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ABSTRACT
The high sensitivity of the new generation of radio telescopes such as the Square Kilometre
Array (SKA) will allow cosmological weak lensing measurements at radio wavelengths that
are competitive with optical surveys. We present an adaptation to radio data of lensfit, a method
for galaxy shape measurement originally developed and used for optical weak lensing surveys.
This likelihood method uses an analytical galaxy model and makes a Bayesian marginalization
of the likelihood over uninteresting parameters. It has the feature of working directly in the
visibility domain, which is the natural approach to adopt with radio interferometer data,
avoiding systematics introduced by the imaging process. As a proof of concept, we provide
results for visibility simulations of individual galaxies with flux density S ≥ 10 μJy at the phase
centre of the proposed SKA1-MID baseline configuration, adopting 12 frequency channels in
the band 950–1190 MHz. Weak lensing shear measurements from a population of galaxies
with realistic flux and scalelength distributions are obtained after natural gridding of the raw
visibilities. Shear measurements are expected to be affected by ‘noise bias’: we estimate
the bias in the method as a function of signal-to-noise ratio (SNR). We obtain additive and
multiplicative bias values that are comparable to SKA1 requirements for SNR > 18 and
SNR > 30, respectively. The multiplicative bias for SNR >10 is comparable to that found
in ground-based optical surveys such as CFHTLenS, and we anticipate that similar shear
measurement calibration strategies to those used for optical surveys may be used to good
effect in the analysis of SKA radio interferometer data.

Key words: gravitational lensing: weak – methods: statistical – techniques: interferometric –
cosmology: observations.

1 IN T RO D U C T I O N

Weak gravitational lensing is the coherent deformation in the ap-
parent shapes of galaxies due to the deflection of light rays by
large-scale foreground matter distributions (see Kilbinger 2015 for
an overview). The measure of this distortion on cosmological scales
is a powerful technique for estimating the total mass distribution and
the relationship between the distributions of dark and baryonic mat-
ter. Its combination with redshift measurements can provide cos-
mological constraints on the density of dark matter and, through the
growth of large-scale structure, also on the dark energy component
of the Universe. Combination with other cosmological measure-
ments may allow tests for modifications of General Relativity.

Observationally, this field has been served so far by optical sur-
veys since its initial detection (Bacon, Refregier & Ellis 2000;

�E-mail: m.rivi@ucl.ac.uk (MR); Lance.Miller@physics.ox.ac.uk (LM)

Kaiser, Wilson & Luppino 2000; Van Waerbeke et al. 2000; Wittman
et al. 2000), owing to the larger number densities of faint galaxies
achieved in such surveys. Moreover, the redshift distribution of faint
radio-detected galaxies is not known accurately, making the inter-
pretation of the measurement very challenging. However, the new
generation of radio telescopes, such as the Square Kilometre Array
(SKA),1 are expected to reach sufficient sensitivity to resolve radio
emission of ordinary galaxies and therefore provide a large num-
ber density. For example, SKA will reach number densities of up
to ∼3 galaxies arcmin−2 in Phase 1 and ∼10 galaxies arcmin−2 in
Phase 2 (Brown et al. 2015). This will lead weak lensing to become
one of the primary science drivers in radio surveys too, with the
advantage that they will access the largest scales in the Universe

1 https://www.skatelescope.org/
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going beyond optical surveys, such as LSST2 and Euclid,3 in terms
of redshifts that are probed. Source redshifts will be available, al-
though not at high redshifts, from H I 21 cm line observations (Blake
et al. 2004; Abdalla et al. 2015; Yahya et al. 2015), and photomet-
ric redshifts should be available from cross-correlation with faint
multiband optical surveys such as LSST. Furthermore, the radio
waveband may offer unique approaches that are not available to
optical surveys and may be used to reduce or mitigate some of the
systematic effects encountered in weak lensing cosmology. First, the
Point Spread Function (PSF) of a radio interferometer, uncertainty
in which is one of the biggest causes of systematic errors in ground-
based optical surveys, is largely determined by the known placement
of antennas, and PSF variations at mid-frequencies caused by iono-
spheric/tropospheric phase perturbations are expected to be smaller
than PSF variations in ground-based optical surveys (Jarvis et al.
2015a; Bonaldi et al. 2016). Secondly, it may be possible to use po-
larized emission as an estimator of the intrinsic (unlensed) galaxy
orientation, although the limiting flux density, and hence galaxy
number density, would be compromised in such an analysis. Grav-
itational lensing does not change the position angle of the polariza-
tion emission of a galaxy and polarization is correlated with the disc
structure of the galaxy (Brown & Battye 2011; Whittaker, Brown &
Battye 2015). This technique may be used to effectively measure or
correct for intrinsic galaxy alignments (Joachimi et al. 2015), which
is likely to be one of the main astrophysical biases of weak lensing
measurements, and may potentially reduce shear measurement sys-
tematics. H I rotational velocity measurements may also be used to
reduce the impact of shape noise and intrinsic alignments. The idea,
suggested by Blain (2002) and Morales (2006), is to measure the
departure from perpendicularity of the rotation axis of a disc galaxy
to the major axis of the galaxy disc image and use this measure
as an estimate of the shear field at the galaxy’s position (see also
Huff et al. 2013). Finally, by cross-correlating the shear estimators
of optical and radio surveys, uncorrelated systematic errors may be
mitigated (Patel et al. 2010; Camera et al. 2016; Demetroullas &
Brown 2016; Harrison et al. 2016). For a general overview of radio
weak lensing see Brown et al. (2015).

