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Automated  microfluidic  devices  are  a promising  route  towards  a point-of-care  autologous  cell  therapy.
The  initial  steps  of induced  pluripotent  stem  cell  (iPSC)  derivation  involve  transfection  and  long  term
cell  culture.  Integration  of these  steps  would  help  reduce  the cost  and  footprint  of  micro-scale  devices
with  applications  in cell reprogramming  or  gene  correction.  Current  examples  of  transfection  integration
focus  on  maximising  efficiency  rather  than  viable  long-term  culture.  Here  we  look  for  whole  process
compatibility  by integrating  automated  transfection  with  a perfused  microfluidic  device  designed  for
utomated transfection
icrofluidic cell culture

utologous cell therapy
ell culture
mbryonic stem cells

homogeneous  culture  conditions.  The  injection  process  was  characterised  using  fluorescein  to  establish
a  LabVIEW-based  routine  for user-defined  automation.  Proof-of-concept  is  demonstrated  by chemically
transfecting  a GFP  plasmid  into  mouse  embryonic  stem  cells  (mESCs).  Cells  transfected  in the  device
showed  an  improvement  in  efficiency  (34%,  n  = 3)  compared  with  standard  protocols  (17.2%,  n  =  3).  This
represents  a first step  towards  microfluidic  processing  systems  for cell reprogramming  or  gene therapy.

©  2016  The  Authors.  Published  by  Elsevier  Ltd.  This  is  an  open  access  article  under  the  CC  BY license
. Introduction

There is a need to develop systems for the safe and economi-
al production of cell therapies [1]. Autologous cell therapies only
equire a small starting cell population from a patient blood or
kin sample. To derive iPSCs this somatic population needs to be
ransfected with pluripotent factors and maintained in stable long-
erm culture. Once derived, these cells can be further expanded and
ifferentiated in downstream processing steps for transplantation
ack into the patient. First clinical trials for such autologous ther-
pies are already underway in Japan for the treatment of macular
egeneration. For this therapy, a small sheet consisting of retinal
igment epithelial (RPE) cells (5 × 104 cells) is transplanted into
he patient’s retina [2,3]. A scale-down approach to bioprocess-
ng particularly benefits treatments that require low cell input for
ransplant, such as required for an RPE-retina graft [4].

A key goal in bioprocessing is process integration to simplify
nit operations, shorten residence times and reduce footprints
5,6]. Integration can have additional advantages in cell processing,
uch as increasing cell viability by reducing the need for enzymatic
Please cite this article in press as: W.  Raimes, et al., Transfection in 
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etachment [7]. A recent example of integration in cell process-
ng was demonstrated with cell expansion and differentiation in a
ingle stirred reactor, where micro-carriers have been used to con-
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vert human pluripotent stem cells (hPSCs) into cardiomyocytes or
neural progenitors. This was achieved with a high cell yield, low
chance of contamination and a controlled aggregate size [6,8]. A
scale-down approach to autologous cell therapy presents an ideal
platform to test and validate integration of unit operation steps.
Transfection and long-term culture are important steps specific to
iPSC therapies that could benefit from integration.

Electroporation is often regarded as having the highest effi-
ciency of currently available micro-scale transfection approaches
[9]. For example, cells were recently cultured on a porous poly-
carbonate substrate and transfected by localised electroporation
to maintain high cell viability [10]. Integration of electrodes, how-
ever, typically increases the complexity of both device design and
control [11]. Chemical transfection is a simpler method, and effi-
cacy and viability continue to improve with each new commercial
reagent [12]. It is important that transfecting agents are introduced
in an automated fashion to minimise environmental fluctuations or
operator bias, which are more likely to occur with manual proce-
dures, and ultimately to improve robustness and reproducibility of
the transfection process. A number of microfluidic culture devices
have demonstrated chemical transfection of cultured cells [13–16].
Examples include a digitally controlled cell-microchip with paral-
lel circular culture chambers [13], and a self-contained system with
perfused microfluidic cell culture devices: A case study, Process

near-chip peristaltic micro-pumps [16], both designed for combi-
natorial cell-based assays.

