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ABSTRACT 

Defective immune homeostasis in the balance between FOXP3+ regulatory T cells 

(Tregs) and effector T cells is a likely contributing factor in the loss of self-tolerance 

observed in type 1 diabetes (T1D). Given the importance of interleukin-2 (IL-2) 

signaling in the generation and function of Tregs, observations that polymorphisms in 

genes in the IL-2 pathway associate with T1D and that some individuals with T1D 

exhibit reduced IL-2 signaling, indicate that impairment of this pathway may play a 

role in Treg dysfunction and the pathogenesis of T1D. Here, we have examined IL-2 

sensitivity in CD4+ T-cell subsets in 70 individuals with long-standing T1D allowing 

us to investigate the impact of low IL-2 sensitivity on Treg frequency and function. 

IL-2 responsiveness, measured by STAT5a phosphorylation, was found to be a very 

stable phenotype within individuals, but exhibited considerable inter- individual 

variation and was influenced by T1D-associated PTPN2 gene polymorphisms. Tregs 

from individuals with lower IL-2 signaling were reduced in frequency, were less able 

to maintain expression of FOXP3 under limiting concentrations of IL-2 and displayed 

reduced suppressor function. These results suggest that reduced IL-2 signaling may be 

used to identify patients with highest Treg dysfunction who may benefit most from 

IL-2 immunotherapy. 



INTRODUCTION 

Mechanisms leading to type 1 diabetes (T1D) depend on a complex combination of 

genetics (1-3) and environmental factors resulting in the breakdown of peripheral 

tolerance. We and others have reported that suppression of autologous conventional 

CD4+ T cells (Tconv) by CD4+CD25hiFOXP3+ regulatory T cells (Tregs) in 

individuals with newly-diagnosed T1D (NDT1D) and long-standing T1D (LST1D) is 

reduced compared to age-matched control subjects (4-8). Although the precise reason 

for reduced suppressive activity has not yet been fully elucidated, several intrinsic 

defects in Tregs have been observed in (at least a subgroup of) individuals with T1D, 

including decreased IL-2 signaling, increased Treg apoptosis and decreased stability 

of Treg FOXP3 expression (5, 6, 9, 10). However, it is highly significant that, to date, 

all studies examining functional aspects of Treg biology have observed a large degree 

of overlap between individuals with and without T1D, with only a subgroup of T1D 

patients displaying the immune phenotype associated with reduced Treg function. 

Furthermore, Hughson and colleagues reported in a longitudinal analysis of Treg 

functions during the first year of T1D diagnosis that not only was there great 

heterogeneity in patient immunophenotypes but also that the time of sampling and the 

state of progression of the disease may affect Treg function (11). 

 

IL-2 plays a key role in the generation and maintenance of peripheral fitness and 

function of Tregs in both mice and humans (12-16). Observations that polymorphisms 

in genes in the IL-2 signaling pathway associate with T1D (1-3) thus suggest that 

these genetic variants may alter T1D risk via effects on Treg numbers or function. In 

support of this, we and others have carried out candidate gene-to-phenotype studies 

and reported that multiple T1D-associated polymorphisms in the IL-2 receptor alpha 



chain (IL-2RA/CD25) and protein tyrosine phosphatase 2 (PTPN2) genes conferred 

decreased IL-2 signaling in CD4+CD25hi Tregs (9, 17-19). We further observed that 

the presence of the main T1D IL2RA susceptibility allele also associated with lower 

levels of FOXP3 expression in Tregs and a reduction in their ability to suppress 

proliferation of autologous Tconv (17). 

 

Owing to their constitutively high expression of CD25 (20, 21), Tregs display 

enhanced sensitivity to IL-2 compared to Tconv and require lower IL-2 levels to 

support their development, homeostasis and function (17, 21, 22). This key 

characteristic underlies the use of low-dose IL-2 therapy to enhance Treg frequency 

and function. IL-2 administration in mouse models of autoimmunity has shown 

therapeutic effects (23, 24), and has also shown clinical efficacy in humans with 

chronic graft-versus-host disease (GvHD) (25, 26), hepatitis C virus (HCV)-induced 

vasculitis (27) and alopecia areata (28). Therefore, there is a strong rationale for 

investigating IL-2 immunotherapy in human T1D (29-31). Nevertheless, the immune 

system of a T1D patient is relatively normal (32-35) compared to lymphopenic 

patients (e.g. chronic GvHD) or patients with other severe inflammatory conditions 

(e.g. HCV-induced vasculitis). Furthermore, a recent phase I trial of IL-2/Rapamycin 

in T1D was terminated because there was a partial decline in beta-cell function (36). 