However, the large field of view together with the new sensitiv-
ity regime of instruments such as SKA will need a more detailed
treatment of the systematics of radio observations. New analysis
techniques and algorithm development may be required, in partic-
ular the development of highly accurate shape or shear estimation
techniques suitable for a radio interferometry data set. Initial steps
are being taken by a number of SKA pathfinders and precursor tele-
scopes. For example the UK e-MERLIN legacy projects e-MERGE4

and SuperCLASS5 will act as training experiments for algorithms
on long-baseline high-resolution observations. Other projects are
planned with the upgraded JVLA interferometer: the VLASS6 sur-
vey (Brown et al. 2013) and the CHILES7 continuum and H I sur-
veys. Large-scale surveys with the LOFAR8 telescope and with the
SKA pathfinder telescopes, MeerKAT9 and ASKAP10 will also of-

2 http://www.lsst.org/
3 http://www.euclid-ec.org/
4 http://www.e-merlin.ac.uk/legacy/projects/emerge.html
5 http://www.e-merlin.ac.uk/legacy/projects/superclass.html
6 https://science.nrao.edu/science/surveys/vlass
7 http://www.mpia-hd.mpg.de/homes/kreckel/CHILES/index.html
8 http://www.lofar.org
9 http://www.ska.ac.za/meerkat/
10 http://www.atnf.csiro.au/projects/askap

fer interesting opportunities for radio weak lensing studies in the
run-up to Phase 1 of the SKA.

Currently, most of the techniques available for the measurement
of galaxy shapes are based on measurement of galaxy images, as
they were developed for optical surveys. The state of the art in opti-
cal lensing measurements fits model surface brightness distributions
to galaxies and combine these measurements to form an estimate
of the cosmic shear. For a summary, see Mandelbaum et al. (2015).
Radio interferometers do not provide directly images of the ob-
served sky, they measure visibility data instead, that basically are
the Fourier transform of the sky image at sampled points in the
Fourier (uv) domain. Such points correspond to the projected base-
line formed between two antennas on the plane orthogonal to the
antennas pointing direction (usually also the adopted phase centre),
and the locus traced by them during an observation as the Earth
rotates yields the uv data whose Fourier transform is the PSF. The
standard procedure adopted for turning visibility data into images
via PSF deconvolution, such as CLEAN (Högbom 1974; Schwarz
1978), is a non-linear process and the noise in radio images is
highly correlated. Weak lensing has stringent requirements on im-
age fidelity because source ellipticities must be measured accurately
in order for errors on cosmological parameters to be dominated by
statistics, rather than systematics. An investigation using images
simulated through a radio pipeline presented in Patel et al. (2014),
for e-MERLIN and LOFAR, and used in Patel et al. (2015) for
SKA1, shows that current iterative deconvolution methods produce
images with structures in the residuals that dominate the cosmo-
logical signal, producing an analysis-induced bias far from what is
required.

A more natural approach for radio weak lensing is to measure
source shapes directly in the visibility domain, avoiding image re-
construction and reducing original data manipulation. This would
also benefit from the fact that the noise originates in this domain.
Such methods should take into account model accuracy, the fact
that sources are no longer localized in the Fourier domain and their
flux is mixed together in a complicated way, which may require
joint fitting. Moreover the computational challenges for a telescope
such as SKA are great because the number of sources in the pri-
mary beam and the number of visibilities are very large. Available
tools for model fitting in the visibility domain are very generic and
based on models obtained from images built on the combination
of basic shapes or brightness profiles (Martı́-Vidal et al. 2014). To
optimize computational performance and model accuracy, models
should be defined directly in the visibility domain, avoiding Fourier
Transform operations. For a list of analytical models available in
the Fourier space see table 3 in Rowe et al. (2015), although numer-
ically defined models may also be interpolated to create appropriate
Fourier-space models without requiring an analytic expression.

At present, the only radio weak lensing studies in the visibility
domain have used shapelets (Refregier 2003; Refregier & Bacon
2003), where galaxy shapes are decomposed through an orthonor-
mal basis of functions corresponding to perturbations around a cir-
cular Gaussian. The first study, Chang, Refregier & Helfand (2004),
used data from the Faint Images of the Radio Sky at Twenty cm
(FIRST) survey (Becker, White & Helfand 1995) conducted with
the VLA. Shapes of radio galaxies were obtained directly from the
visibilities (Chang & Refregier 2002) as shapelets are invariant un-
der Fourier transform (up to a rescaling). A treatment of systematics
that may affect the radio lensing shear estimates was also included,
allowing a 3.6σ detection of cosmic shear. The second more recent
work is presented in Patel et al. (2015), where an initial analysis
of the performance of visibility plane shapelets is provided from
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SKA1 simulations. Conceptual concerns about shapelets method
were already raised in the optical surveys because such models do
not represent galaxy shapes in a realistic way, that takes into ac-
count knowledge of galaxy structure. Moreover profiles that are not
well matched to the size of the Gaussian require very high order
shapelet terms, such that the decomposition is unfeasible in practice
(Melchior et al. 2010; Mandelbaum et al. 2015). The radio source
population in the next generation of deep radio continuum surveys is
expected to be dominated by late-type normal and star-forming (SF)
galaxies. Their radio emission, in the range of frequencies for weak
lensing observations (∼1 GHz), is dominated by the synchrotron
radiation from relativistic electrons accelerated in supernova rem-
nants (Condon 1992; Richards 2000; Jarvis et al. 2015b), i.e. it is
produced by the interstellar medium in the disc alone. A reasonable
assumption is that the radio-emitting plasma has an exponential disc
structure similar to that which describes the distribution of stars in
galaxy discs. The possible amplitude of bias arising from imperfect
models has already been discussed in the optical case by Voigt &
Bridle (2010) and Miller et al. (2013).

