
glTF Streaming from 3D Repo to X3DOM

Timothy Scully1, Sebastian Friston2, Carmen Fan1, Jozef Doboš1 and Anthony Steed2

13D Repo Ltd, London, UK
2University College London, UK

Figure 1: An example of a 3D model shown with visibility culling in a web browser reducing the immediate GPU memory consumption. The
view from outside (left) consumes 693 MB, whereas the view from the inside (right) with visibility culling consumes only 161 MB of the GPU
memory. This is a part of a much larger scene shown in Fig. 8. Model courtesy of Canary Wharf Contractors Limited.

Abstract

As Web3D technology advances, the need for delivering real-time
3D content online has gained traction in the academic as well as
commercial world. Various efforts have been made in creating a
suitable transmission format for streaming of 3D assets over the
Internet. Despite being accustomed to waiting for long periods of
time for massive scenes to load in CAD editors, end users often ex-
pect an instant rendering on a web browser. An effective streaming
transmission format, coupled with progressive encoding methods,
is able to create a better interactive experience for the users. Most
of the existing techniques are either domain specific, tying the users
in on a particular rendering engine, or they are too general; result-
ing in extra processing at the application level. In this paper, we
demonstrate a novel method of transmitting 3D assets in glTF for-
mat for high interoperability and scalability in 3D Repo. Firstly,
we extend glTF with the ability to stream binary data buffers with a
progressive encoding technique to increase performance and overall
client interactivity. Next, we extend X3DOM for glTF support and
introduce multipart optimization into glTF as a way of grouping
multiple meshes together which significantly reduces the number
of network requests as well as draw calls. Finally, we investigate
memory management protocols and devise a novel GraphicsMem-
oryManager suitable for streaming on top of X3DOM in order to
render models that otherwise would not fit available video memory.

Keywords: streaming, multipart, glTF, 3D Repo, REST

Concepts: •Information systems → RESTful web services;
•Computing methodologies→ Graphics file formats;

Web3D ’16,, July 22 - 24, 2016, Anaheim , CA, USA
ISBN: 978-1-4503-4428-9/16/07
DOI: http://dx.doi.org/10.1145/2945292.2945297

1 Introduction

There is an increasing demand for rendering of massive 3D models
online. This is especially true in the architecture, engineering and
construction (AEC) sector where demand increased by the intro-
duction of the government mandated Building Information Mod-
elling (BIM). The mandate describes a shared data model which
collates all information for a construction project with the aim of
increased collaboration and efficiency at both design and construc-
tion time. Due to the ubiquitous nature of cloud based platforms,
it forms the perfect candidate to base such a system on. However,
a working solution needs to be developed to deal with large mod-
els like those represented in Figs. 2 and 8. An exemplar such as
this can be federations of several detailed sub-models and consist
of millions of components, and with a large number of projects of
comparable size there is a need to develop the technology further.

There are several challenges associated with rendering large com-
plex models on the web, some of which are shared with desktop
based systems. The first is overcoming memory limitations of small
mobile devices and those imposed by browsers. The second is ren-
dering a large number of disparate meshes resulting in a large num-
ber of network requests and draw calls. However, these two chal-
lenges are juxtaposed with each other; the former seeks to render
only partial models on a granular level, whereas the latter looks to
render everything at once. In this paper, we develop a streaming
system that attempts to address both challenges. We conclude by
looking at the performance of the system under different conditions.

Several transmission formats have been created which are suitable
for web-based streaming, e.g. [Limper et al. 2014; Sutter et al.
2014]. However, many of these formats are tied to a specific ren-
derer reducing the opportunity for interoperability, see §2 for de-
tails. Progressive encoding techniques such as [Limper et al. 2013a]
have endeavoured to reduce bandwidth requirements as well as al-
low for lower level of detail representations to be rendered before
all data is transmitted. This results in higher interactivity, but does
not necessarily reduce the memory footprint.

http://dx.doi.org/10.1145/2945292.2945297

X3DOM Client3D Repo Bouncer

Assimp REST API

Web Service

3D Repo

convert

Optimize glTF encoder

3D Files
Internet

Streaming

Rendering

 C++ JavaScript

glTF decoder

Memory

Manager

S
e
c
u
ri

ty

MongoDB

Figure 2: High-level processing pipeline overview. 3D files are firstly processed by Open Asset Import Library (Assimp), then converted to
3D Repo internal VCS format and stored in the DB. Next, they are optimized and converted into glTF for DB “stashing”. The data is then
streamed through REST API to the X3DOM client for rendering. All processing-intensive parsing and optimization is done in C++ while
data serving and client-side visualization is implemented in Javascript using a combination of NodeJS, AngularJS and X3DOM.

In this paper, we present a solution based on the open source revi-
sion control system 3drepo.io [Scully et al. 2015]. We adapt it to
face the aforementioned challenges by integrating a streaming ar-
chitecture. This works by reconstituting smaller disparate meshes
into a large supermesh that can be rendered in a single draw call.
Such a reconstitution process happens in parallel to the rendering
thread in order to avoid degrading overall system interactivity. The
fixed nature of the revisions means that we do not deal with dy-
namic or otherwise animated models. In addition, the particular
use case of inspecting construction models means that reconstitu-
tion needs only to happen in reasonably interactive but not neces-
sarily real time. We drive the selection for reconstitution based on
the current viewing frustum and a mesh prioritization function. Fi-
nally, we integrate support for POP Buffer [2013a] encoding to al-
low progressive visualization in the future. The culmination of this
is a system that can provide the user with interactive model inspec-
tion facilitating the rendering of much larger models than before.