Integrated transfection devices described thus far compromise
on two  aspects essential for long-term stem cell culture: a uniform

nder the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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ulture microenvironment and real-time analysis of growth kinet-
cs and transfection outcome. To avoid compromise we integrate

 two-position valve to automate the injection of a transfection
eagent upstream of a microfluidic device that we previously devel-
ped and characterised for the long-term perfusion culture of
dherent stem cells [17]. Our device offers uniform medium flow
ver the cell culture chamber and control over the dissolved gas
oncentrations [17,18], and a fully automated and on-line culture
onitoring system [19]. Furthermore, we successfully demonstrate

ransfection of mouse embryonic stem cells (mESCs), and we com-
are the efficiency of the transfection in the microfluidic device
ith a well-established manual culture protocol.

. Materials and methods

.1. Fabrication of the microfluidic cell culture device

The microfluidic culture device was fabricated according to
acown et al. [17]. Gaskets, gas-permeable lids and the microflu-

dic chip were cast from poly(dimethylsiloxane) (PDMS, Sylgard
84, Dow Corning, USA). A rigid polycarbonate holder in a screw-
own aluminium frame was used to compress the microfluidic
hip, which contained the fluidic channels and the culture cham-
er, against a tissue-culture polystyrene (TC-PS) microscope slide
260225, Elektron Technology Ltd, UK). The culture surface was
.52 cm2 and the lid defined the height of the perfusion chamber
t 450 �m,  giving a chamber volume of ∼25 �L.
Please cite this article in press as: W.  Raimes, et al., Transfection in 
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.2. Pressure-Driven pumping system

The pressure-driven pumping system consisted of a gas supply
21% O2, 5% CO2, N2; BOC, UK) connected to a flow control sys-

ig. 1. (A) A schematic of the perfusion system with feedback from the flow meter contr
ransfection mixture from the reagent reservoir is pushed into the injection loop by gas
eagent  will move into the chip. (B) The two possible positions of the injection valve: X = r
evice.
 PRESS
istry xxx (2016) xxx–xxx

tem (OB1, Elveflow, France) which fed into a medium reservoir
(DURAN® bottle with GL-45 cap, Schott AG, Germany). The pressure
was regulated by feedback control for a set flow rate of 5 �L min−1.
The outlet of the medium reservoir was connected to a flow sensor
(MFS 2, Elveflow, France), which fed into a low pressure, six-port
injection valve (C22-3186EH, VICI AG International) with a 50 �L
injection loop (Fig. 1A). The flow control system and injection valve
were automated using LabVIEW (National Instruments, USA). The
microfluidic culture device connected with the injection valve via
a 10 cm long, 0.0635 mm inner diameter (ID) tubing (PEEK, IDEX
Health & Science, USA). The device parts, medium reservoir and
tubing were sterilised by autoclave and assembled in a biosafety
cabinet under sterile conditions.

2.3. Cell culture

Mouse ESC were maintained as previously reported by Macown
et al. [17]. The TC-PS slide was coated with 0.1% (w/v) gelatin
(G1890, Sigma-Aldrich, UK) solubilised in Dulbecco’s Phosphate
Buffer Solution (D1408, Sigma-Aldrich, UK) for 15 min  at room
temperature. The mESC culture medium consisted of knock-out
Dulbecco’s modified Eagle medium (10829-018, Life Technologies,
UK) supplemented with 15% v/v fetal bovine serum (26140-079,
Life Technologies, UK). Priming and seeding of the microfluidic cell
culture device was  performed as described by Macown et al. [17].
Briefly, a suspension of mESCs (in culture medium) were seeded
by pipette at a density of 2 × 105 cells.cm−2. Cells were allowed to
perfused microfluidic cell culture devices: A case study, Process

attach for 6 h in a 37 ◦C incubator before the start of perfusion. Dur-
ing perfusion the device was placed on the stage of an automated
microscope (Eclipse Ti-E, Nikon Instruments, UK) at 37 ◦C in a cage
incubator (Okolab, Italy).