The doses and frequency of IL-2 dosing may have been too high in this trial and 

inadvertent Tconv activation could have accelerated beta-cell damage. These 

considerations highlight an urgent need to determine dose and frequency of dosing of 

IL-2 in T1D (31), including identification of baseline characteristics of a patient’s 

immune system that could predict the level of response to IL-2. 

 



Despite the interest in boosting Treg function in T1D by IL-2 administration, detailed 

studies directly linking IL-2 signaling with T1D-associated Treg immune phenotypes 

are lacking. To address this, we examined IL-2 sensitivity in CD4+ T-cell subsets in 

70 individuals with LST1D and assessed the impact of low IL-2 sensitivity on Treg 

frequency and function. This study reveals extensive inter-individual variation in IL-2 

responsiveness in Tregs that was stable within an individual and influenced by T1D-

associated gene polymorphisms. In individuals with low IL-2 signaling, Tregs, 

especially of the antigen-experienced subset, were reduced in frequency. Furthermore, 

Tregs from these individuals were less able to maintain expression of FOXP3 under 

limiting concentrations of IL-2 and displayed reduced suppressor function. Our results 

indicate that stratification of trial participants by Treg frequency and IL-2 signaling 

capacity could be a useful strategy in the optimization of IL-2 therapy in T1D. 



RESEARCH DESIGN AND METHODS 

 

Subjects. 

Blood samples were obtained from 18 non-diabetic controls and 70 individuals with 

LST1D (>3 years post-diagnosis, <40 years of age) at two time points >3 months 

apart. Large blood samples from two donors were used as internal biological controls 

in batch analyses of IL-2 sensitivity. Peripheral blood mononuclear cells (PBMC) 

were isolated from heparinized blood samples by density gradient centrifugation 

(Lymphoprep; Axis-Shield PoC AS, Oslo, Norway) and either cryopreserved in fetal 

bovine serum (FBS; Gibco) with 10% dimethyl sulfoxide or used immediately for 

functional studies. In addition, fresh blood samples were obtained from age and sex-

matched adult LST1D (n=22), non-diabetic controls (n=20), individuals with NDT1D 

(n=17; <2 years post-diagnosis) and autoantibody-negative unaffected siblings (UAS; 

n=15). Details of study participants are shown in Supplementary table 1. Ethical 

approval for this study was granted by the local ethics committee and informed 

consent was obtained. 

 

Genotyping. 

SNPs in the genes PTPN2 (rs45450798 and rs478582) and IL2RA (rs12722495 and 

rs2104286) were genotyped using TaqMan 5´ nuclease assays (Applied Biosystems) 

according to the manufacturer’s protocol.  

 

Monoclonal antibodies.  

Antibodies used in this study are detailed in Supplementary table 2.  

 



Flow cytometric analysis for pSTAT5a. 

Phospho-STAT5a analyses for cryopreserved PBMC samples were carried out in a 

batch manner where each batch consisted of duplicate samples from eight individuals 

including six with LST1D and two biological controls (Supplementary Fig. 1). The 

assay was performed using a BD violet fluorescent cell barcoding kit (BD 

Biosciences). Briefly for the initial IL-2 sensitivity screen, cryopreserved PBMC 

samples were thawed and rested for 10 minutes at 37˚C in X-VIVO-15 media with 

1% human pooled AB+ sera (Sigma-aldrich, U.K.). PBMC were then stimulated with 

0.1, 0.25 or 10 IU/ml hIL-2 (Proleukin; Norvatis) for 30 minutes at 37˚C, fixed with 

BD Lyse/Fix buffer for 10 minutes, washed in PBS and permeabilized with pre-

chilled (-20˚C) BD Perm buffer III for 30 minutes on ice. Cells were spun and 

resuspended in pre-chilled 50% BD Perm buffer III (diluted with PBS) and incubated 

with the barcoding dye mixture at 4˚C for 30 minutes. After extensive washes with 

barcoding wash buffer, samples stimulated with the same IL-2 concentration were 

combined into a single FACS tube and stained with anti-CD4-FITC, anti-CD25-PE, 

anti-CD45RA-PerCP-Cy5.5 and anti-pSTAT5a-AlexaFluor647 for 1 hour in the dark 

at 20˚C. 

