Inclusive $K_S^0\bar{K}_S^0$ Resonance Production in ep Collisions at HERA

(ZEUS Collaboration)
Inclusive $K_S^0K_L^0$ production in ep collisions at the DESY ep collider HERA was studied with the ZEUS detector using an integrated luminosity of 0.5 fb$^{-1}$. Enhancements in the mass spectrum were observed and are attributed to the production of $f_2(1270)/a_2^0(1320)$, $f_0^*(1535)$ and $f_0(1710)$. Masses and widths were obtained using a fit which takes into account theoretical predictions based on SU(3) symmetry arguments, and are consistent with the Particle Data Group values. The $f_0(1710)$ state, which has a mass consistent with a glueball candidate, was observed with a statistical significance of 5 standard deviations. However, if this state is the same as that seen in the $\gamma\gamma \rightarrow K_S^0K_L^0$ decay, it is unlikely to be a pure glueball state.
Introduction.—The existence of glueballs is predicted by QCD. The lightest glueball is expected to have quantum numbers \(J^{PC} = 0^{++}\) and a mass in the range 1550–1750 MeV [1]. Thus, it can mix with \(q\bar{q}\) states from the scalar meson nonet, which have \(I = 0\) and similar masses. Four states with \(J^{PC} = 0^{++}\) and \(I = 0\) are established [1]: \(f_0(980)\), \(f_0(1370)\), \(f_0(1500)\), and \(f_0(1710)\), but only two states can fit into the nonet. In the literature, the state \(f_0(1710)\) is frequently considered to be a state with a possible glueball or tetraquark composition [2]. However, its partonic content has yet to be established.

The ZEUS Collaboration previously observed [3] indications of two states, \(f_2'(1525)\) and \(f_0(1710)\), decaying to \(K_S^0K_S^0\) final states in inclusive deep inelastic scattering (DIS) events. The statistical significance of the observation did not exceed three standard deviations. The state in the 1700 MeV mass region had a mass consistent with that of the \(f_0(1710)\); however, its width was significantly narrower than that quoted by the Particle Data Group (PDG) [1].

The results presented here correspond to the full HERA luminosity of 0.5 fb\(^{-1}\) and supersede the earlier ZEUS results. The measurement of the \(K_S^0K_S^0\) final states is presented in a kinematic region of \(e\bar{p}\) collisions dominated by photoproduction with exchanged photon virtuality, \(Q^2\), below 1 GeV\(^2\). The data allow the reconstruction of the \(K_S^0K_S^0\) final states with much larger statistics than previously used.

Experimental setup.—The data were collected between 1996 and 2007 at the electron-proton collider HERA using the ZEUS detector. During this period HERA operated with electrons or positrons (Here and in the following, the term “electron” denotes generically both the electron \((e^-)\) and the positron \((e^+)\)) of energy \(E_e = 27.5\) GeV and protons initially with an energy of 820 GeV and, after 1997, with 920 GeV.

A detailed description of the ZEUS detector can be found elsewhere [4]. Charged particles were tracked in the central tracking detector [5], which operated in a magnetic field of 1.43 T provided by a thin superconducting solenoid. Before the 2004–2007 running period, the ZEUS tracking system was upgraded with a silicon Micro Vertex Detector (MVD) [6]. The high-resolution uranium-scintillator calorimeter (CAL) [7] consisted of three parts: the forward, the barrel, and the rear calorimeters.

Event sample.—A three-level trigger system [4,8] was used to select events online. No explicit trigger requirement was applied for selecting \(K^0_SK^0_S\) events. The photoproduction sample is dominated by events triggered by a low jet transverse energy, \(E_T\), requirement \((E_T > 6\) GeV\)).

Deep inelastic scattering events were triggered by requiring an electron in the CAL.

Events were selected offline by requiring \(|Z_{\text{vtx}}| < 50\) cm, where \(Z_{\text{vtx}}\) is the \(Z\) coordinate of the primary vertex position determined from the tracks. The average energy of the total hadronic system, \(W\), of the selected events was \(\approx 200\) GeV. The data sample was dominated by photoproduction events with \(Q^2 < 1\) GeV\(^2\).