Contributions. Our main contributions are as follows:

1. glTF extension of X3DOM
2. Multipart extension of glTF
3. Geometry streaming using glTF
4. POP Buffers extension of multipart extension of glTF
5. GraphicsMemoryManager for out-of-order rendering
6. Open source implementation of 1. to 5. available on GitHub

2 Related Work

Web3D rendering. Recent advances such as 3drepo.io [Scully
et al. 2015] building on top of 3D Repo [Doboš et al. 2013] and we-
bVis/Instant3DHub [Behr et al. 2015] on top of [Jung et al. 2012]
began to provide support for commercial web-based 3D rendering.
An extensive review of other Web3D trends can be found in Mouton
et al. [2011]. Historically, the two main streams of Web3D repre-
sent both imperative [Dirksen 2013] as well as declarative [Behr
et al. 2009; Sons et al. 2010] approach to defining 3D on the web.
This paper is a direct extension of 3drepo.io [Scully et al. 2015]
based on declarative X3DOM [2009] adding support for new data
format, streaming and memory management.

Data formats. Due to the popularization of WebGL [Khronos
Group 2014], many efforts have been made on designing a new
file format suitable for transmission of 3D geometry over the In-
ternet. Apart from the early days of embedding geometric data di-
rectly into HTML—which proved unsuitable for larger models—
one of the attempts was using images and binary geometry in [Behr
et al. 2012]. These, together with other formats based on JSON,
BSON and OpenCTM [Geelnard 2009] were contrasted in [Doboš

et al. 2013], with a similar study being concurrently performed by
Limper et al. in [2013b]. Such formats were later superseded by the
Shape Resource Container (SRC) [Limper et al. 2014] where ren-
dering buffer is specified as multiple buffer chunks allowing data to
be progressively transmitted over a network. To cope with large
models online, they further introduced bounding interval hierar-
chies (BIH) which are spatial data structures calculated on the client
to accelerate visibility culling [Stein et al. 2014]. Similarly, [Sutter
et al. 2014] defined a format called Blast; a generic container dedi-
cated to efficient streaming of binary data in self-contained chunks.
However, Blast is a typeless container that can support any kind of
data on a key-value pair basis. Hence, the client has to decode and
interpret the data at the application level, making it less interopera-
ble despite arguably being more flexible.

What was missing, however, is a single ratified format for the web.
Although COLLADA [Arnaud and Barnes 2006] has long been
the de-facto standard for asset exchange between authoring tools,
it is unsuitable for web-based delivery and fast rendering. There-
fore, the GL Transmission Format (glTF) [Khronos Group 2016]
was devised taking inspiration from previous work such as SRC. A
scene within glTF is described in a single JSON header file, with
buffer data, shaders and textures divided into separate binary files.
However, the nature of the specification does not support any form
of progressive transmission of binary data. Very recently, work
has been done by [Cozzi et al. 2016] creating a variation of glTF,
known as KHR binary glTF. Similar to SRC, the binary data is con-
catenated with a JSON header describing the format, length of the
JSON scene structure and length of the entire file. The extension
KHR_binary_glTF is introduced to allow for creation of buffer
views into the appended binary data, embedding binary data within
the glTF to save network requests without the need to convert into
Base64-encoding. Nonetheless, given the current glTF specifica-
tion, our implementation is far less invasive, see §6.

Progressive visualization. A bottleneck for any web-based ren-
dering is the transmission of large binary data blocks in order to
visualize the scene. Such bandwidth requirements can be reduced
by compressing and decompressing meshes. [Lavoué et al. 2013]
suggested the use of a progressive compression algorithm described
in [Lee et al. 2012] to visualise the meshes in a lower-level of de-
tail during a progressive decompression operation, increasing the
quality of the visualization as the operation executes. [Limper
et al. 2013a] took it one step further by using a simple quantiza-
tion scheme to avoid the need for decoding, thus diminishing the
amount of processing required on the client. In addition, primitive
data was reordered into nested levels of detail, allowing the buffer
to be transferred progressively and perform rendering during data
reception, minimizing the impact of network latency on the user.

3 System Overview

The basic 3drepo.io architecture consists of two subsystems shown
in Fig. 3. The first is the C++ backend that performs heavy process-
ing and optimization to prepare the models for web rendering. The
second is the Javascript web server and frontend that serves and ren-
ders data for the end user. Both require changes so that streaming
can occur. In this section, we provide an overview of the overall ar-
chitecture leading to a discussion of the adaptations in later sections
of this paper.

The C++ backend is based on 3D Repo [Doboš and Steed 2012]
which is an open source version control system (VCS). There, 3D
models and associated metadata are stored in decomposed Binary
JSON (BSON) format, see [Doboš 2015]. To facilitate the stor-
age of BSONs the system uses a NoSQL database MongoDB. 3D
Repo Bouncer is a C++ library which was originally designed to
protect the database by processing and rejecting potentially ma-
licious requests as well as by verifying the identity of the users.
Since then, it evolved into a Compute Node-style processing li-
brary which takes as input 3D models and converts them into an
internal 3D Repo format for version control purposes. In addition,
it performs several layers of optimizations in order to reduce the
complexity of the models for web-based rendering while preserv-
ing their fidelity. In contrast, the web client consists of an An-
gularJS user interface combined with a Javascript-driven X3DOM
renderer which is served information by a NodeJS REST API that
sends compressed data from the database to the client.

A core change over the original 3drepo.io system is the introduc-
tion of multipart nodes [Behr and Sturm 2015]. These allow the
number of web requests and draw calls to be reduced by batch-
ing meshes together into several supermeshes. Individual attributes,
such as color properties and visibility, are stored in textures and ac-
cessed on a submesh basis via a shader. This process is suitable
for static geometry only and requires pre-transforming of all vertex
data into a common coordinate system. Due to the limitation of We-
bGL which can only handle 16-bit index buffers, the supermesh can
contain maximally 216=̃65k indices. At this point, any submeshes
greater than this limit are split. The finalized scene graph then con-
sists of a single root transformation with the multipart meshes as its
children. Each supermesh further retains a mapping of the original
submeshes to the merged vertex data. This allows the submeshes
to be individually selected using picking buffers for connection to
engineering metadata. This processing happens in the C++ backend
before being stored in DB ready for the web server to stream it.