 

Analyses of pSTAT5a in cryopreserved PBMC from selected groups of high (n=12) 

and low (n=12) IL-2 responders were stimulated with 0.2, 0.4 or 10 IU/ml hIL-2 for 

30 minutes at 37˚C, barcoded and stained with anti-CD4-APC-eFluor780, anti-CD25-

PE, anti-CD45RA-PE-Cy7, anti-FOXP3-AlexaFluor488 and anti-pSTAT5a-

AlexaFluor647 using a combination of the BD violet fluorescent cell barcoding kit 

and BD Pharmingen Transcription Factor PhosphoPlus Buffer set (BD Biosciences, 

San Diego, CA, USA). Data acquisition was performed on a BD FACSCanto II (BD 



Biosciences). Flow cytometry data was analyzed using FlowJo Software (Tree Star 

Inc., Ashland, OR). Dataset per IL-2 concentration for each cell subset was 

normalized across batch using the data from the two biological controls as deta iled in 

Supplementary figure 1 to account for day-to-day variation. Phospho-STAT5a 

analyses for fresh whole blood samples were carried out as previously described (17). 

 

Isolation and analysis of cell populations for functional studies. 

Fresh PBMC were stained on ice with anti-CD4-qDot605, anti-CD14-AlexaFluor488, 

anti-CD19-Pacific Blue, anti-CD25-PE (M-A251) and anti-CD127-PerCP-Cy5.5. 

Single lymphocytes were identified based on forward and side scatter parameters and 

populations isolated for functional analyses using a BD FACS Aria II flow cytometer 

and FACSDiva software (BD Biosciences).  

 

Assessment of maintenance of FOXP3 expression in Tregs in cultured with IL-2. 

CD4+CD14-CD19-CD25hiCD127lo Tregs from fresh blood were stained with anti-

FOXP3-AlexaFluor647 and anti-Ki67-FITC immediately post-sort and after 48 h 

cultured with or without limiting concentrations (0.1 or 1 IU/ml) of hIL-2 using 

FOXP3/Transcription Factor staining buffer set (eBioscience).  

 

In vitro co-culture suppression assays. 

Suppression assays were performed in V-bottom 96-well plates using fresh PBMC by 

co-culturing 500 sorted CD4+CD25int-loCD127+ Tconv/well in the presence or absence 

of CD4+CD25hiCD127lo Tregs at various ratios with or without 1x103 CD19+CD4- B 

cells as a source of accessory cells in X-VIVO-15 media with 10% human sera. 

Samples were stimulated either with PHA (4 µg/ml; ALERE) (APC-dependent assay) 



or Human T-Activator anti-CD3/CD28 beads (Life Technologies) at a bead:Tconv 

ratio of 1:1 (APC-independent assay) and incubated at 37˚C, 5% CO2 for 6 days. 

Proliferation was assessed by the addition of 0.5 μCi/well [3H]thymidine 

(PerkinElmer, Waltham, MA) for the final 20 h of co-culture. All conditions were run 

in quintuplicate and proliferation readings (CPM) averaged. Samples with 

proliferation <3,000 CPM were excluded. In cultures containing stimulated Treg 

alone, in the absence of Tconv, proliferation was similar to the background of the 

assay (<500 CPM; mean=166). Percentage suppression was calculated as previously 

described (17). 

 

Statistical analysis. 

The normality of datasets was tested using the D’Agostino  and Pearson omnibus 

normality test and unpaired Student’s t test, ANOVA or Mann Whitney test was used 

as appropriate. Correlations were assessed using linear regression. One-tailed tests 

were performed if there was prior evidence of association otherwise values from two-

tailed test were reported (GraphPad Software, Inc., La Jolla, CA, U.S.A.). Case-

control matched data was analyzed using a bootstrap analysis 

(https://github.com/nicholasjcooper/misc/blob/master/YangBootStrap.R) accounting 

for a mixed design of pairs and trios, using the 'boot' package in R (www.r-

project.org). Sample size and power calculations were calculated using Stata 

(www.stata.com) and detailed in Supplementary figure 6). 

 

 

https://github.com/nicholasjcooper/misc/blob/master/YangBootStrap.R
http://www.r-project.org/
http://www.r-project.org/
http://www.stata.com/


RESULTS 

 

Assessing IL-2 responsiveness in individuals with LST1D. 

In order to assess responsiveness to IL-2, we measured phosphorylation of STAT5a in 

cryopreserved PBMC from 70 individuals with LST1D following brief in vitro 

exposure to IL-2 (Fig. 1). Barcoding (37) and normalization methods were used to 

reduce intra- and inter-staining variability of the IL-2 sensitivity assay 

(Supplementary figure 1). An example of pSTAT5a staining and the gating strategy 

used to identify CD4+ T-cell subsets is shown in Fig. 2. As fixation precluded the use 

of CD127 as a surface marker, Tregs were identified based on CD4 loCD25+ staining 

as previously described (17) (Fig. 2D). In addition, a more stringent definition was 

applied to identify Tregs by gating on the top 2% of CD25-staining CD4+ T cells 

(CD25hi Tregs) (5, 6, 17, 38). As previously observed, sensitivity to IL-2 in this assay 

was lowest for naïve Tconv (nTconv), with memory Tconv (mTconv), 

CD4loCD25+CD45RA+ Tregs, CD4loCD25+CD45RA- Tregs and CD25hi Tregs 

showing successively higher sensitivities (Fig. 2F), which correlated with their 

respective CD25 expression levels (17, 21). 

