 

third order theory [20], as well as the fully nonlinear theory [21, 22]. There has also been extensive 

work on the reflection of a solitary wave by a vertical wall, which can be seen as a special case of 

solidary wave interaction with a structure. Most of them are carried out in the two dimensional. 

Maxworthy [23] and Chen & Yeh [24] conducted experiments on it. Cooker et al. [25], Craig et al. 

[26] and Chambarel et al. [27] used BEM to solve the fully nonlinear equations, where the incoming 

wave is given by the fully nonlinear theory [21]. Su & Mirie [28] carried out a perturbation analysis 

of two colliding solitary wave to the third order of accuracy. For the case of a fixed body, Sun et al. 

[29] used the first order solitary wave as the incident wave and studied its behaviour when passing a 

horizontal rectangular cylinder through the fully nonlinear simulation based on the FEM in two 

dimensional domains. For the three dimensional problems, Yates & Wang [30] reported an 

experimental study on solitary waves scattered by a vertical cylinder. Mo et al. [31] employed the 

Euler equations to calculate the non-breaking solitary wave forces on slender piles. The governing 

equations were solved by the Finite Volume Method (FVM) and the free surface was tracked by the 

Volume of Fluid (VOF) method. Zhao et al. [32] carried out numerical simulations of the solitary 

wave scattered by a circular cylinder group based on the generalized Bousinesq equations together 

the FEM. Zhong & Wang [33, 34] used the FEM to investigate the problem of solitary wave 

interaction with cylindrical structures. Cao & Wan [35] took into account the viscosity of the fluid 

and used the Reynolds-Average Navier-Stokes (RANS) model. The first order solitary wave was 

used as the incoming wave for the above simulations apart from that by Mo et al. [31], where the 

second order solitary wave was adopted. Isaacson [36] considered the case of a free floating 

cylinder and the first order solitary wave was used as the incident wave. However only vertical 

motion was considered and limited data were provided.  

In the above work, the cylinder is fixed apart from that in Isaacson [36]. The present work aims 

to provide new some insight into this type of interaction based on the fully nonlinear solitary wave 

and with extensive results. An initially vertical cylinder is placed in the wave and it will be free to 

respond to wave excitation and be set into motion which will further lead to wave radiation. The 

numerical model for this complete wave/body interaction process is based on a time-domain 

higher-order boundary element method [5]. The 4th-order Runge-kutta method is used for the time 

step marching on the free surface in the Lagrangian framework. By means of the auxiliary function 
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method [37], the fully nonlinear mutual dependence of fluid flow and structure motions is resolved. 

The accuracy of the present numerical model is verified by comparing wave propagation of a 

solitary wave with the fully nonlinear solution from Clamond & Dutykh [22]. Further comparison is 

made with the third order analytical solution and the published numerical results for the reflection 

of a solitary wave. Simulations are then made for solitary wave interaction with a truncated cylinder. 

The results are provided for motions, run-ups and forces on the cylinder. 

2. Mathematical model and numerical procedure  

 

Fig. 1. Sketch of coordinate systems and computation domain 

 

The problem of wave interaction with a vertical cylinder in water of depth d is sketched in Fig. 1. 

Two right-handed Cartesian coordinate systems are defined. One is the space-fixed system oxyz 

with the oxy plane on the undisturbed free surface and the z-axis pointing upwards. The other is a 

body-fixed system o'x'y'z' with its origin o' placed at the centre of mass of the body. When the body 

is at its equilibrium position, these two sets of coordinate systems are parallel to each other. The 

centre of mass is located initially at Xc0 in the space-fixed coordinate system, and Xc(=Xc0+) 

subsequently. Here =(1, 2, 3) is introduced to denote the translational displacements of the mass 

centre in the x, y and z directions respectively. The rotation of the body is defined through the usual 

Euler angles =(, , )=(4, 5, 6), to illustrate the displacements in roll, pitch and yaw, the terms 

commonly used in the naval architecture.  

