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ABSTRACT: 

The specific optical absorption of an organic semiconductor is critical to the performance of 

organic optoelectronic devices. For example, in solar cells, higher light-harvesting efficiency 

leads to higher photocurrent without the need for excellent electrical transport across thick 

films. We compare extinction coefficients for over 40 conjugated polymers, and find that many 

different chemical structures share an apparent maximum. In the case of a 

diketopyrrolopyrrole-thienothiophene copolymer, however, we observe remarkably high 

optical absorption at relatively low photon energies. We investigate the origin of the optical 

absorption in terms of backbone structure and conformation using measurements and quantum 

chemical calculations and find that the high optical absorption can be explained by the high 

persistence length of the polymer. Accordingly, we demonstrate high absorption in other 

polymers with high theoretical persistence length. We propose that visible light harvesting may 

be enhanced in other conjugated polymers through judicious design of the structure. 



 

2 
 

Introduction 

 Molecular electronic materials such as conjugated polymers have attracted intense 

interest for applications in photonics, sensing and solar energy conversion. It is well understood 

how optical transition energy, optical anisotropy and vibronic broadening relate to the chemical 

structure of the conjugated backbone and the molecular packing1-5. Several studies report how 

these properties can be controlled through choice of structure and process route6-9. Some 

authors have addressed the broadening of spectral response using panchromatic absorbers10 or 

ternary systems11.  Absorption spectra have been analysed in terms of the relationship between 

spectral shape and chemical structure or conformation12-14, and individual molecules15 or 

monomers16 with high optical extinction have been presented. However, the magnitude of the 

optical absorption in conjugated polymers has been less well studied and is seldom identified as 

a design target. The ability to tune the magnitude of absorption could strongly impact 

applications, for example, by reducing the required thickness – and thereby relaxing constraints 

on transport – for efficient photocurrent generation in photodetectors or solar cells, by 

increasing the radiative efficiency of solar cells17 or by increasing the luminance from light 

emitting diodes.  

Figure 1 illustrates the remarkable uniformity of extinction coefficient across a wide 

range of conjugated polymers, as measured using spectroscopic ellipsometry18. Polymers of 

different chemical structure, self-organising tendency and optical gap lead to a maximum value 

of  of 0.90.1, where the complex refractive index  = nr + i. Expressed in terms of the 

imaginary part of the dielectric function, this maximum lies around 3.9  0.2. As we show below, 

this value lies far below their theoretical maximum absorption. Even lower values of  are 

observed for low band-gap polymers that undergo intrachain charge transfer upon excitation.  

In this context, we address the case of the low band-gap polymer, thieno[3,2-

b]thiophene-diketopyrrolopyrrole (DPP-TT-T). This polymer is interesting on account of the 

high field-effect transistor mobilities, very promising performance achieved as the donor in 
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solar cells,19 and high photostability20. Moreover the solar cell performance using this polymer 

has been correlated with the position of the branching point on the polymer side chains21 and 

with the molecular weight of the polymer22 but without any convincing mechanism for the 

trends. Here, we set out to establish the impact of these structural parameters of the polymer on 

its optical absorption.  

Results 

From a set of polymer batches of varying molecular weight (MW) and side chain 

structure (Table S1.1 and S1.2) we select four samples for detailed study: high and low 

molecular weight fractions of the polymer with dodecyl-octyl side chains branched at the 

second carbon (C1) and that with tetradecyl-octyl chains branches at the fourth carbon (C3) 

(Table 1 and Figure 2 (a,b)). When applied as the donor component in polymer:PC70BM solar 

cells of device structure glass/Indium tin oxide/ ZnO/blend(1:2)/MoO3/Ag, the higher MW 

polymers resulted in a substantially larger short circuit photocurrent density, Jsc, leading to 

higher power conversion efficiencies of 8.1% and 8.5% for C1 HMW and C3 HMW, respectively, 

compared to the lower MW polymers (5.8% and 4.6% for C1 LMW and C3 LMW, respectively). 

In contrast the effect of the branching point on Jsc for polymers of similar MW is less significant 

(Table 2 and Fig. S2.1). A previous study reporting an effect of branching point on device 

performance had not resolved molecular weight from side chain structure21.   

In the present case, the higher Jsc for the high MW fractions cannot readily be explained 

by active layer thicknesses nor by differences in the charge carrier mobility or lifetime, as 

measured by charge extraction and transient photovoltage. The mobility-lifetime products are 

rather higher for C3 than for C1 based devices but indistinguishable for different MW fractions 

of either polymer (Figure S3.1). Alternatively, differences in optical absorption might give rise 

to the observed changes in Jsc. We measured the complex dielectric function of the polymers and 

the corresponding blends with PC70BM using variable angle spectroscopic ellipsometry. Figure 2 

shows spectra for nr and  for pristine films and blend films for several molecular weight 
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fractions of C1 and C3. The highest molecular weight samples show a  value of about 1.4, while 

the lower molecular weight fractions exhibit a maximum  of about 1, similar to the polymers in 

Figure 1. Note that all the samples have molecular weights in the range commonly used in 

organic electronics. For each material, results were confirmed using samples of different film 

thicknesses, different substrates, and using different ellipsometers. The trend in extinction 

coefficient of pristine polymer films was reproduced in measurements of blend films (Figure 2 

(e,f)) and the Jsc calculated from the measured  for the blends agree within 20% of the 

measured values, thus confirming optical extinction as the main cause of higher solar cell 

performance. 