 

In order to investigate the stability of IL-2 responsiveness and identify individuals 

who show reproducibly high or low IL-2 responsiveness, we obtained two 

independent blood draws from each subject, separated by a minimum of three months. 

We observed considerable inter-donor variation in IL-2 responsiveness in all CD4+ T-

cell subsets (Fig. 3). Notably, we observed a strong correlation between the two blood 

draws in all CD4+ T-cell subsets (r2=0.34-0.87). Similarly, the frequency of T-cell 

subsets, including Tregs, was highly correlated between the two bleeds (r2=0.68-0.92; 



Supplementary Fig. 2). 

 

Associations of T1D-associated PTPN2 variants with IL-2 signaling. 

Long and colleagues have reported an association between a T1D-associated variant 

(rs1893217) in PTPN2 and reduced IL-2 signaling in CD4+ T cells in non-diabetic 

individuals (18). We observed a similar association in all Treg subsets between two 

independent PTPN2 risk alleles of SNPs rs45450798 (r2=1 with rs1893217) and 

rs478582 (r2=0.159 with rs45450798) and reduced IL-2 signaling in our cohort of 

individuals with T1D (P=4.4x10-3-0.02; Fig. 4). 

 

Relationship between IL-2 responsiveness and FOXP3+ Treg phenotype and 

frequency. 

Expression of FOXP3 is currently the most reliable marker to identify bona fide Tregs 

by flow cytometry. However to date co-staining of FOXP3 and pSTAT5a in 

cryopreserved PBMC has been problematic. We, therefore, employed novel staining 

reagents optimized for this purpose. Using these reagents, we were able to reliably 

identify and delineate three different populations of CD25+FOXP3+ T cells as 

described by Sakaguchi and colleagues (39): resting (rTreg, FOXP3+CD45RA+, Fr. I), 

activated (aTreg, FOXP3hiCD45RA-, Fr. II) and memory (mTreg, FOXP3+CD45RA-, 

Fr. III) Treg (Fig. 5A and B). To confirm the intrinsic differences in IL-2 signaling 

between individuals were maintained when this more definitive method for 

identifying Tregs was employed, we selected cryopreserved PBMC from subgroups 

of individuals with LST1D (n=24) with extremes of IL-2 signaling, identified based 

on IL-2 responses from their CD4loCD25+CD45RA- and CD25hi Tregs 

(Supplementary Fig. 3). We observed that low IL-2 responders maintained reduced 



number of pSTAT5a+ cells in total FOXP3+ Tregs compared to high IL-2 responders 

(P=3.6x10-5; Fig. 5C) with the greatest difference being observed in the aTreg subset 

(P=4x10-4-0.016; Fig. 5D-F). Kinetic analysis of IL-2 induced pSTAT5 induction in 

selected individuals demonstrated that the difference between high and low 

responders was maintained at several time points post stimulation (Supplementary 

Fig. 4A and B). No difference in IL-2 responsiveness was observed between the two 

groups at higher concentration of IL-2 (10 IU/ml), indicating that optimal/saturating 

IL-2 concentration could ‘recover’ deficient response observed in individuals with 

low IL-2 responsiveness (Supplementary Fig. 4C). Expression of CD25 was also 

reduced in all Treg subsets from low IL-2 responders, most notably in aTreg (P=1x10-

3, Supplementary Fig. 5). Furthermore, we observed a reduced frequency of FOXP3+ 

Tregs in individuals with low IL-2 responsiveness (P=1.8x10-3; Fig. 6A). The greatest 

difference in Treg frequency between the two subgroups of individuals with LST1D 

was observed in aTreg (P=5x10-4; Fig. 6B). A similar difference was observed in 

mTreg (P=0.011), but not in antigen-inexperienced rTreg (P=0.49) (Fig. 6C and D). 

 

 

Relationship between Treg fitness and IL-2 signaling. 

To examine the relationship between IL-2 sensitivity and Treg fitness (FOXP3 

maintenance and proliferation), we recalled the same subgroups of individuals with 

extremes of IL-2 signaling to examine fresh PBMC from a third blood draw. 