Based on the assumption that the fluid is ideal and incompressible, and flow is irrotational, the 

velocity potential (x, y, z, t) can be introduced, which satisfies the Laplace equation in the fluid 
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2 0                                      (1) 

It is subject to various conditions on the instantaneous boundary S of the fluid domain, which 

includes the free surface SF, the body surface SB, the side surface SC away from the body in the y 

direction, the seabed surface SD as well as the left and right side surface SR away from the body in 

the x direction. At SC, SD and SR, the impermeable condition is given, that is /n=0. On the free 

surface SF, the fully nonlinear kinematic and dynamic boundary conditions can be given in the 

following Lagrangian form  

D

Dt
 

X
                                     (2) 

D 1

D 2
g

t


                                     (3) 

where g represents the acceleration due to gravity, X=(x, y, z) denotes the position vector of a fluid 

particle on the free surface,  is the elevation of water surface measured from its mean level, 

D

Dt t


  


u  is the total derivative with u being the velocity of the fluid particle. The boundary 

condition on the body surface SB is 

n


 


V n                                   (4) 

where V is the velocity of the body surface, n=(nx, ny, nz) is the normal of the surface pointing out 

of the fluid domain, as shown in Fig. 1. The body surface velocity can be expanded as 

b  V U r                                (5) 

where rb=X' is the position vector in the body-fixed coordinate system, U=d/dt=(U1, U2, U3) is the 

translational velocity of the centre of mass, =(U4, U5, U6) is the rotational velocity, which can be 

linked to the temporal derivative of the Euler angles [38] . 

The incoming wave considered here is the two dimensional solitary wave. Its lowest order is the 

solution of KdV equation, while the third order solution can be given as [20]  
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where =H/d, with H being the wave height,  0sech ( )S x ct x   and  0tanh ( )T x ct x   . 

Other parameters are defined as  

2 31 3 3
/ 1

2 20 56
c gd      

                           
(9) 

23 5 71
(1 )

4 8 128
     

                              
(10) 

where c is the phase velocity of the wave. The fully nonlinear solution of the solitary wave can be 

obtained from Clamond & Dutykh [22].   

The solution of the solitary wave is used at far upstream of the body as the boundary condition, 

where the disturbed potential can be assumed to have not arrived or have been absorbed by the 

numerical damping. To specify the initial condition, the cylinder is assumed to put into the wave 

suddenly and the potential on the free surface is assumed to be equal to the incident potential which 

can be obtained from integrating the velocity of the solitary wave solution along the free surface. 

We can start from a point at x≪x0, where the incident potential is almost zero. Let l be the length 

along the free surface elevation in the x-z plane, we then have  

0
( )d

l

x zu w s                                 
(11) 

at t=0 on the free surface. =(x , z ) in the equation is the unit tangent vector the surface and can be 

obtained from  

2

1

1
x

x







；
21

x
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x








                           

(12) 

The governing Laplace equation in the fluid domain can be converted into an integral equation 

though the Green function G 

( , ) ( )
( ) ( ) ( ) ( , ) d

S

G
G s

n n


  

  
    


p q q
p p q p q                    (13) 

where p=(px, py, pz) and q=(qx, qy, qz) are source and field points, respectively, (p) is the ratio of 

the solid angle to 4. The whole boundary S includes the free surface SF, the body surface SB, the 
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seabed surface SD, the side surface SC as well as the boundary at far upstream and downstream SR. 

At SC and SR, we specify the normal derivative of the potential /n equal to zero, as they are 

taken sufficiently far away. For cases in which the computation domain is symmetric about the y=0 

plane, and the seabed is horizontal, the potential due to a simple Rankine source and its image with 

respect to the symmetry plane (y=0) and the seabed (z=-d) can be chosen as the Green function, or   

4

1

1 1
( , )

4 i i

G
R 

  p q                            (14) 
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                (15) 

This removes SD and SC from Eq. (13) and the integral is performed only over the rest of surfaces 

with y>0.  

The higher-order boundary element method is used to solve the boundary integral equation in 

Eq.(13) at each time step. The surface is discretized using the quadratic isoparametric elements. 