In order to then proceed to a streaming architecture, further changes
have to be made. Firstly, to increase interoperability and pro-
vide a standardized container for the streaming functionality we
implement glTF in both the backend and frontend. We base the
streaming on the user’s current visibility so that visible submeshes
are streamed, and submeshes outside the user’s vision are culled,
all determined client-side in real time. This is in conflict with
the introduction of multipart where submeshes are combined into
supermeshes. To integrate both approaches we introduce a new
GraphicsMemoryManager on the client. This manager takes the
streamed data from the server and reconstructs dynamically multi-
part meshes on the client. The reconstruction takes place in parallel
to the rendering pipeline to avoid reducing interactivity for the user.

To facilitate streaming from the database we utilize MongoDB’s
GridFS technology. Each glTF document generated by the C++
backend is stored in the database as a JSON header and a set of
binary blobs. These blobs are stored in the GridFS system as files.
The document metadata such as MIME type, file size, file name,
etc. are stored in a .files postfixed collection. The document
data is stored in a corresponding .chunks collection in a series

of 255KB documents. By storing in this manner, the collection
becomes a random access storage medium for use in web stream-
ing. This allows the client to request byte streams of data from the
database with information given to it in the glTF header.

4 glTF Implementation

We improve upon the original 3drepo.io system [Scully et al. 2015]
by exporting models from the system in glTF format [Khronos
Group 2016]. In order to provide support for this encoding, we in-
troduce modifications and overall improvements to both the server
in §4.1 as well as the client in §4.2.

4.1 Server

The glTF specification has recently been finalized and is developed
by the Khronos Group to become the de-facto web transmission
standard. This file format consists of two parts; i) a binary blob
which contains the mesh data, and ii) a JSON header which de-
scribes its format. The move from SRC to glTF marks a departure
from an X3DOM-specific format to a more interoperable represen-
tation for 3D Repo. Fortunately, there are strong similarities be-
tween the original SRC implementation [Scully et al. 2015] and the
new glTF specification [Khronos Group 2016] making the transi-
tion relatively straightforward.

In SRC, meshes are defined with accessors to position,
normal and index offsets into a particular bufferView. This in
turn describes bufferChunks, i.e. slices of the specific vertex at-
tribute or index buffers. glTF operates in a very similar way, the
most significant difference being a bufferView that declares an
offset and byte size window frame into a buffer. However, unlike
in SRC, the glTF header is a separate file to its binary data. The
buffer thus specifies a uri pointing to the location containing the
data. Such a design supports multiple binary files in a single glTF.
In addition, it encapsulates the scene graph structure which there-
fore does not need to be described within X3D any more. Thus, a
single scene can be represented in one glTF header what increases
the interoperability significantly.

Once the model is exported in glTF, it is “stashed”, i.e. stored in
the database ready to be served over the Internet. This takes ad-
vantage of the fact that 3D Repo is a VCS where once a 3D model
revision has been committed, we can be sure it will not be changed
any more. New changes would trigger a revision commit, at which
point the system would generate a new “stash”. To take advantage
of this situation, an X3D representation of each revision is auto-
matically generated at the point of importing the model by the C++
backend. This relieves the extra operations required on the REST
API service, allowing it to concentrate on serving requests rather
than transcoding data dynamically as done in previous iterations of
the system, c.f. [Doboš et al. 2013; Scully et al. 2015].

4.2 Client

To add glTF support to the client we create a custom fork of the
X3DOM library on which it is based. The library already contains
simple geometry containers such as SRC or BinaryGeometry [Behr
et al. 2012] but unlike these, glTF contains a full scene description,
as well as geometry and material definitions. Consequently, we
made two significant modifications to X3DOM, adding support for
two new elements: glTFNode and glTFGeometryNode.

glTFNode. The new glTFNode element is an API for specify-
ing a glTF file. When a glTF node is imported, the scene graph is
parsed and used to generate a compliant DOM. This is then passed

to X3DOM where it is processed and added to the current scene
graph using the same mechanism as the existing <inline> ele-
ment. Such an approach allows glTF retrofitting to be minimally in-
vasive, reducing the difficulty of merging future upstream changes.
Furthermore, it maximises the reuse of existing X3DOM function-
ality. In addition, because the DOM is built using the published
X3DOM API, it is trivial to maintain. Where any deviations from
the original API occur, they are for simplicity and performance rea-
sons. For instance, the DOM is created in memory rather than actu-
ally rendering XML, which allows the passing of objects from the
glTFNode instance to child elements directly within the graph.

glTFGeometryNode. After parsing the glTFHeader, the
glTFNode creates a number of glTFGeometryNode elements
representing supermeshes in the scene. Each supermesh consists
of multiple submeshes which share a common set of shaders,
shader parameters and attribute binding parameters—as required
for all submeshes to be drawn in a single call. The submesh
attribute data is contained in bufferViews, and depending on
the interleaving used may be spread across one or more views.
Although it is primarily used by the glTFNode, it can be invoked
via user supplied XML just as well. Within the bufferViews,
each submesh attribute data is represented by segments. These
correspond to a contiguous block of data within the buffer and
are defined by glTF accessors. Such segments can be added or
removed from the GPU memory as single units. This is the highest
resolution view of the attribute data, although manipulating data
on the individual accessor/attribute level would involve byte-level
operations and, thus, defeat the point of using glTF. Since attribute
data can be interleaved in a number of different ways, a constraint
is required to make it contiguous, e.g. the index data, because that
way it can be moved in a single block. If it were not, it would
require byte-level operations to arrange the attribute data which
might be prohibitively expensive in terms of CPU processing.