Consistent with the previous data in cryopreserved PBMC (Fig. 6), we observed a 

reduced frequency of Tregs in low IL-2 responders compared to high IL-2 responders 

(P=7.1x10-3-0.03; Fig. 7A and B). Tregs were more proliferative (5-16% Ki-67+) in 

vivo compared to Tconv (0.8-3% Ki-67+), in agreement with previous reports (40). 



However, no difference was found for the steady state proliferation of immediately 

post-sorted CD25hiCD127lo Tregs between high and low IL-2 responders (P=0.64; 

Fig. 7C and D). Previous studies have shown that defects in IL-2 signaling contribute 

to diminished maintenance of FOXP3 expression in Tregs in a subgroup of 

individuals with T1D (10). Here, we also observed that Tregs from high IL-2 

responders cultured with limiting concentration of IL-2 (1 IU/ml) were better at 

maintaining FOXP3 expression compared to low IL-2 responders (P=0.017; Fig. 7E). 

Furthermore, the level of FOXP3 maintenance was observed to be positively 

correlated with the level of IL-2 signaling in FOXP3+ Tregs (r2=0.22, P=0.04; Fig. 

7F). 

 

Relationship between IL-2 signaling and Treg suppressive function. 

To determine if in vitro Treg suppressive capacity differs between the two subgroups 

of individuals with extremes of IL-2 signaling, we used an in vitro co-culture 

suppression assay. We observed reduced levels of suppression of Tconv proliferation 

in low IL-2 responders compared to high IL-2 responders under both APC-dependent 

and - independent conditions (P=0.026 and 0.036, respectively; Fig. 7G). In cultures 

without Tregs, low IL-2 responders were observed to have increased Tconv 

proliferation compared to high IL-2 responders (P=0.079 and 0.027 for APC-

dependent and -independent assays, respectively; Fig. 7H).  

 

Comparison of IL-2 responsiveness between individuals with and without T1D. 

Given the extensive inter- individual variation observed in our LST1D cohort we 

wanted to test whether IL-2 responsiveness in CD4+CD25+ T cells from individuals 

with T1D was different to non-diabetic controls in the light of two previous studies (9, 



10). We compared IL-2 signaling in cryopreserved PBMC from 18 non-diabetic 

individuals recruited contemporaneously with the 70 individuals with LST1D. 

However, no difference in IL-2 sensitivity was observed in any CD4+ T-cell 

population between these two groups (P=0.05-0.45; Fig. 8A-D). In addition, we 

examined IL-2 sensitivity using fresh whole blood samples from 17 individuals with 

NDT1D and 22 with LST1D and compared these with 15 matched UAS and 20 non-

diabetic controls, respectively. Samples from individuals with T1D were run in 

parallel with a non-diabetic control in an attempt to minimize inter-day variation. 

However, despite the paired nature of the study design, and consistent with the studies 

with cryopreserved PBMC, we observed a similar distribution of IL-2 responsiveness 

in individuals with and without T1D with no significant difference in IL-2 

responsiveness observed between groups in any of the CD4+ T-cell subsets analyzed 

(P=0.13-0.73; Fig. 8E-G). 



DISCUSSION 

A major motivation for our research is to develop stratified or precision medicine for 

the treatment of T1D. This goal is based on detailed and reproducible knowledge of 

the mechanisms of disease and identification of accurately-measured phenotypes that 

not only measure the effects of potential immunotherapies but also might indicate at 

baseline (before drug administration) which patients might respond more or less than 

others. To this end, here we have established robust methods and procedures for 

measuring IL-2 signaling in T cells, including pSTAT5a measurement, in relation to 

Treg function. We discovered that Tregs from patients with low IL-2 responsiveness 

were less able to maintain the expression of FOXP3 under limiting concentrations of 

IL-2 and displayed reduced suppressor function with lower overall frequencies of 

Tregs in the circulation compared to individuals with higher IL-2 responsiveness. 

These results suggest that T1D patients with lower IL-2 responsiveness might benefit 

more, in terms of safely enhancing Treg function, from treatment with physiological, 

or ultra-low, doses of IL-2. 