Through the shape functions hk(,), k=1,…K, in the local coordinate system (,), one can write the 

position coordinates, the velocity potential and its normal derivative within an element in terms of 

their nodal values, in the following forms respectively: 

1 1 1

( , ) ( , ) ,   ( , ) ( , ) ,   ( , )
K K K

k k k k k

k k k k

h h h
n n

 
           

  

  
    

  
  X X          (16) 

where K is the total number of nodes of the element, and is equal to 8 and 6 for quadrilateral and 

triangular elements respectively. 

The integral equation then becomes the following form: 
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where J(,) represents the Jacobian due to the transformation from the global system to the local 

one. Ne1 and Ne2 in the equation are the number of the discretized elements on the free surface SF 

and solid surfaces including SB, SC and SR. The above integrals are calculated numerically using the 

Gauss-Legendre integration method with 16 points for quadrilateral element and 4 points for 

triangular element if pq. When p=q, point q is then linked to the nodal points of the element and 

the cell is subdivided. A polar coordinate transformation [36], which removes the singularity, is then 

employed to evaluate the integral within each sub element. The final matrix equation is obtained by 

imposing Eq. (17) at all the nodal points   

[ ] [ ]A Bx                                 (18) 

in which [X] includes the unknown normal velocities on the free surface and potentials on the solid 

surfaces, [A] is the influence coefficient matrix and [B] is a column obtained from the known terms 

of Eq. (18).  

After solving the boundary value problem and obtaining the normal derivative of the velocity 

potential on the free surface, the free surface boundary condition in Eqs. (2) and (3) are used to 

advance X and  in time. The three velocity components in the global system can be obtained from 

1

        

        

        x y z

x x y z

x y z
y

n n n
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  
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
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 




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  
        

    
          
     

                                 

   (19) 

where /   and /    can be obtained from direct differentiation of Eq. (16) within each 

element. At a node shared by a number of elements, /   and /    at the node is obtained 

from the average of the results from these elements. The fourth order Runge-Kutta method [40] is 

used for time stepping in Eqs.(2) and (3). Therefore the boundary value problem is resolved at mini 
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steps within each t.  

The mesh on the free surface is generated based on the software Gambit at the beginning of the 

computation. In the Lagrangian form of the free surface boundary condition, the nodes of elements 

move both horizontally and vertically. It is possible that elements become distorted as time 

progresses. When the overall fluid boundary does not change significantly, mesh rearrangement on 

the free surface is implemented by adopting the spring analogy method to obtain the horizontal 

coordinates of new nodes on the free surface. Those nodes on the intersections with the body 

surface and the boundary are treated separately. Interpolation is then used to update the vertical 

coordinates as well as the potential at each new node. The details can be found in [5]. 

3. Hydrodynamic forces and body motions  

The equation of motions for a rigid body can be written as [38]   

h e[ ]M


 U F F                                 (20)
 

h e[ ] [ ]I I


   N N                              (21) 

where U and  are defined after Eq.(5), and 


U =[a1, a2, a3]
T and 



 =[a4, a5, a6]
T indicate the 

translational acceleration and the angular acceleration, respectively. [M] and [I] in the equations are 

mass and rotational inertia matrixes, and Fe =[f e1, f e2, f e3]
T and Ne=[f e4, f e5, f e6]

T are the external 

force and moment. As the rotational centre is at the centre of the body mass, there is no coupling 

between translational and rotational motions on the left hand sides of Eqs. (13) and (14). However 

the coupling does exist implicitly on the right hand sides. The hydrodynamic force Fh=(f1, f2, f3) and 

moment Nh=(f4, f5, f6) on the body can be obtained by integrating the pressure over its wetted 

surface  

B

21
( ) d     

2
i i

S

f gz n s
t


 


    

                       (22) 

where  is the fluid density, (n1, n2, n3)=n, and (n4, n5, n6)=rb×n. If the incoming wave is only in the 

x direction and the body is symmetric about the x-z plane, [ ] I  =0, =0,=0. 

  An effective method for dealing with the temporal derivative in Eq. (22) is that proposed by Wu 

& Eatock Taylor [37]. In this approach, some auxiliary functions i (i=1, …, 6) are introduced. 