4.2.1 Shader Function Support

One complication, however, is that glTF uses semantics to identify
shader parameter bindings, whereas X3DOM uses shader variable
names by convention. On a typical platform, it would be trivial to
convert the semantics when binding constants, but for X3DOM, it
would require modifying the shader source—possible but subopti-
mal in Javascript. Instead, we make the following conditions:

1. All shader variable names shall be X3DOM compliant, i.e. they
will match the names provided by the X3DOM documentation.
All X3DOM specified variables will be supported, not just the
subset defined by glTF.

2. glTF semantics shall be ignored by X3DOM. Because there is
no overlap in the mechanisms of names and semantics, by con-
vention all glTF semantics shall be ignored by X3DOM, and
shaders must be X3DOM compliant. The glTF will still specify
parameter semantics for third-party viewers, but only the param-
eter names will be of any consequence in X3DOM.

Comparing the glTF specification to the X3DOM documentation,
we can see that the only time there is a conflict is for the inverse
transpose matrices, for which X3DOM expect 4x4 while glTF ex-
pects a 3x3 representation. To support this case we extend the
X3DOM matrix4x4 prototype. When a shader parameter is set, the
X3DOM type is converted to a native type with the toGL()method.
We add an equivalent method, but that takes a target type to convert
to, and set X3DOM to use this whenever the normal matrix is set.
Since the target type is ascertained from the X3DOM shader object,

1 "mesh_0": {
2 "primitives": [{
3 "material": "material_0",
4 "mode" : 4,
5 "indices" : "acc_mesh_0_m0_f",
6 "attributes" : {
7 "NORMAL": "acc_mesh_0_m0_n",
8 "POSITION" : "acc_mesh_0_m0_p",
9 "IDMAP" : "acc_mesh_0_m0_id",

10 "TEXCOORD_0" : "acc_mesh_0_m0_uv_0"
11 },
12 "extras": {"refID": "smesh_0"}
13 },
14 { /* another submesh entry */ }
15 }

Listing 1: A sample declaration of a multipart mesh. This model
has a single multipart mesh with two submeshes.

which itself determines the type from the shader source, this ap-
proach does not conflict with condition 2. above. The result is that
a single shader can now work with both X3DOM and any third-
party viewer with no further manipulation on the client and with no
additional data having to be provided by the exporter as desired.

4.2.2 Multipart Support

To utilise the existing multipart functionality of X3DOM, the glTF
importer places the Shape element containing the <glTFGeometry
> element inside a <multipart> element. The importer generates
an idMap object from the data within glTF and sends this object,
along with a reference to the Shape element, inside the DOM. For
simplicity, the <multipart> node has been modified to detect this
case and use these objects directly, rather than trying to retrieve
them from the url attributes. An example declaration is shown in
Lst. 1. The <multipart> implementation material model assumes
the usage of the X3DOM Material API, and supports only these
parameters. For convenience and performance, the server includes
along with each material an equivalent X3DOM material expressed
as a JSON object, which is incorporated directly into the procedu-
rally generated idMap. This is implemented in X3DOM by using
a shader with a specific set of capabilities, akin to a fixed function
pipeline. The only material parameters supported are those defined
by an X3D material. We discuss the limitations of this in §5 below.

5 Streaming

The overall requirements of the streaming architecture depicted in
Fig. 4 are two-fold. The first is to reduce the amount of memory that
the client uses to allow loading of large models. The second is to
allow models to be progressively loaded to give the user an increase
in response time. Both these requirements can be satisfied by the
same mechanism based on the current viewing frustum. To reduce
the memory usage we offload submeshes that are not visible to the
client. We then add back in submeshes that are visible based on
their visual importance to the user using metrics such as size and
distance. The introduction of multipart into the system precludes
this from being implemented using the standard X3DOM culling
framework. The large multipart supermeshes have no concept of
culling the submeshes which constitute them and so if only a small
part is visible then the whole supermesh is still held in GPU.

We therefore extend the culling framework of X3DOM such that as
the camera moves through the model, the set of visible submeshes
is computed and a new set of rendering buffers is dynamically cal-
culated. To support this we make modifications to both the server
and the client. On the server, we compute spatial partitioning of

Queue
Processing

Rendering Pipeline

Visibility

Buffer Reconstruction

K-D Tree

glBuffer
Reconstruction

Buffer
Transfer

and
Return

Web Worker

Figure 3: An overview of the streaming architecture illustrating its
multi-threaded nature and the transfer of memory between the Web
Worker and the rendering pipeline.

Figure 4: Visualisation of bounding boxes (left) vs kd-tree spatial
partitioning with depth of eight (right) in 3D Repo GUI.

the model using kd-trees. On the client, we then use this kd-tree
to dynamically stream data to the GPU. We traverse the kd-tree to
compute the visibility of submeshes as part of the standard render-
ing pipeline. A list of visible meshes is then used to construct a new
set of rendering buffers on-the-fly. To avoid decreasing the interac-
tivity of the renderer these buffers are constructed in a separate set
of threads as shown in Fig. 4.

5.1 Server Implementation

The server implementation consists of pre-computing spatial par-
titioning which is then passed on to the client. Once there, it is
used to control when and what parts of the model are requested and
streamed from the server to the client.

Spatial partitioning. The use of multipart models means that the
traditional bounding box visibility tests of X3DOM are no longer
applicable. The multipart meshes represent large parts of the scene,
with possibly little or no spatial coherence. This means that even
looking at small part of the scene negates culling of the other parts.
In order to restore this feature on a submesh level, the information
about bounding boxes needs to be added to X3DOM separately.
The algorithm used here, unlike in [Stein et al. 2014], is based on
kd-tree [Bentley 1975] and adapted for bounding boxes. It starts
with the bounding box of the entire scene, and for each iteration,
the bounding box is partitioned at the median value of the mid-
point of all submeshes that currently reside within the section. The
inner nodes of the kd-tree represent the partitioning (axis, median
value), with the leaf nodes storing the unique ID (UID) of the sub-

meshes that reside within. We use the median so that the parti-
tioning is balanced between the number of meshes on the right and
left subbranches. Fig. 5 demonstrates a visual comparison between
the bounding boxes of submeshes against the kd-tree partitioned
space. Although the kd-tree is costly to construct in comparison to
other algorithms such as Bounding Volume Hierarchy and Bound-
ing Interval Hierarchy [Zachmann 2002; Nam and Sussman 2004],
they are fast to traverse for the client [Wald et al. 2007]. Although
certain spatial partitioning structures can be computed client-side,
c.f. [Stein et al. 2014], the static nature of the version controlled
models means we need to prepare the kd-tree only once.