In this paper we present an adaptation to the visibility domain of
lensfit, a model fitting approach developed by Miller et al. (2007)
and Kitching et al. (2008) for optical surveys, recently used to mea-
sure galaxy shapes (Miller et al. 2013) in the CFHTLensS (Heymans
et al. 2012), CS82 (Erben et al., in preparation), KiDS (Kuijken et al.
2015; Hildebrandt et al. 2016b) and RCSLenS (Hildebrandt et al.
2016a) surveys. That analysis assumed galaxies to comprise two
components, disc and bulge, whereas in radio observations we are
primarily interested only in a disc-like component, as discussed
above. Accordingly, in our adaption to the radio band, the method
models galaxy shapes using an exponential profile (Sérsic index
n = 1) and applies a Bayesian marginalization of the likelihood
over uninteresting parameters. We directly estimate the likelihood
from the visibility data and define the model visibilities analyti-
cally. As a proof of concept, we present the method for the shape
measurement of a single galaxy at the phase centre (Section 3). We
show results obtained from simulations of visibilities generated by
using the SKA1-MID baseline configuration (details are provided
in Section 4). In particular in Section 5 we provide an estimate of
the shear bias in the method. In Section 6 we finally discuss two
possible approaches to the fitting of many sources in the field of
view.

2 W EAK LENSING SHEAR ESTIMATION

The weak lensing signal is carried by the faintest SF galaxies. The
radiation emitted by such galaxies is deflected in presence of a
gravitational potential on the path to an observer. The deflection
angle is approximated to first order by the Jacobian matrix Aγ of
the mapping between the source and the observer,

Aγ =
(

1 − κ − γ1 −γ2

−γ2 1 − κ + γ1

)
(1)

where κ is the convergence and the change in observed size of
the source, and where γ = γ1 + iγ2 is the gravitational shear, that
quantifies anisotropic stretching, i.e. distortions of the shape.

In the context of cosmological lensing by large-scale structures,
galaxies are very weakly lensed and the values of κ and γ are on the
order of few per cent. The observable of the cosmic shear is based
on the measurement of galaxy shapes, i.e. the reduced shear:

g = γ

1 − k
, (2)

which has the same polar (i.e. spin-2) transformation properties as
shear.

Galaxies are intrinsically non-circular in general, so an intrinsic,
complex source ellipticity es can be attributed to a galaxy. If we
define ellipticity e = (a − b)/(a + b), for galaxy major axis a and
minor axis b, then the observed ellipticity under the gravitational
lens mapping is given by (Seitz & Schneider 1997):

e = es+
1 + g∗es

, (3)

where both ellipticity and shear are defined as complex numbers
encoding the shape in the absolute value and the orientation in the
phase, i.e. e = e exp (2iθ ).

Under the assumption of randomly oriented galaxies, 〈es〉 = 0,
the observed ellipticity is an estimator of the gravitational shear:
〈e〉 = g � γ , in the weak lensing regime |γ |, κ 	 1. The typi-
cal distortion of high-redshift galaxies by the gravitational poten-
tial is much smaller than the intrinsic dispersion in galaxy shapes
(σe = 〈|e|2〉1/2 ∼ 0.3). Thus, for an individual galaxy, the lensing
effect is not detectable and one needs to average over a large num-
ber of galaxies N to obtain sufficient signal-to-noise ratio SNR �
g × N1/2/σ e.

The shear is estimated as a weighted average of the galaxies’
ellipticities. Statistical weights take into account that faint galaxies
have broader likelihood surfaces (i.e. larger measurement errors)
than bright galaxies. We calculate an approximate inverse-variance
weight as defined in Section 3.6 in Miller et al. (2013):

wi =
[

σ 2
i e2

max

e2
max − 2σ 2

i

+ σ 2
pop

]−1

(4)

where emax is the maximum allowed ellipticity (as measured in
the same paper for the prior ellipticity distribution), σ 2

i is the 1D
variance of the likelihood for the ith galaxy (measurement noise of
galaxy i) and σ 2

pop is the 1D variance of the ellipticity distribution of
the observed galaxy population (shape noise). We define these 1D
variances as the square root of the covariance matrix determinant.
Notice that, in the limit where emax → ∞, this definition of the
weights tends to a conventional form wi → (σ 2

i + σ 2
pop)−1.

3 T H E R A D I O L E N S F I T M E T H O D

In the radio implementation of lensfit, we apply the method directly
in Fourier space, where the radio interferometer data is measured.
In particular, we use a galaxy model defined analytically in the
visibility domain (Section 3.1) and marginalize the likelihood over
uninteresting parameters such as flux, galaxy position and galaxy
scalelength (Section 3.2). Finally, we sample the resulting likeli-
hood (Section 3.3) as a function of the ellipticity parameters only,
in order to estimate the galaxy ellipticity as the likelihood mean
point and to compute the likelihood standard deviation as the cor-
responding measurement noise, σ i. This approach is due to the fact
that a likelihood estimator of the ellipticity of an individual galaxy
should respond linearly to a cosmological shear, whereas a poste-
rior estimation would lead to a bias in the shear measurement, as
discussed by Miller et al. (2013).