These functions satisfy the Laplace equation in the fluid domain. They are zero on the free surface 

and their normal derivatives i/n=ni on the body surface and are zero on the other rigid 

boundaries. Through the use of these functions, the equation of motion can be written as [37]  

6

, , 33 ,3 e

1

( )i j i j j i i i

j

m c a Q m g f


                          (23)
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where  

B

, = di j i j

S

c n s 
                            

(24) 
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
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
  







U r n U r U n  

         (25) 

where mi,j, mi+3, j+3, i, j=1, 2, 3 in Eq.(23) correspond respectively to Mij of [M] in Eq.(20) and Iij of 

[I] in equation (21) and i,j=1(i=j) and i,j=0(ij). In this way the acceleration of the body can be 

obtained directly once the potential has been found without the knowledge of the pressure. By using 

these auxiliary functions, the nonlinear fluid-structure interaction problem is decoupled, and can be 

solved more easily.   

4. Numerical results 

We shall first verify our numerical model and calculation procedure through convergence study 

and comparison. In particular, when the initial solitary wave is given from the fully nonlinear theory 

[22], an accurate numerical solution should maintain the shape of the solitary wave as it propagates 

forward. This can be also used to verify the present procedure. After this, the reflection by a wall 

will be considered as a special case of solitary wave interaction with a fixed body and will be used 

for further comparison and verification. This is followed by solitary wave interaction with a fixed 

and vertical cylinder. Finally, its interaction with a freely floating cylinder will be considered. The 

water depth d, acceleration due to gravity g and fluid density  are used for nondimensionalisation. 

It means that the velocity is nondimensionalised by (gd)1/2, time by (d/g)1/2 and pressure by gd. 

=t/(d/g)1/2 is introduced to represent the nondimensional time. 

4.1 Propagation of fully nonlinear solitary wave and its interaction with a wall  

The propagation of a single solitary wave is considered first for convergence study and 

comparison. The fully nonlinear solution by Clamond & Dutykh [22] is used as the initial condition. 

The total length of the computational domain is taken as L=35. As the problem is in fact 2D in such 

a case, or it is independent of y, the computational domain is taken between y=0 and y= W=0.4. The 

initial wave crest is located at the origin of the space fixed coordinate system. The distance between 

the left inlet boundary and the origin of the coordinate system is Lleft=15, and that between the right 
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outlet boundary and the origin is Lright=20. 

The wave of height =0.5 is considered. Two different meshes are chosen for convergence study. 

In Mesh a, the element size is x=y=0.4 on the free surface. In the vertical direction of boundaries 

away from the body, three elements are specified and nodes are distributed uniformly. The element 

size of Mesh b is twice of that of Mesh a on the free surface and the solid boundary surface. The 

time step is selected as =0.04 in both cases. Fig. 2 shows wave profiles at different times. It can 

be seen that the curves in Fig. 2 from two meshes are graphically identical as the wave propagates 

forwards. This shows that Mesh a can provide mesh converged results. Further convergence test is 

made with respect to time step using =0.04 and =0.02 respectively for Mesh a. The results are 

given in Fig. 3, and excellent convergence has once again been achieved. The combination of Figs. 

2 and 3 shows that the results with Mesh a and time interval =0.04 are of enough accuracy.  
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Fig. 2. Convergence study with mesh for the solitary wave of =0.5 (=0.04) 
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Fig.3. Convergence study with time step for the solitary wave of =0.5 (Mesh a)  

 

After the convergence of the numerical results has been verified, we may investigate the effect of 
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approximation in the initial solitary wave on the numerical results as time increases. If we use the 

fully nonlinear solution of Clamond & Dutykh [22] as the initial condition in our present simulation, 

it can be expected the current results and those of Clamond & Dutykh [22] should be numerically 

identical as the wave propagates forwards, as they are both based on the fully nonlinear theory. The 

third order solution of Grimshaw [20] is an approximation. It is sufficiently accurate for small wave 

height but its accuracy decreases as the wave height increases. If the third order solution is used as 

the initial condition in the present simulation, the numerical results should be close to the third 

order solution subsequently when  is small. However the difference is expected to appear when  

increases. Two cases with =0.2 and 0.5 are calculated and results are given in Fig. 4. Fig. 4(a) 

shows that when =0.2 using the third order solution and that from Clamond & Dutykh [22] as the 

initial condition respectively at =0 does not make noticeable difference as  increases. However it 

does lead to evident difference when =0.5, as shown in Fig.4 (b). When the solution of Clamond & 