5.2 Client Implementation

The client implementation must be adapted to perform several op-
erations. The first is to compute visibility of submeshes, and the
second is to use the list of visible submeshes to construct the dy-
namic buffers for rendering.

Submesh visibility. To compute the submesh visibility, we inte-
grate with the standard X3DOM visibility culling algorithm. When
the algorithm reaches a glTFNode in the scene graph, we perform
an additional set of steps to compute the visibility of its submeshes.
In the first step, the kd-tree is traversed to identify partitions of
space that are not visible. As it passes down the tree, the corners
of the viewing frustum are tested against the median value for the
associated axis. For an axis-aligned frustum, it simply needs to test
on which side the maximum and minimum corner values for that
axis lie. If they lie either side of the median line, both sides are
visible, and if both are on one side, then only that side is visible. To
ensure that the viewing frustum is always axis-aligned it is trans-
formed by the inverse world transformation of the glTFNode. After
traversing the tree, we end at a leaf node containing a set of possi-
bly visible submeshes. For each one of these, its bounding box is
tested against the viewing frustum. If the bounding box is fully or
partially inside the frustum, it is visible, otherwise not. By doing
so, the small feature culling functionality of X3DOM that removes
submeshes smaller than a given projected pixel size is preserved.

Job queue. Once there is a list of visible submeshes, they need to
be processed in order to modify the dynamic buffers for rendering.
To achieve this without degrading the interactivity of the rendering,
we create a multi-threaded system. Typically, browser Javascript
interpreters are single threaded and do not offer parallel processing
capabilities. We therefore use HTML5 Web Workers [WHATWG
2016] to create a thread pool for processing outside the rendering
thread. For 3D engineering applications, unlike fast moving games,
the dynamic buffers do not need to be computed real-time. We
therefore only pass the constructed buffers back to the rendering
thread when the buffer is valid and after a regular time interval.
This avoids the problem of object tearing and constant interrup-
tions to the rendering thread. For each Web Worker, there are two
queues for processing associated with it. The first queue contains
a list of submeshes to add to the dynamic buffer, and the second
queue contains a list of submeshes to remove from it. These queues
are updated based on the list of visible meshes. One aim of im-
plementing streaming is to reduce the memory consumption of the
system. We therefore prioritize the removal of submeshes from the
buffer first, so that the memory footprint is reduced, and then pro-
cess the submeshes to be added to the buffers. To ensure that the
most visually relevant submeshes are displayed, they are sorted by
distance and projected pixel size. If the defined memory limit is be-
ing approached we then stop adding any more until some memory is
freed. This potentially leaves an incomplete model, but still allows
the user to zoom in to see more detail based on spatial proximity.

Graphics Memory Manager

Block 1 Block 3 Block 2

Shape 1

Submesh 1

Block 1/bufferView 1

Block 2/bufferView 2

Block 4

 Submesh 1 Submesh 3

Submesh 3 Submesh 4

Submesh 4

Position & Normal
Attributes

Interleaved

Texture
Coordinates

Shape 2

Submesh 1

Block 3/bufferView 1

Block 4/bufferView 2

Submesh 1 Submesh 2

Submesh 2 Submesh 3

Submesh 3 Position Attribute

Normal Attribute

Submesh 1Block 5/bufferView 2 Submesh 2 Submesh 3
Texture

Coordinates

Block 5

Within a shape all submesh attributes are contiguous, and submeshes can be added or removed at will Different shapes can have different attributes, or attributes stored in different formats

Binding Parameters
POSITION: Offset 0, Stride 24
NORMAL : Offset 12, Stride 24
TEX0 : Offset 0, Stride 8

Binding Parameters
POSITION: Offset 0, Stride 12
NORMAL : Offset 0, Stride 12
TEX0 : Offset 0, Stride 8

When the final call to bind the attributes is made, the
offset is the sum of the local offset and the offset into the

dynamic buffer

Within the Graphics Memory Manager, blocks can be moved around freely,
without caring about the format of the data within them

Figure 5: Implementation overview diagram. In order to share a buffer, either each glTFGeometryNode needs to be aware of all the other
nodes, and the format of their datasets within the buffer, or we remove awareness of the shared buffer so they can each work on their own
part of it in isolation. The latter requires an external object to manage allocations within the buffer, hence the GraphicsMemoryManager.

5.3 Memory Manager

In order to manage offloading of data from memory, we introduce
a GraphicsMemoryManger object per thread which is shared be-
tween one or more glTFGeometryNodes. This memory manager
contains the queues described in §5.2 which prioritize the adding
and removal of submehes based on their visibility. When the ren-
dering thread has processed the visibility of the glTFNode, it sends
a message to the Web Worker containing a list of visible nodes.
Upon receiving the message, the worker updates the queues which
are then picked up by a processing function ready to change the
GPU buffers. In the thread, we construct a copy of the buffer in
CPU memory ready to be uploaded to the GPU. At this point, any
re-indexing of the index buffer due to changes in the order and a
number of meshes is performed. To avoid constant copying of the
memory between the memory manager thread and the rendering
thread, we use the ability of Web Worker messages to transfer mem-
ory object akin to a copy by reference in C++.