olling the flow of culture medium into the microfluidic cell culture device (MFCD).
 from the pressure regulator; once it has filled the loop, the valve will switch and
eagent loading into loop, and Y = reagent injection into the microfluidic cell culture

dx.doi.org/10.1016/j.procbio.2016.09.006
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.4. Automated transfection in microfluidic culture device

Cells were transfected 24 h after the start of perfusion. The trans-
ection mix  consisted of a 2:3 ratio mixture of Lipofectamine®

000 (L3000-015, Life Technologies, UK) and GFP episomal plas-
id  (pCXLE-GFP, 27082, Addgene) in serum-free culture medium,

ollowing the protocol provided by Life Technologies (UK). 100 �L
f the transfection mix, containing 1 �g plasmid DNA and 1.5 �L

ipofectamine, was placed in a 1.5 mL  Eppendorf® microfluidic
eservoir (KRXS, Elveflow, France). The reservoir was  connected to
he injection valve sample loop and to the pressure-driven pumping
ystem (Fig. 1A). A LabVIEW routine (National Instruments, USA)
utomated the loading of the 50 �L injection loop from a second
ressure channel, followed by a valve switch to flow the transfec-
ion mix  to the culture chamber which held a maximum volume of
25 �L (Fig. 1B). Once the culture chamber was  full of the trans-

ection mixture, the pressure of the pumping system was  switched
ff for 2 h. After this time culture medium perfusion was resumed
t a flow rate of 5 �L min−1 to flush the transfection mix  out of
he culture chamber. Phase contrast microscopy images were taken
4 h post-transfection at 10×magnification using the microscope’s
igital camera (DS-Fi1, Nikon Instruments, UK).

.5. Transfection in well plates

Mouse ESCs were seeded in TC-PS 24-well plates (#3524, Corn-
ng, USA) at a density of 2 × 105 cells.cm−2. The transfection mix
escribed in section 2.4 (100 �L per well) was incubated for 10 min
t room temperature and added to the culture wells containing
00 �L serum-free culture medium. Cells were then incubated for

 2 h period at 37 ◦C. After transfection, cells were incubated for a
4 h period in fresh medium containing serum. Pictures were taken
sing a digital fluorescence microscope (EVOS® FL AMEFC4300, Life
echnologies, UK).

.6. Transfection analysis

Cells (both from device and well plates) were enzymatically
etached (TrypLE select, 12563029, Life Technologies, UK) 24 h post
ransfection, and re-suspended in fresh medium before being ana-
ysed with a flow cytometer (BD-Accuri C6, BD Biosciences, UK). GFP
xpression was assessed with the FL1 detector of the flow cytome-
er. Transfected samples results were gated, excluding 99% of the
n-transfected negative control population, to calculate the per-
entage of GFP-positive cells. All experiments were conducted in
riplicates.

.7. Injection time characterisation

A 20 �g mL−1 fluorescein solution (F6377-100G, Sigma-Aldrich)
as used to measure injection times and concentrations in the cul-

ure chamber of the microfluidic device. Progression of the solution
n the chamber was assessed by fluorescence microscopy imaging
t 2× magnification. Images were acquired every minute during
njection and wash-out of the solution, and every 30 min  during
he static period. Pixel intensities at different injection times were

easured across the centre of the chamber using ImageJ [20]. A cal-
bration curve was established measuring different concentrations
f fluorescein in static conditions (no flow). To reduce the effect
f photo-bleaching, the microscope epifluorescence lamp was  only
witched on during image acquisition.
Please cite this article in press as: W.  Raimes, et al., Transfection in 
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.8. Residence time distribution