Reconstruction of \(K_S^0\) candidates.—The \(K_S^0\) mesons were identified via their charged-decay mode, \(K_S^0 \to \pi^+\pi^-\). Both tracks from the same secondary decay vertex were assigned the mass of the charged pion and the invariant mass, \(M(\pi^+\pi^-)\), of each track pair was calculated. The \(K_S^0\) candidates were selected by requiring:

(i) \(M(e^+e^-) \geq 50\) MeV, where the electron mass was assigned to each track, to eliminate tracks from photon conversions;

(ii) \(M(p\pi) \geq 1121\) MeV, where the proton mass was assigned to the track with higher momentum, to eliminate \(\Lambda\) and \(\bar{\Lambda}\) contamination to the \(K_S^0\) signal;

(iii) \(\rho_T(K_S^0) \geq 0.25\) GeV and \(|\eta(K_S^0)| \leq 1.6\), where \(\rho_T(K_S^0)\) is the transverse momentum and \(\eta(K_S^0)\) is the pseudorapidity;

(iv) \(\theta_{2D} < 0.12\) rad \((\theta_{3D} < 0.24\) rad\), where \(\theta_{2D}\) (\(\theta_{3D}\)) is the two (three) dimensional collinearity angle between the \(K_S^0\)-candidate momentum vector and the vector defined by the interaction point and the \(K_S^0\) decay vertex. For \(\theta_{2D}\), the \(XY\) plane was used.

The cuts on the collinearity angles significantly reduced the non-\(K_S^0\) background in the data during the 2004–2007 period. These cuts were necessary due to the extra material introduced by the MVD. After all these cuts, the decay length distribution of the resulting \(K_S^0\) candidates peaked at \(\approx 2\) cm.

Events with at least two \(K_S^0\) candidates were accepted for further analysis. More than two \(K_S^0\) were allowed in one event, unlike for the previously published result [3], and all distinct combinations of \(K_S^0K_S^0\) were used. In the mass range of \(481 \leq M(\pi^+\pi^-) \leq 515\) MeV the number of \(K_S^0\) candidates is 1258399.

Figure 1 shows the invariant-mass distribution of \(K_S^0\) candidates. A fit over the whole mass range including a first-order polynomial was used to estimate the background contribution at \(\approx 8\%\). The central region was fitted with two bifurcated Gaussian functions to determine the mass and width of the \(K_S^0\) meson. For the HERA II data, corrections were applied to take into account the extra dead material introduced into the detector. After the corrections, the mass and width of the \(K_S^0\) were compatible with the PDG value and detector resolution, respectively.

Results.—The \(K_S^0K_S^0\) invariant-mass distribution was reconstructed by combining two \(K_S^0\) candidates selected in the mass window \(481 \leq M(\pi^+\pi^-) \leq 515\) MeV. Tracks used for the \(K_S^0K_S^0\) pair reconstruction were required to be assigned uniquely to each \(K_S^0\) in the \(K_S^0K_S^0\) pair.

Figure 2(a) shows the measured \(K_S^0K_S^0\) invariant-mass spectrum. Three peaks are seen at around 1300, 1500, and 1700 MeV. No state heavier than the \(f_0(1710)\) was observed. The invariant-mass distribution, \(m\), was fitted as a sum of resonance production and a smoothly varying background \(U(m)\). Each resonant amplitude, \(R\), was given a relativistic Breit-Wigner form [9]:

\[
 R = \frac{m^2 - M^2}{(m^2 - M^2)^2 + (m - \Gamma / 2)^2}
\]
TABLE I. The measured masses and widths for the $f_2(1270)/a_2^0(1320)$, $f'_2(1525)$ and $f_0(1710)$ states using $K^0\bar{K}^0$ decays as determined by one fit neglecting interference and another one with interference as predicted by SU(3) symmetry arguments included. Both statistical and systematic uncertainties are quoted. The systematic uncertainty for the $f_2(1270)/a_2^0(1320)$ peak is expected to be significant and it is not listed. Also quoted are the PDG values for comparison.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>No interference</td>
<td>96/95</td>
<td>$f_2(1270)$</td>
<td>1268 ± 10</td>
<td>176 ± 17</td>
<td>1275.4 ± 1.1</td>
<td>185.2 ± 3.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$a_2^0(1320)$</td>
<td></td>
<td>1257 ± 9</td>
<td>114 ± 14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$f'_2(1525)$</td>
<td>1512 ± 3</td>
<td>83 ± 9</td>
<td>1525 ± 5</td>
<td>73 ± 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$f_0(1710)$</td>
<td>1701 ± 5</td>
<td>100 ± 24</td>
<td>1724 ± 7</td>
<td>137 ± 8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