Dutykh [22] is used as the initial condition at =0, the present simulation gives graphically identical 

result to that of Clamond & Dutykh [22] as  increases. However, when the third order solution is 

used as the initial condition at =0, the wave height obtained from the present simulation decreases 

and the waveform becomes wider during propagation, and a dispersive tail can be observed behind 

the wave peak. This shows that accurate description of the incoming transient wave is highly 

important. When the solitary wave solution from the perturbation theory is used as the initial 

boundary conditions for the fully nonlinear analysis, as has been commonly adopted, some wave 

tails can appear due to numerical error. These tails can be eliminated when the solitary wave is 

obtained from the accurate fully nonlinear model. It is then further important to investigate whether 

the loss of its form will significantly affect the accuracy of the predicted loading on the structure.   
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Fig.4. A comparison of free surface profiles. Solid lines are present result using the solution of Clamond & 

Dutykh (2013) as the initial condition, dashed lines are present result using the third order solution as the initial 

condition and dash dotted lines are solutions of Clamond & Dutykh [22]: (a) =0.2 and (b) =0.5 

 

Wave reflection by a vertical wall has been extensively investigated and often used as a 

benchmark in the studies on wave-wave interactions. Here we consider the case with the solution of 

Clamond & Dutykh [22] as the initial condition for further comparison. A vertical wall is suddenly 

placed at x=15 at =0. After the convergence study with mesh, the element size is x=y=0.3 on the 

free surface. In the vertical direction of the wall, four uniform elements are specified. The time step 

is taken as =0.04. Free surface profiles for incoming wave of height =0.2 and 0.5 are given in 

Figs. 5(a), (b), respectively. The times =13.9 in Fig. 5(a) and =12.88 in Fig. 5(b) are the moments 

of maximum run-up at the wall. It can be seen from Fig. 5(a) that at =0.2 the maximum run-up is 

about twice the wave height. At large time =25, the wave has been reflected almost completely and 

it propagates in the opposite direction virtually in the original form. Fig. 5(b) shows that at =0.5 

the reflected wave form is not the same as the original one at =25. The peak is slightly lower and 

the there is a wave train behind the peak.   

The maximum run-up is presented in Fig. 6 against the wave height . The fully nonlinear 

numerical results from Cooker et al. [25] and Chambarel et al. [27] and the third order analytical 

expression derived by Su & Mire [29] are also included for comparison. It can be seen from the 

figure that the present results are in good agreement with the fully nonlinear numerical results of 

Cooker et al. [25] and Chambarel et al. [27]. Moreover, the third order analytical expression derived 

by Su & Mire [29] gives results which are in excellent agreement with those from the numerical 

simulation when <0.5. 
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Fig. 5. Free surface profiles at different times for wave interaction with a wall at x=15: (a) =0.2 and (b)=0.5  
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Fig.6. Maximum run-up at the wall as a function of incident wave height 

 

Let 0 be the time of maximum run-up at the wall. It has been observed in the numerical 

simulation that the wave crest with reflection effect lingers at the wall for a period of time r. Let a 

and d be the attachment time and the detachment time respectively, at which the wave crest reaches 

and leaves the wall. Hence, the wall residence time is r=d−a. The time 0 at maximum run-up and 

the wall residence time r as a function of the incident wave height are presented in Fig. 7(a) and 

7(b), respectively. Here, i in Fig. 7(a) is the time at which the peak of the undisturbed incident 

wave reaches the wall. The fully nonlinear numerical results from Cooker et al. [25] and Chambarel 
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et al. [27], and the third order analytical expression derived by Su & Mire [29] are also included for 

comparison. Numerical results for r are given only up to =0.6. As described by Chambarel et al. 