3.1 Analytical galaxy model in the visibility domain

As mentioned in the introduction, galaxy models in the radio regime
should approximate the optical disc component, which is well
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described and commonly used for optical weak lensing, by the
Sérsic exponential brightness profile:

I (r) = I0 exp(−r/α), (5)

where I0 is the central brightness and α is the scalelength (i.e.
the radius at which intensity drops by e−1). This function defines a
circular light profile, with coordinates (lr, mr), that is made elliptical
and rotated according to the ellipticity parameter e = (e1, e2) using
the following linear transformation:(

lr
mr

)
= Ax =

(
1 − e1 −e2

−e2 1 + e1

) (
l

m

)
. (6)

The galaxy image obtained can be sampled by computing the direct
Fourier transform at the uv points of the radio telescope. However,
due to the simplicity of this brightness profile, we are able to directly
define this model in the Fourier space by computing the analytical
expression of the Fourier transform (F ) of function (5). Since it is
a circularly symmetric function, its Fourier transform is essentially
its Hankel transform of order zero H(0):

F (I (r))(k) =
∫ ∞

r=0

∫ 2π

θ=0
I0e−r/αe−2πikr cos θ rdr dθ

= 2πI0

∫ ∞

r=0
e−r/αJ0(2πkr)rdr

= 2πI0H(0)(e
−r/α)(2πk) (7)

where J0 is the Bessel function of order zero. For the exponential
function the Hankel transform is well known (Bracewell 1999):

H(0)(e
−ar )(k) = a

(a2 + k2)3/2
. (8)

Therefore

F (I (r))(k) = 2πα2I0

(1 + 4π2α2k2)3/2
. (9)

Finally, by applying the following result for the composition of
a function with a linear transformation A(x) defined by a matrix
A ∈ R

d×d :

F (I ◦ A)(k) = 1

det A
F (I (r))(A−T k), (10)

where A−T is the inverse transpose of A, we get the following
expression of the visibility produced by the observed galaxy at the
point k = (u, v):

V (u, v) = F (I ◦ A)(k)

= 2πα2I0

det A
(
1 + 4π2α2|A−T k|2)3/2 (11)

In terms of flux density at wavelength λ, we have
Sλ = 2πα2I0/ det A. Moreover, if we want to take into account
the source spectrum, to first order we can model it using a single
spectral index β as follows:

V (u, v) =
(

λref

λ

)β
Sλref(

1 + 4π2α2|A−T k|2)3/2 . (12)

where β = −0.7 for the synchrotron radiation emitted by the galaxy
disc at ∼1 GHz. We may reasonably assume the spectral index to
be invariant with frequency across the SKA bandpass, because the
intrinsic synchrotron spectrum is broad-band and featureless.

3.2 Bayesian marginalization of the likelihood

The model visibilities depend on six parameters: flux S, scalelength
α, centre position c = (l0, m0) and ellipticity (e1, e2). Since we
are interested only in the measurement of the ellipticity, we can
marginalize over the other parameters. To compute the likelihood
L we adopt a chi-squared fitting approach in the frequency domain,
where the visibilities are defined:

χ2 = (D − SM)†C−1(D − SM)

= D†C−1 D − 2S D†C−1 M + S2 M†C−1 M (13)

where D = (vj)j and M = (vm
j )j are respectively the data and flux in-

dependent model visibilities, and C is the noise covariance matrix.11

By normalizing the model visibilities by a factor (M†C−1M)−1/2,
we can write chi-squared as

χ2 = D†C−1 D +
[
S − D†C−1 M

(M†C−1 M)1/2

]2

− (M†C−1 M)−1(D†C−1 M)2. (14)

We marginalize the corresponding likelihood over S by assuming
a uniform prior for the flux. Since the function to be integrated is
Gaussian-like and we expect to be measuring radio sources that have
a significant (>10σ ) detection of their radio flux, we may integrate
over the range (−∞, ∞) for which the result of the integration is
well-known. Therefore we have

L = e−χ2/2 ∝ exp

[
1

2
(M†C−1 M)−1(D†C−1 M)2

]
.

The shift parameter x of the model position can be added in the
Fourier domain by multiplying the model visibilities by a factor
eikT x . Therefore

L ∝ exp

[
1

2
(M†C−1 M)−1h(x)2

]
, (15)

where h(x) = D†C−1(vm
j eik j

T x)j corresponds to the Fourier trans-
form of the cross-correlation function in the image domain. As
discussed by Miller et al. (2007), such a cross-correlation should be
well represented by a two-dimensional Gaussian function, therefore
by evaluating its maximum h0 = h(l0, m0) we can approximate h(x)
as a real analytical function.

h(x) ∼ h0 exp

[
− 1

2
(x − c)T Σ−1(x − c)

]
(16)

and use it to analytically marginalize the likelihood over the position
shift parameter assuming a uniform prior.

logL = k exp [−(x − c)T Σ−1(x − c)] + const,

k = h2
0

2
(M†C−1 M)−1. (17)

Then by using polar coordinates and a uniform prior P(r) over the
area πr2

max, we have∫ 2π

0
dθ

∫ rmax

0
L(r)P (r)rdr ∝ |Σ|1/2

r2
max

∫ rmax

0
exp

[
ke−r2

]
rdr.

(18)

11 In Appendix A we show that for weak sources, as measured in weak
lensing surveys, the visibility noise covariance matrix may be assumed to
be diagonal.
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Following Miller et al. (2013), the maximum position uncertainty
rmax over which to marginalize is chosen to be the position beyond
which the detection of the galaxy becomes statistically insignifi-
cant, e.g. corresponding to the 95 per cent confidence region for the
location of the galaxy, according to the likelihood-ratio test:

−2 log

(L(rmax)

L(0)

)
= χ2

crit with 2 d.o.f. (19)

i.e.

−2k(e−r2
max − 1) = χ2

crit = 5.991.

Equation (18) is solved, after the substitution t = −ke−r2
, as an

exponential integral that can be evaluated numerically. The cross-
correlation maximum point h0 = h(l0, m0) is computed using the
Newton method and |Σ| is obtained as the inverse of the determi-
nant of the Hessian matrix of h(x) at the maximum point. Finally,
a marginalization over a finite interval [αmin, αmax] of the scale-
length is computed numerically assuming a lognormal prior (see
Section 4.2).