 

Assessing cell phenotype and function using fresh blood sample poses several 

technical challenges, especially when large sample sizes are involved. Using fresh 

blood, only a relatively few samples can be collected and tested on the same day 

leading to unavoidable day-to-day variation inherent when measuring the levels of 

intracellular proteins such as phospho-STAT. Here, we opted to assess IL-2 

responsiveness in individuals with LST1D using cryopreserved PBMC from two 

independent blood draws. In order to reduce day-to-day variation, we carried out 

batch analyses and exploited barcoding (37) and normalization methods to minimize 

intra- and inter-assay variability. In accordance with the study by Long and colleagues 



(10), we demonstrated that IL-2 responsiveness is a stable phenotype of CD4+ T cells 

within an individual with highly correlated IL-2 signaling between the two blood 

draws. Extensive inter- individual variation in IL-2 responsiveness was observed not 

only in cohorts with T1D but also in non-diabetic controls. We and, more recently, Yu 

and colleagues (21) failed to replicate the finding by others that individuals with T1D 

have reduced IL-2 responsiveness compared to controls (9, 10). We observed that 

controls present a similar distribution of IL-2 responsiveness as compared to 

individuals with T1D with a gradient of response with some controls displaying 

reduced IL-2 signaling. However, we acknowledge that larger sample sizes are 

required to rigorously address what may be a subtle phenotype. The level of 

heterogeneity of this assay between studies precludes us from accurately estimating a 

combined effect size for the sensitivity to IL-2 signaling. Given the wide range of 

effect sizes we estimate that sample sizes exceeding 300 individuals would be needed 

to reveal differences of <5% in IL-2 signaling between cases and controls 

(Supplementary Fig. 6). It is not surprising that some controls also present reduced 

IL-2 responsiveness, particularly as the degree of IL-2 responsiveness is influenced 

by polymorphisms in several genes in the IL-2 signaling pathway, such as T1D-

associated variants in IL2RA and PTPN2, where non-diabetic individuals carrying the 

risk alleles were observed to have reduced IL-2 signaling in Tregs (17, 18). Here, in a 

cohort of individuals with LST1D, we replicated the association of T1D-associated 

PTPN2 variant(s) with IL-2 signaling that was initially observed in non-diabetic 

controls (18) further supporting the robustness of our sample quality control and 

methods.  

 

Definitive identification of bona fide Tregs by flow cytometry is problematic 



especially as activated CD4+ T cells share many phenotypic characteristics with 

Tregs. For the initial assessment of IL-2 sensitivity in cryopreserved PBMC samples 

from individuals with LST1D, Tregs were identified based on high levels of CD25 

expression, as previously described (5, 6, 17, 38). During the course of the study, we 

were able to robustly dual-stain for FOXP3 and pSTAT5a in cryopreserved PBMC to 

allow for more definitive gating of Tregs, thus enabling the confirmation of extremes 

of IL-2 signaling in FOXP3+ Tregs in selected individuals from the screening study.  

 

A study by Long and colleagues observed both a reduced IL-2 responsiveness in 

CD4+CD25+ T cells from individuals with T1D and a reduced ability to maintain the 

expression of FOXP3, although it did not show a direct association of these two 

phenotypes (10). In the present study we established a direct link between IL-2 

sensitivity and expression of FOXP3. One of the pleiotropic roles of IL-2 is its 

requirement for the maintenance of FOXP3 expression in Tregs (41) to sustain 

suppressive function since down-regulation of FOXP3 has been associated with a loss 

of suppressor function (42). Here we observed that Tregs from individuals with T1D 

with reduced IL-2 responsiveness indeed are inferior at suppressing proliferation by 

autologous Tconv compared to Tregs from individuals with high IL-2 responsiveness. 

Interestingly, in cultures without Tregs, proliferation of Tconv was increased in 

individuals with reduced IL-2 responsiveness upon T-cell receptor stimulation. We, 

therefore, cannot rule out that Tconv of low IL-2 responders may also have enhanced 

resistance to Treg suppression, a phenotype that we and others had previously 

observed in individuals with T1D (7, 43) or that cells in these individuals have an 

intrinsic proliferative advantage owing to deficient regulation. Recent results suggest 

that elevated production of IL-21 by Tconv, including T follicular helper cell, could 



be part of the intricate balance between Treg and Tconv activities (33, 34, 44, 45). 

 

Intriguingly, we consistently observed a reduced frequency of Tregs in individuals 

with reduced IL-2 responsiveness using both fresh and cryopreserved PBMC, due to a 

reduction in numbers of Tregs mainly of the antigen-experienced activated/memory 

phenotype. There was no difference between the in vivo steady state proliferation of 

Tregs in individuals with extremes of IL-2 responsiveness. Ghosh and colleagues 

observed a higher level of apoptosis in Tregs using fresh blood samples from 

individuals with T1D compared to control individuals, which may be partially 

mediated by IL-2 deprivation resulting in lower expression of anti-apoptotic genes (5, 

6). We therefore compared apoptosis in isolated Tregs cultured with low-dose IL-2 

and Treg expression of anti-apoptotic Bcl-2 in cryopreserved PBMC by flow 

cytometry in selected individuals with extremes of IL-2 responsiveness. However, we 

observed no significant difference between the two groups in any of these analyses 

(data not shown). The apparent disparity between these results and those obtained by 

Ghosh are likely due to methodological differences including use of fresh blood 

versus isolated/cultured or cryopreserved Tregs. Further studies are required to 

investigate the link between IL-2 responsiveness, Treg frequency and Treg survival. 