incoherent sum of three Breit-Wigner cross sections representing the $f_2(1270)/a_2^0(1320)$, $f'_2(1525)$ and $f_0(1710)$ plus background. Fit 2 is motivated by SU(3) predictions [11]. The decays of the tensor ($J^P = 2^+$) mesons $f_2(1270)$, $a_2^0(1320)$, and $f'_2(1525)$ into the two pseudoscalar ($J^P = 0^-$) mesons $K^0\bar{K}^0$ are related by SU(3) symmetry with a specific interference pattern. The intensity is the modulus-squared of the sum of these three amplitudes plus the incoherent addition of $f_0(1710)$ and a nonresonant background. The predicted coefficients of the $f_2(1270)$, $a_2^0(1320)$, and $f'_2(1525)$ Breit-Wigner amplitudes for an electromagnetic production process are, respectively, $+5$, -3, and $+2$ [11,12]. This results in the fit function:

$$ F(m) = a[5BW(f_2(1270)) - 3BW(a_2^0(1320))] $$

$$ + 2BW(f'_2(1525))]^2 + b|BW(f_0(1710))]^2 $$

$$ + cU(m), $$

where a, b, and c are free parameters.

All the resonance masses and widths were allowed to vary in the fits. The results of the fits are shown in Table I. The quality of both fits, characterized by the χ^2 per number of degrees of freedom (see Table I), is good. However, fit 2 describes the spectrum around the $f_2(1270)/a_2^0(1320)$ region better and, unlike fit 1, reproduces the dip between $f_2(1270)/a_2^0(1320)$ and $f'_2(1525)$. For this reason and, based on the theoretical motivation, fit 2 is preferred and shown in Fig. 2. The background-subtracted mass spectrum is shown in Fig. 2(b) together with the fit.

The $a_2^0(1320)$ mass in fit 2 is below the PDG value [1]. A similar shift, attributed to the destructive interference between $f_2(1270)$ and $a_2^0(1320)$, was also seen in a study of resonance physics with $\gamma\gamma$ events [11]. Fit 1 without interference yields a narrow width for the combined $f_2(1270)/a_2^0(1320)$ peak, as also seen by the L3 Collaboration [10]. Fit 2 with interference yields widths close to the PDG values for all observed resonances. The fitted masses for $f'_2(1525)$ and $f_0(1710)$ are somewhat below the PDG values with uncertainties comparable with those of the PDG (Table I). The quality of a fit without

FIG. 1 (color online). The measured $\pi^+\pi^-$ invariant-mass distribution for events with at least two $K^0\bar{K}^0$ candidates (dots). The shaded area represents the signal window used for $K^0\bar{K}^0$ pair reconstruction. The fit performed (see text) is displayed as a solid line.

$$ BW(R) = \frac{M_R\Gamma_R}{M^2_R - m^2 - iM_R\Gamma_R}, $$

where M_R and Γ_R are the resonance mass and width, respectively. The background function used was

$$ U(m) = m^A \exp(-Bm), $$

where A and B are free parameters. The $K^0\bar{K}^0$ mass resolution is about 12 MeV for the mass region below 1800 MeV and its impact on the extracted widths is small compared to the expected widths of the states [3]. Therefore, resolution effects were ignored in the fit.

Two types of fit, as performed for the reaction $\gamma\gamma \rightarrow K^0\bar{K}^0$ by the L3 [10] and TASSO [9] Collaborations, respectively, were tried, using Eqs. (1) and (2). Fit 1 is an
systematic uncertainties were: fitting with fixed PDG mass.

The statistical significance. This is one of the best K0S
included in the systematic uncertainties [13]. The largest
by the fit is 4058.

systematic uncertainties are included in Table I.

candidate [2]. However, if it is the same as seen in
signals reported. This state is considered to be a glueball

candidates [2]. However, if it is the same as seen in
signals reported. This state is considered to be a glueball

the f0(1710) resonance (not shown) yields χ²/ndf = 162/97 and is strongly disfavored.

The systematic uncertainties of the masses and widths of
the resonances, determined from the fit shown in Fig. 2,
were evaluated by changing the selection cuts and the
fitting procedure. Variations of minimum track pT, track
pseudorapidity range, track momenta by ±0.1%, accepted
π+ π− mass range around the K0S peak and collinearity cuts
were done. In addition a maximum likelihood fit was used
instead of the χ² fit and event selection cuts were varied.