A UV absorbance detector (D100 ActiPix, Paraytec Ltd, UK) for
he detection of a tracer compound was connected to the effluent
 PRESS
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stream of the microfluidic cell culture device (Supporting Material
A). Fluid flow was  delivered by a low pressure neMESYS syringe
pump (Cetoni GmbH, Germany). A 254 nm filter with a 12 nm
bandwidth (254BP12, Omega Optical Inc., USA) was  used to deter-
mine the step change between water and the tracer compound,
a 200 mgL−1 aqueous solution of l-tryptophan (Sigma, UK). The
tracer solution contained additionally 4 mM Allura red (Sigma, UK).
A calibration curve was  carried out by scanning different concen-
trations of the tracer. The cumulative response to the step change,
F(t), was defined as:

F (t) = Cout (t)
Cout,max

(1)

where Cout(t) and Cout,max were the concentration of the tracer in
the outlet at time, t, and the maximum tracer concentration, respec-
tively. The step change function was plotted against the normalised
residence time, defined as:

� = Q

VS
.t (2)

where Q and Vs were the flow rate and the setup volume, respec-
tively. The setup volume comprised the volume of the microfluidic
culture device, the downstream fluidic connectors and the mea-
surement capillary (100 �m inner diameter, Postnova Analytics UK
Ltd, UK).

The percentage of stagnancy (PS) was calculated as

PS (%) = � − �e
�

× 100 (3)

where � and �e were the residence time (Vs/F) and the apparent
mean residence time, calculated from the F(t), respectively. Mea-
surements were performed in triplicates.

3. Results

3.1. Characterisation of residence times

In order to achieve proper characterisation of the transfection
efficiency and to enable meaningful comparison with the batch
operation modes of well plates, we conducted an analysis of the
residence time distribution (RTD) in our setup (Fig. 2A). The RTD
analysis of the culture device showed that the percentage of stag-
nancy was less than 1% (when compared with Cout,max, as described
in Eq. (1)). This indicates that in the culture chamber all cells
are exposed to an equal concentration of transfection reagent. A
fluorescein solution injection showed that 89.5% of the theoreti-
cal maximum concentration was reached ∼13 min  post injection
(Fig. 2B). Multiplying this time (∼13 min) with the set flow rate
(5 �L min−1) gave us an accurate estimation of the pre-chamber
volume (65 �L) for the LabVIEW-based automation of the setup.
During the 2 h-long static phase, the relative fluorescein concentra-
tion decreased from 89.5% to 84.8% before the chamber was flushed
(Fig. 2B).

3.2. Microfluidic cell culture device transfection

Twenty-four hours after transfection, GFP expression was visu-
ally assessed with fluorescence microscopy in the device (Fig. 3A)
and the control wells (Fig. 3B). Additionally, flow cytometry was
used to determine the percentage of GFP-positive cells in both cell
populations (Supporting Material B). In the 24 well plate controls
17.2 ± 0.8% of the cells were GFP-positive. In the valve-mediated
perfused microfluidic cell culture devices: A case study, Process

transfection 34.0 ± 3.9% of the cells in the device expressed GFP
(Fig. 3C). A comparison of the average median fluorescence inten-
sity (MFI) values of the GFP expressing populations indicates that
cells transfected in the device had an MFI  three times higher

dx.doi.org/10.1016/j.procbio.2016.09.006


Please cite this article in press as: W.  Raimes, et al., Transfection in perfused microfluidic cell culture devices: A case study, Process
Biochem (2016), http://dx.doi.org/10.1016/j.procbio.2016.09.006

ARTICLE IN PRESSG Model
PRBI-10797; No. of Pages 6

4  W.  Raimes et al. / Process Biochemistry xxx (2016) xxx–xxx

Fig. 2. (A) Cumulative response, F(�),  of the normalised residence time, �, of the microfluidic cell culture device (MFCD). The tracer concentration was 0.2 gL−1 delivered at
a  flow rate of 5 �L min−1. LFR − laminar flow reactor. (B) Residence time of fluorescein injected into a microfluidic cell culture device via an automated two-way valve at
5  �L min−1. After 13 min, maximal concentration (89.5%) was  reached and flow was  switched off. After 120 min  flow resumed flushing the device. Images were taken every
minute  for injection/flushing and every 30 min  during the static period. Values are the mean of three independent experiments, error bars display standard deviation.