 

IL-2-dependent STAT5a phosphorylation requires over 10-fold lower concentrations 

of IL-2 in Tregs as compared to Tconv subsets due to expressing higher levels of IL-

2RA and common gamma chain and also, as recently observed, an increased activity 

of endogenous serine/threonine phosphatase 1/2A (17, 21). Well-tolerated ultra- low 

dose IL-2 has been shown to not only expand the frequency but also augment 

suppressor function of Tregs, albeit with significant inter-individual variation, in 



healthy individuals (46). Most recently, Yu et al. demonstrated consistent increase in 

expression of FOXP3 and CD25 in Tregs, but not mTconv, for all individuals with 

LST1D upon treatment with low-dose IL-2 (21). Interestingly, their study also 

showed heterogeneous IL-2-dependent gene expression profile in Tregs in healthy 

subjects suggesting differential regulation of IL-2-dependent genes in an individual 

might impact the outcome of low-dose IL-2 therapy. In most, if not all, of these 

aforementioned IL-2 immunotherapy studies, the ability to enhance frequency of 

Tregs in response to IL-2 treatment is heterogeneous between individuals (26, 29, 30). 

As observed in our study and by others, because of the heterogeneity of the responses 

observed in individuals with autoimmune diseases it may be advantageous to 

characterize IL-2 responsiveness and/or IL-2-dependent gene expression profile and 

stratify individuals to be targeted for low-dose IL-2 immunotherapy for T1D and 

other immune-related diseases. 
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FIGURE LEGENDS 

FIG. 1. Study design to assess IL-2 sensitivity, fitness and function of Tregs in 

individuals with LST1D. Cryopreserved PBMC were obtained from 70 individuals 

with LST1D from two independent blood draws over three months apart. IL-2 

sensitivity was assessed in these samples by measuring phosphorylation of STAT5a in 

response to various concentrations of IL-2. CD4+ Tconv and Tregs were distinguished 

based on the expression for CD25 and CD45RA. Subgroups of high (n=12) and low 

(n=12) IL-2 responders were then selected for further functional investigation based 

on the IL-2 responsiveness observed in Tregs. IL-2 sensitivity was assessed again in 

the selected groups of high and low IL-2 responders where cell populations were 

distinguished based on the expression of both FOXP3 and CD25 and CD45RA. These 

two subgroups of individuals were recalled for a third bleed to obtain fresh PBMC to 

assess fitness and function of Tregs by measuring the expression level of FOXP3 in 

Tregs in cultured with limited concentrations of IL-2 and quantifying the suppression 

of CD4+ Tconv by Tregs. 

 

FIG. 2. Representative examples of pSTAT5a staining, the gating used to define 

CD4+ T-cell populations and IL-2 dose response. A-C: Examples of pSTAT5a 

staining in CD4+ T cells upon stimulation with 0.1 (A), 0.25 (B) and 10 IU/ml (C) of 

IL-2 for 30 min, using barcoded cryopreserved PBMC stained with CD4, CD25, 

CD45RA and pSTAT5a. D: Tregs were identified using two different gating 

strategies: (i) based on a high level of CD25 staining and reduced CD4 staining 

(CD4loCD25+ Tregs) and (ii) gated on the top 2% of CD25-staining CD4+ cells 

(CD25hi Tregs). Tconv were identified by low/intermediate levels of CD25 staining. 

E: All cell populations were analyzed for expression of CD45RA to delineate 



populations of CD45RA+ and CD45RA- Tconv (pseudo-colour plot) and Tregs (zebra 

plot). F: An example of dose response curves in Tconv and Treg sub-populations 

from one individual using percentage pSTAT5a positivity as a read out. 

 

FIG. 3. Relationship between IL-2 responsiveness in CD4+ T-cell subsets measured in 

two independent blood draws. Populations of Tconv and Treg subsets were defined as 

described in FIG. 2 and stimulated with the indicated IL-2 concentration. A-D: 

Percentages of pSTAT5a positive CD25hi Treg (A), CD4loCD25+CD45RA- Treg (B), 

mTconv (C) and nTconv (D) following stimulation of IL-2 were compared between 

first and second bleeds of patients taken over three months apart. 