Once we have the buffers built in CPU memory, we transfer them to
the GPU buffers. Whilst it is possible for the glTFGeometryNodes
to rebuild their mesh data with new GPU buffers each time, it could
lead to significant GPU memory fragmentation, suboptimal mem-
ory usage and possibly unpredictable performance characteristics
over time. Instead, the nodes request blocks of memory represented
by GraphicsMemoryBlock objects which facilitate the com-
munication between GraphicsMemoryManager and the owner
glTFGeometryNodes, see Fig. 6. The GraphisMemoryManager
object then maintains a small number of large attribute and index ar-
rays, which contain the data for a number of glTFGeometryNode
meshes across multiple threads. When it is time to render one

of these nodes, offsets into the large arrays are provided by the
GraphicsMemoryBlock and set in the binding calls. It should be
noted that this does not overcome the 16-bit index array limitation.
Each draw call can only address up to 65k vertices at a time. Dif-
ferent sections of the same buffer are used across different draw
calls with different binding parameters. When a glTFGeometryN-
ode changes size, it indicates this via the GraphicsMemoryBlock
object to the GraphicsMemoryManager. When instructed, the

memory manager will rebuild one or more large dynamic arrays,
and update the memory block objects with the new location of this
block. The actual gl buffer and the offset into this are passed by
GraphicsMemoryBlock to the glTFGeometryNode which uses
them to set the attribute binding parameters. The motivation is that

although the arrangement of the attributes within blocks of memory
is multipart specific, the GPU memory must be handed globally.

ServerClient

 1. Video Memory

 2. CPU RAM

 3. Browser Cache

 4. CPU RAM

 5. Database

 6. Filesystem

Figure 6: Different levels of “caching” ordered by relative time to
the client seeing the results on screen. It is assumed that local IO is
faster than network latency which is likely the case in most setups.

CPU vs GPU memory. Essentially, the blocks are populated by
the glTFGeometryNode, and then copied into the larger dynamic
buffers for rendering by the GraphicsMemoryManager. We use a
strategy of double buffering the visible meshes in CPU memory for
performance purposes, to avoid rebuilding the meshes constantly.
Nonetheless, we do not need to use double the memory, i.e. by stor-
ing the same geometry in CPU as well as GPU simultaneously, as
there is a write() method that sends them directly to the GPU
without going through an intermediate array, at least not a persistent
one. The geometry node writes data directly from the source de-
scribed by the bufferView, which may be on the server provided
by GridFS or on disk in the browser’s cache. Thus, the geometry
could be removed from the CPU memory entirely if necessary. See
Fig. 7 for details. While the GraphicsMemoryBlocks are updat-
ing, the larger dynamic array is still being rendered as valid even
if incomplete model. The same large array is used for multiple
draw calls, with the binding parameters changing to address differ-
ent parts of it. This means that unless for double buffering, one
node may bind to an area of the buffer which is being modified by
another. To prevent this, an entire multipart mesh is turned off once
its data is flagged as being moved, until it has been rewritten, rather
than render a broken model.

6 Evaluation and Discussion

The contributions of this paper are two-fold; first, a glTF exten-
sion to X3DOM with multipart capability aimed to both increase
interoperability and leveraging the functionality of multipart, and

Figure 7: A large 3D scene federated from 19 individual sub-projects consisting of over 1m components and 50m triangles. Each of the
buildings and the basement are delivered by different teams of companies using various types of software such as Autodesk Revit, Graphisoft
ArchiCad, Trible Tekla, etc. Left is the 3D Repo GUI desktop application and right the 3drepo.io web app in Firefox. Without support for
multipart, this scene would not run in either of the systems. Model courtesy of Canary Wharf Contractors Limited.

Figure 8: The same 3D model exported in glTF from 3D Repo
to 3drepo.io viewer (top) vs Cesium viewer (bottom). Note that
Cesium skips streaming and federation from our extension of glTF
but renders multipart correctly. Model courtesy of buildingSMART.

second, a streaming architecture designed to reduce the memory
footprint for rendering large models on memory limited devices. In
this section, we evaluate the efficacy of these contributions.

To increase the interoperability of the 3drepo.io system, we intro-
duced the glTF format. This format, although only recently final-
ized, has already been integrated in some rendering engines. In
Fig. 9, we show the same 3D model visualised in 3drepo.io as well
as in CesiumJS thanks to glTF. Even though Cesium is not cur-
rently able to take advantage of our optimization for multipart and
streaming, it correctly visualizes the same model nonetheless. Its
only limitation is presenting the model as large co-joint meshes,

hence lacking part-based highlighting, plus lacking federation sup-
port, see §6.1.

As part of our glTF integration, we introduce multipart as an exten-
sion to it. In Fig. 8, we show the extent to which multipart can help
render truly large scenes in desktop as well as browser-based ap-
plications. In this case, with over one million 3D components, the
sheer amount of requests would crash the browser. In addition, the
number of required draw calls would make it impossible to render
in a dedicated desktop application, let alone a web browser.

Finally, Fig. 2 shows an example of the progressive streaming. The
architecture successfully performs its function and culls objects
outside the viewing frustum, and restores them when they become
visible again. The memory manager also successfully reduces the
memory footprint when submeshes go outside the viewing frustum.
The multi-threaded nature allows the user to still interactively ma-
nipulate the model while the buffers are being re-built. In the figure,
we show a viewpoint outside and inside the building. This corre-
sponds to a drop in GPU memory usage from 693 MB to 161 MB.
However, in tests on very large models, such as those in Fig. 8, the
amount of CPU RAM usage grows to orders of magnitude greater
than required by the double buffering. This is part due to the bloat
of the glTF format as discussed in the limitations section below.
In addition, the rapidly changing memory requirements mean that
the Javascript engine is unable to garbage collect quickly enough
in order to release the memory. It should be possible to fix this by
implementing a more sophisticated memory manager that tailors to
specific idiosyncrasies of Javascript memory allocation.