[27], collision could occur and a jet could be developed when  >0.6. We in fact ran the case with 

=0.65 and it was observed that  could be multivalued as time continues to progress and therefore 

the results are not included in the figure. It can be seen from the figure that the present results are in 

good agreement with the fully nonlinear one of Cooker et al. [25], while the third order solutions 

give the accurate results at much smaller wave height.  
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Fig.7. Time (0-i) at maximum run-up and wall residence time r as a function of incident wave height: (a) 0-i; 

(b) r 

 

4.2 Solitary wave interaction with a truncated vertical cylinder 

The interaction of solitary wave with a vertical bottom-mounted cylinder has been studied 

experimentally by Yates & Wang [30]. It has also been investigated numerically by Zhao et al. [32] 

and Cao & Wan [35] using the first order solitary wave solution as the incoming wave. Here the 

fully nonlinear solution for the solitary wave will be used as the incident wave. A truncated cylinder 

of radius R=1.5875 and draught B=0.5 is placed in the fluid with its axis coinciding with the z axis. 

The length of the computational domain is taken as L=70, while the half-width is W=15.0 to reduce 

the reflection of the radiated wave by the side boundary. The distance between the left inlet 

boundary and the axis of the cylinder is Lleft=30. The initial wave crest is placed at x=-15.0. Away 

from the body, the element size is taken as 0.4 in the horizontal direction. Twenty quadratic 

elements are used on the cylinder in the circumferential direction and four in the vertical direction. 

The time interval =0.04 is used.  
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The results for forces and moment acting on the cylinder for =0.2 and =0.5 from the numerical 

simulation with the fully nonlinear solution [22] as the incident solitary are shown in Figs 8 and 9, 

together with those from the incident wave obtained from the first order analytical solution [18] and 

the third order one [20]. It can be seen from Fig. 8 that there is hardly any obvious difference 

among the results at wave height =0.2. From Fig. 9 at =0.5, it can be seen that results from the 

first order and the third order solutions as the incoming wave underestimate the maximum forces 

and moment compared with those with the fully nonlinear solution as the incoming wave. Apart 

from the peak force however, all the curves are close to each other. This means that at =0.5 

although there is some noticeable change of the form of the solitary wave when the third order 

solution is used as the incident wave for the nonlinear solution (see Fig.4(b)), it seems that the loss 

of the form does not have major effect on the force apart from the peak value.    

Fig. 10 shows the time histories of free surface elevations around the cylinder for the incident 

wave height =0.5, together with the incident wave itself [22]. It can be seen from the figure that the 

maximum wave run-up occurs on the front side of the cylinder (=0o) and its peak is about twice 

the incident wave height. This is due to the blockage effect of the front of the body and the wave 

has to move up. Subsequently, because of the overshoot of the peak, the wave elevation falls down 

from a high point to below the mean water level. The blockage effect is reduced away from the 

front of the body and the overshoot of the wave elevation is smaller at =45 and it virtually 

disappears at =90 (on the side of the cylinder). It is interesting to see further towards the back 

side of the cylinder, at =135o, the peak of the total wave elevation is much smaller than that of the 

incident wave, while on the back side of the cylinder (=180o), the wave elevation nearly follows 

that of the incident wave apart from a delay to reach the peak.   

Fig. 11 shows the snapshots of free surface on the x-z plane at different times from =8 to =30, 

together with the incoming wave. The free surface around the cylinder circumference at different  

is also projected onto the y=0 plane to show its elevation around the cylinder. It can be seen that the 

peak of the total wave approaches the cylinder at a speed very close to that of the undisturbed 

incoming wave, although it lags slightly behind due to the blockage effect of the cylinder. Fig.11(c) 

shows that when the wave peak passes the body, the scattered wave becomes quite evident and it is 

in the usual oscillatory form. As the wave peak moves away from the body, the scattered wave also 

propagates away and the amplitude of its oscillation decreases. From Fig. 11(f), it can be seen that 
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the total wave has almost reverted back to its original shape of incident wave and the scattered wave 

is disappearing.  