3.3 Likelihood sampling

In order to measure the ellipticity and its uncertainty for each galaxy,
we measure the likelihood standard deviation by sampling a neigh-
bourhood of its maximum point.

The likelihood maximum point is computed by applying the sim-
plex method (Nelder & Mead 1965). We use the implementation
of this algorithm provided by the GNU Scientific Library12 with
tolerance tol = 10−3 and starting point (0, 0). We adopt an adap-
tive grid sampling: the likelihood is first estimated on a coarse grid
of ellipticity values with step 0.05, then the grid step is iteratively
reduced by a factor 2, until either at least 30 points had been mea-
sured above a threshold of 5 per cent of the maximum likelihood
or a resolution of 0.003 in ellipticity is reached. The likelihood
threshold is also used to define the size of the neighbourhood where
sampling. As an estimate of the galaxy’s ellipticity, we compute
the mean of the likelihood distribution using the ellipticity samples
above the threshold, and for each ellipticity component we take as
the measurement error the 1D standard deviation of the likelihood.

4 DATA SIMU LATIO N S

4.1 SKA1-MID specifications

In Phase 1, SKA will consist of two sub-arrays: SKA1-LOW will
be an aperture array located in Australia operating at low radio fre-
quencies, while SKA1-MID will be a dish array located in South
Africa with up to five observational frequency bands spanning the
range 350 MHz to 13.8 GHz (Braun 2014). For weak lensing sur-
veys, SKA1-MID will be used, as it provides both the sensitivity and
the spatial resolution to detect shapes on high redshift SF galaxies.
It will comprise 64 MeerKAT dishes in a moderately compact core
with a diameter of about 1 km and 133 SKA1 dishes distributed in
the core and in three logarithmically spaced spiral arms emanating
from the centre and extending out to a maximum radius of 80 km
(see Fig. 1), with a maximum baseline of 150 km. We simulate an
8-h observation at declination δ = −30◦ assuming, for simplicity,
that all the antennas are SKA dishes (so that all the visibilities
have the same noise variance) and adopting a natural weighting

12 http://www.gnu.org/software/gsl/

Figure 1. SKA1-MID antennas location.

Figure 2. SKA1-MID uv coverage at declination δ = −30◦.

scheme. We use the first 30 per cent of Band 2, i.e. 950–1190 MHz,
as proposed in Bonaldi et al. (2016), and sample visibilities every
τ acc = 60 s for 12 channels of bandwidth 20 MHz. Fig. 2 shows a
plot of the uv coverage for our simulations.

4.2 Simulated galaxy visibilities

Since galaxies cannot be individually distinguished in the visibility
domain, in this first paper we only simulate visibilities of individual
galaxies located at the phase centre, to test the effectiveness of the
method in this simplest case. Future developments will need to fit
to multiple galaxies observed within the primary beam (Section 6).

The flux and scalelength of the simulated galaxies are generated
randomly according to the distributions estimated in Rivi et al.
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(2016) from the VLA 20 cm continuum radio source catalogue
in the SWIRE field (Owen & Morrison 2008). The modulus e of
the intrinsic ellipticities are generated according to a distribution
estimated from 66 762 SDSS disc-dominated galaxies (see appendix
B2 in Miller et al. 2013):

P (e) = Ne
(
1 − exp

[
e−emax

c

])
(1 + e)

(
e2 + e2

0

)1/2 , (20)

where emax = 0.804, e0 = 0.0256, c = 0.2539 and N is a normaliza-
tion factor. Optically selected galaxies are subject to the effect of
luminosity-dependent, inclination-dependent obscuration, that sup-
presses the prevalence of high-ellipticity galaxies in optical surveys.
Thus we expect the ellipticity distribution of radio galaxies to be
different from the optical regime, and likely to extend to higher
ellipticities, but at the moment we have no information about the
ellipticity distribution of the faintest radio-selected galaxies, and for
simplicity we use the distributions assumed for galaxies in optical
surveys. Our conclusions on the utility of the method should not
be dependent on this choice. For each ellipticity modulus value,
10 equally spaced galaxy orientations are defined, starting from a
random angle value θ0 ∈ (0, π) generated according to a uniform dis-
tribution, so that the corresponding ellipticity values are distributed
uniformly on a circle. Keeping the same size and flux of the galax-
ies whose ellipticity values are on the same ring, the simulations
are largely free of shape noise, i.e. the unweighted average of the
intrinsic ellipticity is identically zero, 〈es〉 = 0, and the unweighted
average of the sheared ellipticity yields the input shear to a good
approximation: 〈e〉 � g.13 Reduction of shape noise significantly
reduces the volume of simulations required to evaluate the shear
measurement accuracy.

Visibilities of real observations are simulated by using equation
(12) as for the model, but adding an uncorrelated Gaussian noise
whose variance is dependent on the SEFD of the SKA antennas (see
Appendix A). No time or frequency smearing effects are included,
as the galaxies are assumed to be located at the phase centre, where
such smearing is negligible.