Fig. 3. (A, B) 10 × FITC and phase contrast merged images of transfected cells in the microfluidic cell culture device (MFCD) and 24-well plate, respectively. Scale bar: 200 �m.
(C)  GFP expression and median fluorescence intensity for mESCs transfected with lipofectamine in the automated MFCD and a 24 well plate, measured using flow cytometry.
Values  are the mean of three independent experiments, error bars display standard deviation.

dx.doi.org/10.1016/j.procbio.2016.09.006
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8.81 × 105 ± 2.89 × 105 RFU) than those transfected in the well
3.13 × 105 ± 0.7 × 104 RFU) (Fig. 3C).

. Discussion

A uniform concentration of transfection mix  across the culture
urface is necessary for efficient chemical transfection. In addi-
ion, a precise knowledge on the residence time of the transfection
gent in the microfluidic culture chamber, i.e when the transfection
gents enter and leave the culture chamber, is required to define
he duration of reagent exposure. At the microscale, the flow in the
ulture device and tubing is laminar, therefore the delivery method
ust be precisely controlled. The parabolic flow profile of laminar

ow systems ‘smears’ the distribution of reagent concentrations
n flow. Calculating the time required for the transfection reagent
o move from the injection valve to the culture chamber by divid-
ng the ‘post-valve’ volume of the tubing by the flow rate during
erfusion (5 �L min−1) alone would therefore not provide an accu-
ate knowledge of when the reagent would reach the chamber.
urthermore, calculated dead-volumes are only approximations;
xperimental determination was required to gain exact knowl-
dge. As such the pre-chamber volume, i.e. the volume between
he valve and the culture chamber, was determined by multiplying
he post valve perfusion time with the set flow rate. This volume
as applied in a LabVIEW event loop with real-time feedback from

he flow meter each second (Supporting Material C). Once this vol-
me  reaches zero (as determined by the fluorescence signal) the
aximum chamber reagent concentration has been reached and

he system automatically stops perfusion. Following this, a count-
own starts before perfusion is restarted. It is important to incubate
ransfection reagent with DNA prior to transfection to ensure for-

ation of lipo-complexes, however leaving this >15 min  can cause
 loss in transfection efficiency. Using the automated valve system,
e can ensure that the time taken for the reagent mix  to reach

he chamber (i.e. incubation time) remains below this protocol-
pecified maximum.

It was not possible to completely saturate the culture chamber
ith fluorescein solution (89.5%) due to diffusion into the carrier
edium during the injection process. The Stokes-Einstein equation

tates that the diffusion coefficient is proportional to the squared
elocity of the diffusing particles, which is inversely related to the
ize of the particle. A lipo-complex (DNA:Lipid, ∼300 nm)  is larger
han a fluorescein molecule (∼0.45 nm)  therefore has a lower dif-
usion rate. Thus the fluorescein concentration in the chamber will
e lower than that expected for the larger lipocomplex. The fur-
her reduction in concentration seen over the full time course of
he static transfection period is due to a small amount of fluores-
ein diffusion out of the culture chamber. To reduce diffusion into
he carrying medium during the injection process, the injection
oop (50 �L) provided double the volume of reagent required to fill
he chamber. This means that once the maximum concentration is
eached and the incubation phase begins, this excess transfection
eagent remains in the pre-chamber tubing. This will pass over the
ells at the end of the static period and therefore may  contribute to
ncreased efficiency present in the culture chamber, though expo-
ure time is minimal.