To visualize the interaction process, the three dimensional free surface profiles are shown in Fig. 

12 from =8 to =30. It can be seen from Fig. 10(a) that the maximum wave run-up on the front 

side of the cylinder occurs near =12, which is consistent with what can be observed in Fig. 12(b). 

As the wave peak passes the cylinder, the ring wave propagating away from the cylinder is 

evidently visible. It can be also seen from Fig. 12(f) that the total wave system is returning to the 

shape of the incident wave, reflecting the well-known stability of the solitary wave. 
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Fig. 8. Comparison of forces and moment acting on the cylinder for =0.2 between numerical simulations with the 

fully nonlinear solution and the third order solution as the incoming wave: (a) horizontal force; (b) vertical force 

and (c) moment about y-axis 
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Fig. 9. Comparison of forces and moment acting on the cylinder for =0.5 between numerical simulations with the 

fully nonlinear solution and the third order solution as the incoming wave: (a) horizontal force; (b) Vertical force 

and (c) moment about y-axis 
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Fig. 10. Time history of free surface elevations around the cylinder for =0.5. =0o indicates the front side, and 

=180o is the back side of the cylinder 
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Fig.11. Free surface profile on the x-y plane for =0.5, the dashed line represents the incident wave 
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Fig. 12. Free surface evolution of solitary wave scattering by the cylinder for =0.5: (a) =8; (b) =12; (c) =14; 

(d) =16; (e) =20 and (f)=30 

 

Then, simulations will be made for the cylinder to be free to respond to the excitation to the 

solitary wave and be set into motion. As the incident wave considered here propagates only in the x 

direction and the body is symmetric about y=0, it will respond only with motions in three degrees of 

freedom, namely translations in x and z, as well as rotation about y. The mass of the body m is 

defined as its initial displacement to guarantee that it is stationary initially, i.e., m=3.9586. The 

centre of the mass is located on the axis of the cylinder at z=0.0 when it is in the equilibrium 

position. The rotation inertial about y' is Iy=2.5766. 

The translations in x and z, as well as rotation about y’ are shown in Fig. 13 for the incoming 

wave with =0.4. For the horizontal motion, a large drift motion can be seen due to the fact that 

there is no restoring force in this mode. In addition to the drift motion, a relatively small oscillatory 

motion is also visible in the x direction, which is mainly caused by the oscillatory ring wave. In the 

vertical direction, the body is first lifted up with a relatively large peak when the wave peak arrives. 

Due to the fact that there is a restoring force in the vertical direction as a result of the difference in 

the weight and buoyancy, the motion undergoes several cycles of oscillation. The oscillatory motion 

is most obvious in the rotation about y’. Although all the motions decrease with time as the solitary 

wave passes away, the motion in rotation is more persistent and its decay is at a much slower rate. 

This is because the disturbance of the rotation on the free surface is relatively small when the 

rotation centre is on the mean free surface. Thus the radiation damping coefficient in rotation about 
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y’ is relatively small compared with those in translations in the x and z directions, as has been 

noticed in [5]. As a result, the decay in rotation about y’ is much slower than that in the other two 

modes. 

The results for the forces and moment for the fixed cylinder and the moving cylinder are 

presented in Fig. 14. It can be seen that the loading in the case of moving body is smaller than that 

on the fixed body. That is because compared with the fixed body, the body response through motion 

will in general 'soften' the incoming wave excitation and as a result the wave loading is usually 

reduced. However, it should be noted that in some cases, the body motion and the incoming wave 

can be out of phase. The body can move towards the wave during its motion and the force for a 

freely floating cylinder can be bigger than that on the fixed cylinder. It can also be seen from Fig. 

14(c) that the moment approaches zero faster after the wave has passed the fixed cylinder, while it 

oscillates for a longer period of time for the moving body because of the oscillatory rotational 

motion in Fig. 13(c). 