 

FIG. 4. Relationship between IL-2 sensitivity and T1D-associated PTPN2 SNPs, 

rs45450798 and rs478582. Treg populations were defined as described in FIG. 2 and 

stimulated with the indicated IL-2 concentration. A-D: Percentages of pSTAT5a 

positive CD25hi Treg (A and C) and CD4loCD25+CD45RA- Treg (B and D) were 

compared between individuals with LST1D stratified by genotypes at rs45450798 (A 

and B) or rs478582 (C and D) in the PTPN2 gene. Lines indicate group mean with 

standard error. Statistical significance was determined using a one-tailed one-way 

ANOVA. 

 

FIG. 5. Example of FOXP3+ Treg and subset gating and the comparisons between IL-

2 sensitivity in FOXP3+ Tregs of low and high IL-2 responders. A-B: Cryopreserved 

PBMC were stained for CD4, CD25, FOXP3, CD45RA and pSTAT5a. Tregs were 

gated on CD25hi and FOXP3+ cells (A) and subdivided into three populations, 

FOXP3hiCD45RA- activated (Fr. II; aTreg), FOXP3+CD45RA- memory (Fr. III; 



mTreg) and FOXP3+CD45RA+ resting (Fr. I; rTreg) Tregs (B). C-F: Comparisons of 

percentage of pSTAT5a positive total FOXP3+ Tregs (C) as well as the three sub-

populations (D-F) between low and high IL-2 responders when cells were stimulated 

with 0.4 IU/ml IL-2 for 30 min. Lines indicate group mean with standard error. 

Statistical significance was determined using a one-tailed Student’s t test. 

 

FIG. 6. Comparison of FOXP3+ Treg frequency between low and high IL-2 

responders. A-D: Frequencies of total FOXP3+ (A), FOXP3hiCD45RA- activated (Fr. 

II; aTreg) (B), FOXP3+CD45RA- memory (Fr. III; mTreg) (C) and FOXP3+CD45RA+ 

resting (Fr. I; rTreg) (D) Tregs out of total CD4 + T cells stained from cryopreserved 

PBMC were compared between low and high IL-2 responders. Lines indicate group 

mean with standard error. Statistical significance was determined using a two-tailed 

Student’s t test. 

 

FIG. 7. Comparison of Treg frequency and function between low and high IL-2 

responders using fresh PBMC. A-B: Percentages of FOXP3+ (A) and CD25hiCD127lo 

(B) Tregs out of total CD4+ T cells were measured in low and high IL-2 responders. 

C: Tregs were cell sorted based on being CD4+, CD25hi and CD127lo for further 

functional studies. D: Steady state turnover of immediately post-sorted 

CD25hiCD127lo Tregs was measured based on Ki67 staining. E: Maintenance of 

FOXP3 expression was measured in Tregs in cultured with or without limiting 

concentrations of IL-2 for 48 h. F: Relationship between the level of FOXP3 

maintenance and the level of IL-2 signaling. G: The suppression of proliferation of 

Tconv by Tregs was measured using tritium by in vitro co-culture at the indicated 

Treg:Tconv ratio, either stimulated with PHA using B cells as APCs or stimulated 



with anti-CD3/CD28 beads for 6 days. H: Proliferation of Tconv cultured alone was 

measured under stimulation conditions as indicated. Filled squares = low IL-2 

responders; open circles = high IL-2 responders. Lines indicate group mean with 

standard error. Statistical significance was determined using a two-tailed Student’s t 

test. 

 

FIG. 8. Comparisons between IL-2 sensitivity in age-matched individuals with and 

without LST1D. A-D: Comparisons of percentage of pSTAT5a positive 

CD4loCD25+CD45RA- Treg (A), CD4loCD25+CD45RA+ Treg (B), mTconv (C) and 

nTconv (D) between 18 non-diabetic controls and 70 individuals with LST1D using 

cryopreserved PBMC, stimulated with the indicated IL-2 concentration for 30 min. 

Lines indicate group mean with standard error. Statistical significance was determined 

using a one-tailed Student’s t test. E-G: Comparisons of percentage of pSTAT5a 

positive total FOXP3+ Tregs (E), mTconv (F) and nTconv (G) between 15 unaffected 

siblings (UAS) and 17 individuals with newly diagnosed T1D (NDT1D) and between 

20 non-diabetic controls (Control) and 22 individuals with long-standing T1D 

(LST1D) using fresh whole blood, stimulated with the indicated IL-2 concentration 

for 30 min. Matched pairs of T1D and controls are joined by horizontal lines. 

Statistical significance was determined using an average matched-pair test. 

 

 