The 1.8-fold transfection efficiency increase found in the device
ompared to the well plate can be explained by both the difference
n surface-area-to-volume ratio (SA:V) and the necessary dilution
f transfection mix  in the well plate. The microfluidic cell cul-
ure device present a SA:V five times greater than a traditional
Please cite this article in press as: W.  Raimes, et al., Transfection in 
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ulture well in a 24 well plate with a working volume of 500 �L.
his shortens dramatically the diffusion timescale of the DNA:lipid
omplexes to reach the cells. Shallow enclosed microfluidic chan-
els provide a clear advantage over larger open culture wells,
 PRESS
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with working volumes kept to a minimal since evaporation is no
longer a concern. An improved efficiency is obtained for a reduced
transfection reagent input. This proof-of-concept thus successfully
demonstrates the injection valve as a functional approach for auto-
mated in-situ transfection in the perfused microfluidic device.

We can estimate the diffusion coefficient of lipoplexes in
medium (D) to be 10−12 m2 s−1 using the Stokes Einstein equation:

D = kBT

6�pa

Where T is the absolute temperature (310.15 K), kB is the Boltz-
mann constant, p the medium viscosity (assuming that of water,
691.6 10−6 Pa.s, at 37 ◦C) and a the particle radius (assuming spher-
ical, 300 nm). We  use D to compare the characteristic time (t) of
diffusion in a two-dimensional plane between the medium height
(H) in the chamber (∼450 �m)  relative to the well plate (∼10 mm)
using Einstein’s relation:

t = H2

2D

This comparison shows that it takes over 400 times longer for
lipoplexes to diffuse across the well relative to the culture cham-
ber considering the difference in medium height alone. This can
also explain the MFI  difference between the two culture vessels;
cells in the microfluidic culture device received a higher individ-
ual eGFP load and therefore expressed more GFP than cells in the
well. Further investigation of diffusional properties may  be neces-
sary depending on the non-integrating reprogramming vector used
(i.e. episomal, mRNA or viral) [21].

Luni et al. recently published the first example of iPSC con-
version in a microfluidic device [22]. Micro-volume confinement
resulted in increased efficiency of iPSC conversion over traditional
well-plate methods due to an increased concentration of endoge-
nous signalling molecules. The authors used an on/off pneumatic
valve system for daily medium replenishment and transfection of
reprogramming factors. In contrast, we  present a more complex
culture system, which caters for switching between static trans-
fection and controlled medium perfusion. As a proof-of-concept
we focus here on demonstrating the benefits to transfection effi-
ciency at the micro-scale. As of yet, there has been no report of
perfusion used for cell reprogramming. There are however a num-
ber of advantages to the use of microfluidic perfusion culture. For
example, the expansion rate of iPSCs increased with continuous
perfusion relative to periodic medium changes [23]. By disrupting
endogenous signalling, perfusion can also allow for a clearer iden-
tification of reprogramming-enhancing extrinsic factors [24,25].

5. Conclusions

We investigated transfection in a microfluidic device designed
for long-term adherent cell culture as a first step towards realising
a scale-down tool that mimics the process integration necessary to
derive iPSCs from patient cell samples. A bespoke LabVIEW routine
automates the delivery of small volumes of transfection reagents to
a perfusion microfluidic device via a six-port injection valve. This
system is capable to be customized to account for different flow
rates or incubation times in order to personalise the transfection
process. Applicability has been shown by chemically transfecting
mouse embryonic stem cells with a GFP plasmid. A higher efficacy
was obtained in our device (34%) compared to standard culture
perfused microfluidic cell culture devices: A case study, Process

protocol (17.2%). The better performance of an automated setup,
together with the advantages of microfluidic devices, will ulti-
mately allow for these systems to be used for cell reprogramming
or for gene correction therapies.

dx.doi.org/10.1016/j.procbio.2016.09.006
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