6.1 Limitations

In this section, we describe a number of limitations many of which
will be addressed as part of future work.

glTF format. Despite the close resemblance of glTF to SRC, one
problem was representing the notion of federated 3D models using
the new format. Previously, the federation of several 3D scenes into
one was defined in X3DOM as a single X3D file linking to further
X3D files for each submodel. Under the specification of glTF, it is
not possible to link to another glTF header recursively. Whilst glTF
does support multiple scenes within a single file, our preference is
to keep the geometry of each subscene separated so that a submodel
in a VCS can be updated without the need of updating the federa-
tion itself. Due to this restriction, the semantics of the federated
models were left within X3DOM, meaning a user who wishes to

view a federated model in a different viewer would have to export
multiple glTFs and the renderer of choice would have to support
visualization of multiple glTF files within the same scene. In ad-
dition, the verbosity of the glTF causes memory difficulties within
modern browsers. For some of the models shown in the paper, the
glTF header can reach upwards of 250 MB.

glTF shader semantic support. Currently, X3DOM creates a
shader object procedurally when a shader is imported. It dynami-
cally generates setter methods which are invoked when one of the
documented variables is assigned. The methods take the native GL
representation and write it to the shader parameter slot using the
WebGL API. In theory, it would be possible to add a layer of indi-
rection at this stage, allocating the setter name based on a seman-
tic, rather than the actual variable name in the shader, but keeping
the assignment going to the correct slot. This would allow support
for glTF semantics/arbitrary shader variable names and remove the
requirement that shaders must be X3DOM compliant. Again, be-
cause the native matrix type that is encoded is set by the shader,
this method should support 4x4 or 3x3 glTF specific normal matri-
ces with no modifications. Nevertheless, this is left for future work.

Arbitrary multipart shaders. Similarly, the principle behind
multipart makes the constraint that all submeshes must have the
same shader, but it is only the current X3DOM implementation that
limits this shader to the X3DOM Material API. In the future, it
should be possible to generate multipart shaders, supporting any
arbitrary material parameters.

This is somewhat more complicated than supporting them for one
shader, because compositing a multipart shader requires that the
fragment shader source be modified. Parsing and modifying ar-
bitrary shader sources in Javascript in the browser is unlikely to
be a suitable solution. Instead, using the extras facility of glTF,
it should be possible to send ‘Shader Functions’ along with the
shaders, much like X3DOM material equivalents are sent currently.

The shader function objects would consist of a source code that can
be added directly to a shader with a simple string append. Along
with this would be a JSON object describing how to call this func-
tion, i.e. the semantics of the parameters and their indices. Us-
ing this, multipart shaders could be produced on-the-fly. A shader
would be built around this function, with code generated to read the
material properties from dynamically generated textures, and the
remaining parameters being passed in from the CPU.

Memory management. In terms of memory management, when
submeshes are added or removed, no data is changed upfront, only
the block size set by the multipart meshes is changed. If a block
increased in size, for example, a smart memory manager would
take advantage of another shrinking to avoid moving large blocks
which have not changed. A very smart one could even avoid sig-
nalling a multipart mesh that is about to have its data moved un-
til the very last minute, when another one actually overwrites it.
The performance of a dumb memory manager, however, is no
worse than if geometry nodes were to directly manipulate large
shared arrays themselves. An important thing to note is that the
GraphicsMemoryManager only rebuilds the arrays on command.
It can take the same approach to garbage collection as any other
comparable system, and can be as complex or as simple as required.
For example, it could rebuild every time a block is resized. Or it
could link with the job queue and rebuild after N jobs have been
dispatched. An advanced algorithm could intelligently minimise
the movement of data, and therefore the amount of time spent by
each geometry node reinitialising its blocks.

7 Conclusions

In this paper, we presented a series of novel enhancements to the
3drepo.io Web3D data management system in order to provide
higher interoperability as well as better overall ability of render-
ing large models with fast visual feedback. This required the im-
plementation of adapting the SRC encoder to produce glTF server-
side, novel support for MonogDB GridFS-based streaming and the
addition of two new elements in X3DOM, namely glTFNode and
glTFGeometryNode. Even though streaming provided faster feed-
back for the end-users, on its own it would not address the eventual
crashing of WebGL when 3D assets outsize the amount of available
video memory on the client.

To solve this, we devised a novel GraphicsMemoryManager ob-
ject which is common to all glTFGeometryNodes adding and re-
moving their buffer segments dynamically. Despite extending the
base glTF specification with multipart, streaming and federations
using the extras field, the files still render correctly in third-party
viewers, too, fulfilling our desire of increased interoperability of
data served by 3drepo.io.

7.1 Future Work

There is a number of extensions and improvements that we would
like to add in the near future. These include support for terrain
model streaming using a variation of the BVHRefiner component
of X3DOM driven by MongoDB rather than a filesystem as well
as further reduction of geometry into triangle strips in order to de-
crease the size of geometry by a third and add support for compres-
sion such as Open Compressed Triangle Mesh (OpenCTM) [Geel-
nard 2009] like done previously in [Doboš et al. 2013].

Acknowledgements

Aspects of this work have been part-funded by Innovate UK Digi-
tizing the Construction Sector grant No. 102 054 and the European
Institute of Innovation & Technology for which we are thankful.

References

ARNAUD, R., AND BARNES, M. C. 2006. COLLADA: Sailing
the Gulf of 3D Digital Content Creation. A K Peters/CRC Press,
August. ISBN-10: 1568812876.

BEHR, J., AND STURM, T. 2015. Multipart - offline creation and
online api. Documentation, Fraunhofer IGD.

BEHR, J., ESCHLER, P., JUNG, Y., AND ZÖLLNER, M. 2009.
X3dom: A dom-based html5/x3d integration model. In Proceed-
ings of the 14th International Conference on 3D Web Technol-
ogy, ACM, New York, NY, USA, Web3D ’09, 127–135.

BEHR, J., JUNG, Y., FRANKE, T., AND STURM, T. 2012. Using
images and explicit binary container for efficient and incremental
delivery of declarative 3d scenes on the web. In Proceedings of
the 17th International Conference on 3D Web Technology, ACM,
New York, NY, USA, Web3D ’12, 17–25.