4.3 Gridding visibilities

Since the number of visibilities are very large (more than 104 per
time sample per frequency channel), directly using all the uv data
is very expensive both in terms of memory size and computational
time. For this reason we apply a gridding scheme to reduce the data
volume. We have defined a regular uv grid of size n × n and taken
the average of the ci observed visibilities falling in the same grid
cell i. This operation reduces the variance (if assumed the same for
every uv point) of each grid visibility v̄i = 〈vki

〉ci
by a factor ci and

therefore equation (15) becomes:

L ∝ exp

[[∑
i �(v̄∗

i v
m
i e−ikx)ci

]2

2σ 2
v

∑
i |vm

i |2ci

]
. (21)

Model visibilities are sampled on the gridded uv points and only
non-zero visibilities of the grid are considered. Usually the cell
size is chosen to be 
u = 
v = 1/ψ , where ψ is the intended
field of view of one beam at the band centre. This choice would

13 Actually the effectiveness of this shape noise cancellation is reduced by
the SNR dependence on galaxy orientation (because we do not sample the
Fourier modes isotropically), which does affect the galaxy weights that are
used in the shear computation.

minimize the number of cells avoiding smearing at large scales,
which mimic primary beam attenuation. However for our specific
case (one galaxy at the phase centre) we can consider a coarser grid.
By testing the shape fitting for the same visibilities with different
grid sizes, we obtain n = 800 as the smallest size we can use (see
Rivi et al. 2016).

4.4 Code implementation

The C++/C code implemented for simulating visibility data and fit-
ting galaxy shapes is available online.14 It has been parallelized
in a hierarchical way by using the Message Passing Interface15

(MPI) and OPENMP16 parallel programming paradigms, enabling the
user to exploit HPC architectures. The first level of paralleliza-
tion (MPI) simply distributes the simulated galaxies among different
nodes/multi-core processors, each simulating and performing the
model fitting of its own chunk of galaxies. In the second level
(OPENMP), each thread computes visibilities for a different chan-
nel, which is the most computing intensive part of the code. The
main reason for such hybrid implementation is to exploit all the
CPU cores used when a large amount of RAM is required. This
happens in the realistic case where galaxies are located randomly
in the field of view because visibilities must be gridded in a very
large grid and the uv sampling before gridding must be higher, to
minimize time and frequency smearing effects.

5 R ESULTS

We simulate populations of individual galaxies whose flux densi-
ties lie in the interval 10−200 μJy, corresponding to SNR17 ≥10,
and compare input and measured galaxy ellipticity values. This
flux range has been chosen because of the telescope sensitivity
(lower bound) and in order to simulate faint galaxies with redshift
z > 0.5 (upper bound), the most relevant ones for radio weak lensing
(Bonaldi et al. 2016).

Fig. 3 shows measurements of both ellipticity components for
each simulated galaxy. The slopes of the best-fitting lines are, re-
spectively, 0.9065 ± 0.0060 and 0.9807 ± 0.0059. As expected, at
higher signal-to-noise ratios (see Fig. 4 for a population with galaxy
flux S > 50 μJy) there is a better correspondence between input and
output values. The best-fitting slopes, respectively 0.9914 ± 0.0035
and 0.9864 ± 0.0035, are closer to unity and measurements have a
reduced dispersion. Fig. 5 shows a contour plot of the measurement
noise of 104 galaxy shapes highlighting a strong dependence on the
source SNR and ellipticity value. As expected, accurate model fits
are more difficult for round galaxies at low SNR.

To measure the reduced shear g with a statistical uncertainty of
1 per cent, we generate populations of 104 galaxies. Error bars cor-
respond to the standard deviation of the shear values estimated from
1000 bootstrap resamples. Typically, 6 per cent of galaxies are not
measured as their likelihoods are too noisy: these are given zero
weight in the analysis. We estimate the shear measurement bias
for this method by applying an input reduced shear with amplitude
g = 0.04, so that we should be in a linear regime of bias measure-
ment. We consider eight different shear orientations and also the

14 http://github.com/marziarivi/RadioLensfit
15 http://www.mpi-forum.org/
16 http://openmp.org/
17 We compute the signal-to-noise ratio in the visibility domain as

SNR =
√∑nvis

i=1 |vi |2/σ 2
i , where vi are the visibilities without noise.
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Figure 3. Plots for both components of 1000 galaxy shapes fitting input
sources with flux density S ≥ 10 μJy. The left side shows the likelihood
mean and standard deviation of the measured ellipticities plotted against the
input values. The right sides show the same values binned.

Figure 4. Plots for the e1 component of galaxy shapes fitting input sources
with flux S > 50 μJy. The right side show the corresponding binned values.
Results for e2 component are similar.

Figure 5. Distribution of the measurement 1D standard deviation showing
the dependence on the source ellipticity and signal-to-noise ratio.

case g = 0, as plotted in Fig. 6. Input and measured shear ellipticity
values are compared assuming a linear bias model (Heymans et al.
2006),

gm
i − gi = migi + ci, i = 1, 2, (22)

where gm
i (resp. gi) is the i-component of the measured (resp. orig-

inal) value of the input reduced shear, mi and ci are respectively the

Figure 6. Shear measurements from which the noise bias is computed;
input values are blue points while measured values are red crosses. Top:
SNR > 10. Bottom: SNR > 25.

multiplicative and additive biases. A non-zero multiplicative bias
indicates calibration errors due to effects such as noise bias (Mel-
chior & Viola 2012; Refregier et al. 2012) or weight bias (Fenech
Conti et al. 2016) and a non-zero additive bias indicates a systematic
error due to effects such as the correlation of noise bias with the
PSF (Miller et al. 2013).

Shear bias estimates obtained from the best-fitting lines of shape
measurements at SNR > 10 are:

m1 = 0.101 ± 0.018, c1 = 0.0123 ± 0.0005;

m2 = 0.080 ± 0.018, c2 = 0.0073 ± 0.0005.