The time histories of wave run-ups on the moving cylinder, which are effectively z’ coordinates 

of the waterline at given x’ and y’, are shown in Fig. 15, together with those for the 

fixed cylinder and the incident wave elevation on the waterline itself. We notice that the latter two 

are in effect the z coordinates at given x and y. We also notice that the direction of z axis is different 

from that of z’. The run-ups in z and z’ directions are unified in the sense that they are all relative 

displacements along the body surface. Fig.15 (a) shows that the peak of the wave run-up on the 

front side of the moving body is much smaller than that of a fixed cylinder. This is due to the drift 

motion of the moving body, which has softened the blockage effect of the fixed cylinder. As  

increases, the wave run-up becomes negative and reaches a trough at approximately =13. This is 

very much due to the vertical motion in Fig.13 (b), which has a peak around the same time. The 

oscillatory behaviour of the run-up is clearly linked to the oscillatory motions in the three degrees of 

freedom. The wave run-ups in other figures corresponding to different  follow a similar pattern. It 

is roughly a combination of the wave run-up around a fixed cylinder in Fig.10 and the body motion 

of a moving a cylinder in Fig.13.       
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Fig. 13. Time history of motions of the floating truncated cylinder for =0.4: (a) displacement in x direction; (b) 

displacement in z direction and (c) rotation displacement about y’  
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Fig. 14. Time history of wave forces and moment of the floating truncated cylinder for =0.4: (a) horizontal 
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force; (b) vertical force and (c) moment about y-axis 
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Fig. 15. Time history of free surface elevations around the cylinder for =0.4. =0o indicates the front side, and 

=180o is the back side of the cylinder 

5. Conclusions 

A higher-order boundary element method has been developed to investigate the interactions of 

nonlinear transient wave and a three dimensional body. Quadratic boundary element method is used 

for solving the integration equation which is converted from the governing Laplace equation, 
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together with the time-stepping procedure. The instantaneous wave elevations and potentials on the 

free surface are updated using the fourth-order Runge-Kutta method. The spring analogy method is 

used to redistribute the element nodes during the simulation to maintain the quality of the mesh 

without additional extensive computation requirement. The auxiliary function method is adopted to 

decouple the nonlinear mutual dependence of the fluid flow and structure motions, which makes it 

possible for the acceleration to be found before the detailed pressure distributions are known. The 

solitary wave, obtained from the third order theory and the fully nonlinear theory, is used as a case 

study for the transient wave. Extensive simulations have been made for the solitary wave and its 

interactions with a vertical cylinder, from which following conclusions can be made. 

(1) At a smaller amplitude =0.2, the third order theory provides accurate solution for the solitary 

wave. When the third order solution is used as the initial condition and incoming wave, the solitary 

wave will maintain its form when propagating forward. At =0.5, however, the same exercise shows 

that when the third solution is used as the incident wave, its peak will be noticeably reduced and a 

wave tail can be observed behind the peak. The numerical solution of the solitary wave no longer 

maintains its form. However, it is subsequently found that the loss of its form does not affect the 

force and moment on a fixed vertical cylinder significantly apart from the peak value.  

(2) When the solitary wave encounters a fixed cylinder, the peak of the wave run-up on the front 

side can be significantly higher than that of the incident wave, while it is about the same as the 

incident wave on the back side. For a moving cylinder, the behaviour of the wave run-up is almost 

due to a combination of that of a fixed cylinder and that caused by the motion the mean free surface 

relative to the moving body. 

(3) When the solitary wave passes a freely floating truncated cylinder, it has a large drift motion in 

the horizontal motion due to zero restoring force. There is a large peak in the vertical motion when 

the peak of the solitary wave arrives, due to the buoyancy effect of the long wave. The rotational 

motion about the horizontal axis perpendicular to the wave direction and along the undisturbed free 

surface is persistent and decays very slowly even after the solitary wave has well cleared off the 

body. This is principally due to the relatively low radiation damping in this mode. This shows that 

the behaviour of the body in such a wave is very different from that in the periodic wave. The 

observed persistent oscillation is very similar to the behaviour of ringing which is persistent even 

when the wave has moved away, as has been observed in experiment and in field [15-17]. Thus the 
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present work is an important step towards the analysis of a practical offshore platform in a variety 

of real transient waves. 
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