A check for the possible influence of the JPC = 0++ state
f0(1500) was carried out by including in the fit a Breit-
Wigner amplitude of this state interfering with the ampli-
tude of the f0(1710). The resulting changes of the fitted
values of the mass and the width of the f0(1710) are
included in the systematic uncertainties [13]. The largest
systematic uncertainties were: fitting with fixed PDG mass
and width on f2(1525) affects the f0(1710) width by
−19 MeV and the largest effect of varying the track momenta
on the f0(1710) width is +7 MeV. The combined
systematic uncertainties are included in Table I.

The number of events in the f0(1710) resonance given
by the fit is 4058 ± 820, which has a 5 standard deviation
statistical significance. This is one of the best f0(1710)
signals reported. This state is considered to be a glueball
candidate [2]. However, if it is the same as seen in γγ →
K0S K0S [9,10], it is unlikely to be a pure glueball state, since
photons can couple in partonic level only to charged ob-
jects. Figure 3 compares the results of this analysis with
other measurements from collider and fixed-target exper-
iments. The f0(1710) mass as deduced from the quark-
onium decays by the BES Collaboration is significantly
higher than the values given by all other experiments,
including older J/ψ-decay analyses [1].

Conclusions.—In conclusion, K0S K0S final states were
studied in ep collisions at HERA with the ZEUS detector.
Three enhancements which correspond to f2(1270)/
a2(1320), f2′(1525) and f0(1710) were observed. No state
heavier than the f0(1710) was observed. The states were
fitted taking into account the interference pattern predicted
by SU(3) symmetry arguments. The measured masses of
the f2′(1525) and f0(1710) states are somewhat below the
world average; however, the widths are consistent with the
PDG values. The f0(1710) state, which has a mass con-
sistent with a JPC = 0++ glueball candidate, is observed
with a 5 standard-deviation statistical significance.
However, if this state is the same as that seen in γγ →
K0S K0S, it is unlikely to be a pure glueball state.

We wish to acknowledge support of the research Grant
No. 1 P03B 04529 (2005–2008). This work was supported
in part by the Marie Curie Actions Transfer of Knowledge
project Cocos (Contract MTKD-CT-2004-517186); The
Royal Society of Edinburgh, Scottish Executive Support;
DESY, Germany; The Russian Foundation for Basic
Research Grant No. 05-02-39028-NSFC-a; Warsaw
University, Poland; the National Science Foundation; the Alexander von Humboldt Research Award; the PPARC; the Natural Sciences and Engineering Research Council of Canada (NSERC); the German Federal Ministry for Education and Research (BMBF), under Contract Nos. 05 HZ6PDA, 05 HZ6GUA, 05 HZ6VFA, and 05 HZ4KHA; the MINERVA Gesellschaft für Forschung GmbH; the Israel Science Foundation (Grant No. 293/02-11.2); the U.-S. Israel Binational Science Foundation; the Italian National Institute for Nuclear Physics (INFN); the Japanese Ministry of Education, Culture, Sports, Science, and Technology (MEXT) and its grants for Scientific Research; the Korean Ministry of Education and Korea Science and Engineering Foundation; the Netherlands Foundation for Research on Matter (FOM); the Polish State Committee for Scientific Research, Project No. DESY/256/2006-154/DES/2006/03; the German Federal Ministry for Education and Research (BMBF); the RF Presidential Grant N 8122.2006.2 for the leading scientific schools; the Russian Ministry of Education and Science through its grant for Scientific Research on High Energy Physics; the Spanish Ministry of Education and Science through funds provided by CICYT; the Science and Technology Facilities Council, UK; the U. S. Department of Energy; the U. S. National Science Foundation, the Polish Ministry of Science and Higher Education as a Scientific Project (2006–2008); the FNRS and its associated funds (IISN and FRIA); the Inter-University Attraction Poles Programme subsidized by the Belgian Federal Science Policy Office; the Malaysian Ministry of Science, Technology and Innovation/Akademi Sains Malaysia Grant SAGA 66-02-03-0048. We thank the DESY directorate for their strong support and encouragement. The special efforts of the HERA machine group in the collection of the data used in this Letter are gratefully acknowledged. We are grateful for the support of the DESY computing and network services. The design, construction, and installation of the ZEUS detector were made possible by the ingenuity and effort of many people from DESY and home institutes who are not listed as authors. We also thank H. J. Lipkin for valuable comments and advice.

\begin{thebibliography}{99}
\bibitem{1} W.-M. Yao et al. (Particle Data Group), J. Phys. G 33, 1 (2006); Updated in http://pdg.lbl.gov.
\bibitem{12} H. J. Lipkin (private communication).
\end{thebibliography}