These results show different bias values for the two ellipticity com-
ponents, probably due to the asymmetry of the uv coverage (see
Fig. 2), confirming a better accuracy on the second component at
low SNR, as for the galaxy shapes. The top panel of Fig. 6 shows
the corresponding plots of the shear measurements compared with
the input values. Similarly, we compute the shear bias from simu-
lated populations with the same parameters distributions but with
different lower limit fluxes, in order to investigate its relation with
minimum SNR. The lower panel of Fig. 6 shows how the shear
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Figure 7. Plot for both components of the multiplicative shear bias for
different minimum SNR values. They are compared with SKA1 bias re-
quirements (continuum black line) and CFHTLenS calibration correction
(dash-dotted line).

measurements improve for SNR > 25, where the measured shear
bias is:

m1 = 0.0281 ± 0.0098, c1 = 0.000 65 ± 0.000 26;

m2 = 0.0318 ± 0.0098, c2 = 0.000 54 ± 0.000 26.

In Brown et al. (2015), requirements for the shear multiplicative
and additive bias for SKA and other future optical surveys are
estimated by considering three parameters: sky area, galaxy median
redshift and galaxy number density. These requirements are set
such that cosmological results are dominated by statistical rather
than systematic errors and therefore they define an upper limit on
the level of bias accuracy. The sensitivity levels have been chosen
appropriately for image domain resolution of 0.5 arcsec at Band 2
and the galaxy number densities correspond to >10σ detections.
For a 2-yr continuum survey with SKA1-MID over 5000 deg2 (as
proposed for weak lensing in Braun 2014) and zmed = 1.0, the
following constraints are obtained: multiplicative bias m < 0.0067,
additive bias c < 0.000 82.

A plot of the multiplicative and additive shear biases are shown
respectively in Figs 7 and 8. They show how the measured bias
components decrease as the SNR lower limit increases up to 40.
The additive bias turns to be comparable with SKA1 requirements
for SNR > 18, while the multiplicative bias starts to be comparable
with SKA1 requirements for SNR > 30.

At the lowest SNR values, the current method displays a multi-
plicative bias as expected from noise bias (Melchior & Viola 2012;
Refregier et al. 2012). Existing optical weak lensing surveys have
biases on shear exceeding their cosmology requirements, primar-
ily as a result of noise bias, for which an accurate mathematical
correction has not yet been devised, except possibly by averaging
over many galaxies (Bernstein & Armstrong 2014). In those sur-
veys, the approach that has been taken is to derive a calibration
for the noise bias from simulations and apply that calibration to the
measurements of the data. We may compare our results with the cor-
rection for shear measurement bias that was made for CFHTLenS
(Heymans et al. 2012). This is a ground-based optical survey with
lensing data in the optical i-band for galaxies with SNR ≥ 10.
Shear was measured by a model-fitting method using lensfit with
a multiplicative bias correction that was dependent on both galaxy

Figure 8. Plot for both components of the additive shear bias for different
minimum SNR values.

signal-to-noise ratio and size. The weighted average multiplicative
bias correction was m � 0.06, which is comparable to our results.
We expect that a post-measurement shear calibration correction may
then be applied to the radio waveband measurements that is com-
parable to that needed for the current generation of optical lensing
surveys.

The additive bias found in the radio waveband measurements is
already close to requirements, but we note that in these simulations,
an additive bias can only arise from the anisotropic sampling of
the visibility plane. This effectively results in an anisotropic im-
age domain PSF, and we expect an additive noise bias component
in this case (Miller et al. 2013). However, in radio interferome-
ter data this effect may be eliminated or mitigated by weighting
the samples in the visibility domain to improve the isotropy of the
measurement: an advantage of interferometer measurements that
is not possible with optical lensing surveys. Additive biases are
particularly important on large angular scales in the cosmic shear
correlation function, and currently residual additive biases limit
the maximum angular scales that may be probed in cosmologi-
cal analyses (Heymans et al. 2013; Kilbinger et al. 2013). In the
case of SKA, the visibility domain anisotropy will be a function
of the declination of the field being observed (here we have sim-
ulated a field that transits close to the zenith), so larger isotropy
weighting corrections may be needed at more extreme observation
declinations.

6 D I S C U S S I O N O N T H E FI T T I N G O F M A N Y
S O U R C E S IN T H E V I S I B I L I T Y D O M A I N

A full analysis method should be able to measure the shapes of
all galaxies in the field of view. The main challenge for SKA is
the large number of sources contained in the primary beam (up to
104 for SKA1). We envisage an initial imaging step would allow
identification of the locations of all detected sources in the field, and
those positions could then be used to fit models to the visibility data.
For fitting the shapes of so many sources we propose two possible
approaches: either joint fitting all of them, taking into account the
computational effort, or following the optical case by extracting
a single or a small group of clustered galaxies at a time, which
are much easier to fit simultaneously, taking into account possible
effects that such a procedure could introduce in the data. We plan
to investigate both directions as follows.
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6.1 Joint fitting of all sources

A Bayesian method able to deal with a large number of parameters is
Hamiltonian Monte Carlo (HMC). It exploits techniques developed
for Hamiltonian dynamics to suppress random walk behaviour in
the distribution sampling and maintain a reasonable efficiency even
for high dimensional problems. For a review about the method see
Neal (2011). HMC has been already used in the estimation of the
CMB power spectrum from simulated WMAP data, where it has
been able to fit 2 × 105 parameters and performed favourably even at
low signal to noise (Taylor, Ashdown & Hobson 2008). This method
requires the gradient of the distribution that is sampled, that in our
case will be the likelihood function. We can provide it analytically
because the visibility model is the sum, over the number of sources
N, of the visibilities at the phase centre V0 (given by equation 12),
phase shifted at the position coordinates (ls, ms) of each source:

V (u, v) =
N∑

s=1

V0(u, v)e− 2πi
λ (uls+vms ), (23)

where the parameters are the ellipticity components, scalelength
and (possibly) the spectral index of the sources.