BEHR, J., MOUTON, C., PARFOURU, S., CHAMPEAU, J.,
JEULIN, C., THÖNER, M., STEIN, C., SCHMITT, M., LIMPER,
M., DE SOUSA, M., FRANKE, T. A., AND VOSS, G. 2015. we-
bvis/instant3dhub: Visual computing as a service infrastructure
to deliver adaptive, secure and scalable user centric data visual-
isation. In Proceedings of the 20th International Conference on
3D Web Technology, ACM, New York, NY, USA, Web3D ’15,
39–47.

BENTLEY, J. L. 1975. Multidimensional binary search trees used
for associative searching. Communications of the ACM 18 (09),
509–517.

COZZI, P., FILI, T., NIMOIYA, K., LIMPER, M., AND THONER,
M., 2016. Khr binary gltf. [Online; accessed 7-April-2016].

DIRKSEN, J. 2013. Learning Three.js: The JavaScript 3D Library
for WebGL. Packt Publishing, October. ISBN-10: 1782166289.

DOBOŠ, J., AND STEED, A. 2012. 3d revision control framework.
In Proceedings of the 17th International Conference on 3D Web
Technology, ACM, New York, NY, USA, Web3D ’12, 121–129.

DOBOŠ, J., SONS, K., RUBINSTEIN, D., SLUSALLEK, P., AND
STEED, A. 2013. Xml3drepo: A rest api for version controlled
3d assets on the web. In Proceedings of the 18th International
Conference on 3D Web Technology, ACM, New York, NY, USA,
Web3D ’13, 47–55.

DOBOŠ, J. 2015. Management and Visualisation of Non-linear
History of Polygonal 3D Models. EngD thesis, UCL.

GEELNARD, M. 2009. Open compressed triangle mesh. Software
specification v1.0.3.

JUNG, Y., BEHR, J., DREVENSEK, T., AND WAGNER, S. 2012.
Declarative 3d approaches for distributed web-based scientific
visualization services. In Dec3D.

KHRONOS GROUP. 2014. Webgl - opengl es 2.0 for the web. Tech.
rep., October.

KHRONOS GROUP, 2016. gltf - efficient, interoperable transmis-
sion of 3d scenes and models. [Online; accessed 7-April-2016].

LAVOUÉ, G., CHEVALIER, L., AND DUPONT, F. 2013. Streaming
compressed 3d data on the web using javascript and webgl. In
Proceedings of the 18th International Conference on 3D Web
Technology, ACM, New York, NY, USA, Web3D ’13, 19–27.

LEE, H., LAVOU, G., AND DUPONT, F. 2012. Rate-distortion
optimization for progressive compression of 3d mesh with color
attributes. The Visual Computer 28 (02), 137–153.

LIMPER, M., JUNG, Y., BEHR, J., AND ALEXA, M. 2013. The
pop buffer: Rapid progressive clustering by geometry quantiza-
tion. Computer Graphics Forum 32 (10), 197–206.

LIMPER, M., WAGNER, S., STEIN, C., JUNG, Y., AND STORK,
A. 2013. Fast delivery of 3d web content: A case study. In
Proceedings of the 18th International Conference on 3D Web
Technology, ACM, New York, NY, USA, Web3D ’13, 11–17.

LIMPER, M., THÖNER, M., BEHR, J., AND FELLNER, D. W.
2014. Src - a streamable format for generalized web-based 3d
data transmission. In Proceedings of the 19th International Con-
ference on 3D Web Technology, ACM, New York, NY, USA,
Web3D ’14, 35–43.

MOUTON, C., SONS, K., AND GRIMSTEAD, I. 2011. Collabo-
rative visualization: Current systems and future trends. In Pro-
ceedings of the 16th International Conference on 3D Web Tech-
nology, ACM, New York, NY, USA, Web3D ’11, 101–110.

NAM, B., AND SUSSMAN, A. 2004. A comparative study of spatial
indexing techniques for multidimensional scientific datasets. In
Proceedings of the 16th International Conference on Scientific
and Statistical Database Management, IEEE Computer Society,
Washington, DC, USA, SSDBM ’04, 171–.

SCULLY, T., DOBOŠ, J., STURM, T., AND JUNG, Y. 2015.
3drepo.io: Building the next generation web3d repository with

angularjs and x3dom. In Proceedings of the 20th International
Conference on 3D Web Technology, ACM, New York, NY, USA,
Web3D ’15, 235–243.

SONS, K., KLEIN, F., RUBINSTEIN, D., BYELOZYOROV, S., AND
SLUSALLEK, P. 2010. Xml3d: Interactive 3d graphics for the
web. In Proceedings of the 15th International Conference on
Web 3D Technology, ACM, New York, NY, USA, Web3D ’10,
175–184.

STEIN, C., LIMPER, M., AND KUIJPER, A. 2014. Spatial data
structures for accelerated 3d visibility computation to enable
large model visualization on the web. In Proceedings of the 19th
International ACM Conference on 3D Web Technologies, ACM,
New York, NY, USA, Web3D ’14, 53–61.

SUTTER, J., SONS, K., AND SLUSALLEK, P. 2014. Blast: a
binary large structured transmission format for the web. In Pro-
ceedings of the 19th International Conference on 3D Web Tech-
nology, ACM, New York, NY, USA, Web3D ’14, 45–52.

WALD, I., BOULOS, S., AND SHIRLEY, P. 2007. Ray tracing
deformable scenes using dynamic bounding volume hierarchies.
ACM Trans. Graph. 26, 1 (Jan.).

WHATWG, 2016. Html living standard. [Online; accessed 7-June-
2016].

ZACHMANN, G. 2002. Minimal hierarchical collision detection. In
Proceedings of the ACM Symposium on Virtual Reality Software
and Technology, ACM, New York, NY, USA, VRST ’02, 121–
128.