6.2 Extraction of a single or few sources

For the other approach we propose to select each source by fol-
lowing the faceting technique (Cornwell & Perley 1992), already
established for the SKA imaging pipeline in order to make image
computation feasible and reduce the wide-field problem. It splits up
the field of view into a number of facets by phase shifting the visi-
bilities, so that the new pointing direction is at position of interest,
and gridding them in a coarse grid (whose size is dependent on the
size of the facet). In this way, the contribution to each visibility from
sources far from the new phase centre is strongly down-weighted
by the sinc Fourier transform of the tophat gridding function. In
this approach, we would select a source by shifting the phase centre
and using a grid size similar to the one adopted in this work (this
procedure is analogous to the optical survey approach of extracting
a postage stamp for each galaxy in the image domain and Fourier
Transforming it to the visibility domain).

A limitation of this approach might be contamination within
a faceted region from bright sources in the field, with sidelobes
passing through the region. It may be possible to remove such
contamination by first CLEANing the large-scale image, produced as
part of the normal SKA data analysis, before the postage stamp
extraction and subtracting the CLEANed visibilities before extracting
the faceted postage stamp data for the lensing measurement.

At higher galaxy densities, where there may be multiple galaxies
within a faceted region, we may jointly fit a relatively small number
of galaxies within each facet, which is more tractable than joint
fitting to thousands of galaxies. This should be possible at least for
the surface density of galaxies in SKA1, where there is no confusion:
in fact the synthesized beam FWHM is ∼0.5 arcsec and therefore
we expect to have 10−5 galaxies per beam area.

We propose that this approach is used to reduce the number of
sources to be simultaneously analysed when full joint fitting is not
computationally feasible or is too expensive.

7 C O N C L U S I O N S

We have presented an adaptation to radio observations of lensfit
(Miller et al. 2013), an algorithm for shear measurement for optical

weak lensing surveys. Our version of the method, called RadioLens-
fit, works directly in the visibility domain, where radio interferome-
ter data are observed, and fits a galaxy model computed analytically
as the Fourier transform of a Sérsic exponential brightness profile.

We tested this method for the simple case of individual galaxy
visibilities using the SKA1-MID baseline configuration for a con-
tinuum survey using the first 30 per cent of frequency Band 2. Sim-
ulated galaxies have been located at the phase centre with flux and
scalelength values generated randomly according to distributions
that we have estimated from the VLA SWIRE catalogue. As we
have no information about ellipticity distributions of faint galaxies
in the radio regime, we have adopted the optical distribution of
galaxy ellipticity modulus, while orientations were generated uni-
formly around circles in the ellipticity plane in order to be free of
shape noise. We have measured the sensitivity to shear and esti-
mated the noise bias for the RadioLensfit method at various SNR
lower limits.

This work demonstrates that galaxy shape measurement in the
visibility domain provides acceptably accurate values, with mul-
tiplicative shear bias on average comparable with the calibration
correction applied in the ground-based optical survey CFHTLenS,
and additive bias comparable to the requirements on a 5000 deg2

SKA1 survey for SNR > 18. We have noted that additive biases
may be better controlled in radio interferometer data than in optical
surveys, as any anisotropy of the visibility data may be mitigated
in the shape measurement process by suitable weighting of the
measurements.

We have discussed possible approaches for the fitting of many
sources in the primary beam, proposing either to use HMC or to
select a single source, or few clustered sources, at a time with a
‘phase shift and gridding’ faceting technique. These approaches
will be both investigated in future work.

We also aim to test this method for simulations where individual
galaxies are located randomly in the field of view, rather than being
at the phase centre, to put constraints on the number of output
channels and the visibility grid size, and further test whether such
an approach can in principle meet the requirements of a radio weak
lensing survey. The results presented here are encouraging in that
respect.
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A P P E N D I X A : C OVA R I A N C E M AT R I X O F T H E
VISIBILITIES

Following Wrobel & Walker (1999), we can obtain the covariance
matrix of the visibility noise by computing the covariance values
in a similar way adopted for variances. The covariance between the
output from two baselines is given by

cov(Pij , Phk) = 〈PijPhk〉 − 〈Pij 〉〈Phk〉, (A1)

where Pij and Phk are the power for an interferometer involving
antennas pairs (i, j) and (h, k) after the cross multiplication in the
correlator.

If ij = hk, then we have the variance for the single baseline
(Wrobel & Walker 1999):

σ 2(Pij ) = 1

2η2
s 
ντacc

(S2
c + SiSj + SiSEFDj + Sj SEFDi

+ SEFDiSEFDj ), (A2)

where Si is the source flux measured by antenna i, Sc is the correlated
flux, and SEFD is the antenna System Equivalent Flux Density,
defined as the flux density of a source that would deliver the same
amount of power in Jansky of the antenna temperature.

Similarly, if two baselines share one single antenna then

cov(Pij , Pjk) = 1

2η2
s 
ντacc

(S2
c + ScSj + ScSEFDj ). (A3)

Finally, if the two baselines have no antennas in common then the
only contribution to the covariance between their outputs is from
the source flux density:

cov(Pij , Phk) = 1

η2
s 
ντacc

S2
c . (A4)

In the weak source regime, S 	 SEFD and the ratio of a visibility
variance to the covariance between such a visibility and another
one from a baseline sharing one antenna is approximately S/SEFD.
For SKA1-MID dishes, whose SEFD = 400 Jy, this ratio is of the
order of 10−3 for an amount of 104 faint sources per beam with
on average a flux density S ∼ 50 μJy (as observed in weak lensing
surveys) and therefore it is negligible. Therefore for weak lensing
observations we can assume the covariance matrix of the visibilities
to be diagonal with

σ 2(Pij ) = 1

2η2
s 
ντacc

(SEFDiSEFDj ). (A5)
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