In order to ascertain whether the measured extinction coefficients result from 

aggregation or anisotropic orientation in the solid state properties, rather than intrinsic 

properties of the molecules, we measured UV-Vis absorption spectra of dilute solutions of the 

pure polymers in chloroform and 1,2-dichlorobenzene. The trend in solution is identical to that 

of films, with the HMW materials absorbing light more strongly at the peak absorption 

wavelength than the LMW materials (see Fig S5.1). Within the sensitivity of the UV-Vis 

spectrometer, the pseudo molar extinction coefficient per monomer was unchanged for the 

range of concentrations studied (0.25-25 μg/ml in the case of C3) and the spectral shape was 

insensitive to dilution (Fig S5.3). These observations suggest that the absorption phenomena 

are not the result of chain aggregation in solution; however, we cannot rule out any degree of 

association between chains.  

Discussion 

The results raise two important questions. First, why DPP-TT-T polymers exhibit an 

optical absorption strength so much higher than the values normally observed for conjugated 

polymers as shown in Figure 1 and second, how molecular weight affects the magnitude of 

absorption in this polymer. We address these questions with the help of quantum chemical 

calculations of the oscillator strength for different materials.   
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The extinction coefficient  of a molecular material can be related to the molecular 

orbitals via the transition dipole moment  and the oscillator strength f. For an optical transition 

from state |i> of energy Ei to state |j> of energy Ej, the transition dipole moment ij is defined as 

𝝁𝑖𝑗 = 𝑒⟨𝑗|�̂�|𝑖⟩ where r̂ is the position operator and e is the electronic charge. The oscillator 

strength for the transition, assuming that the transition dipoles are oriented at random relative 

to the direction of the exciting electromagnetic field E, is given by23 

 
𝑓𝑖𝑗 =

2

3

𝑚𝑒

ℏ2 (𝐸𝑗 − 𝐸𝑖)𝝁𝑖𝑗
2 

(1) 

where me is the mass of the electron and ℏ is Planck’s constant. Note that the sum of oscillator 

strengths for all possible transitions ij in a system is normalised to the number N of electrons 

in the system according to the Thomas-Reiche-Kuhn sum rule .  

The linear absorption coefficient  relates to the imaginary part of the complex 

dielectric function  = 1  + i2 through 𝛼 =
𝜔

𝑛𝑟𝑐
𝜀2 and also to , via 𝛼 =

2𝜔

𝑐
𝜅. For a single 

transition, 2 can thus be related directly to the transition dipole moment ij and hence to the 

oscillator strength. Summing over transitions the spectrum becomes:  

 
𝜀2(𝜔) =

2𝜋𝑁𝑚𝑒2

𝜀0𝑚𝑒
∑

𝑓𝑖𝑗

𝜔
𝛿 (𝜔 −

𝐸𝑖𝑗
ℏ

⁄ )
𝑖,𝑗

 
(2) 

where Nm represents the volume density of species for which f is calculated (e.g. monomers) and 

the δ functions can be replaced by functions D() representing broadened lineshapes. At this 

stage, we do not resolve each electronic transition into vibronic bands.   

 To compare the theoretical absorption strength of different conjugated polymers, we 

use time-dependent density functional theory (TD-DFT) to calculate the oscillator strength and 

transition energies of the first set of excited state transitions for oligomers of n = 1 to 8 or more 

repeat units. We obtain a normalised oscillator strength for the dominant transition, f1 , in order 

 
ji

ij Nf
,
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to compare between oligomer lengths and material systems, by dividing f01 (oscillator strength 

of the first excited state) by the number of -electrons in the system, Npi, estimated using 

Hückel’s rule. Most of the oscillator strength in the visible region resides in this first electronic 

transition; this can be understood in analogy with simple one-dimensional quantum systems 

such as the harmonic oscillator. (See Supplementary Information, Section S6.1.)  

To allow for the effect of chain conformation on optical absorption we consider two 

limiting cases. For all oligomers studied, the torsional potential between successive monomers 

has two minima: when successive monomers are rotated by approximately 180 relative to each 

other (here referred to as ‘all-trans’) and when monomers are orientated in the same sense 

(referred to as ‘all-cis’). The ‘trans’ conformation leads to more linear oligomer structures while 

‘cis’ structures exhibit curvature of the backbone within the conjugated plane. Figure 3(a) 

shows f1 as a function of Npi, calculated for several conjugated oligomers in the linear ‘all-trans’ 

conformation. The chemical structures and optimised geometries of the materials and Npi values 

are listed in Tables S6.1 and S6.2.  In all systems, f1 rises with Npi for small Npi. Although 

experimental data on oligomer specific absorption is rare, our results are consistent with 

experimental measurements of highly monodisperse oligomers of 3-hexylthiophene, which 

show a rising mass attenuation coefficient in solution with oligomer length up to  N  25 repeat 

units (see Fig S6.3)24; our calculations are also consistent with published data on absorption by 

polyfluorene 25 and thiophene-co-quinoxelene oligomers26. We attribute this rise in f1 with N to a 

superlinear increase in polarisability with oligomer length, as reported for thiophene, acenes, 

and other elongated conjugated molecules at short lengths27,28. In the first excited state 01 is 

strongly aligned with the long axis of the oligomer, and capable of coupling strongly with a 

plane-polarised electromagnetic field.  

Both homo-oligomers studied (fluorene and thiophene) in the all-‘trans’ configuration 

show larger f1 than any donor-acceptor structures, across the calculated range of Npi. This can be 

attributed in part to their high transition energy relative to the donor-acceptor copolymers (Eq. 
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1) and doesn’t necessarily imply high extinction at any wavelength of interest. In solar cells, for 

example, we seek high oscillator strength at energies where solar irradiance is high.  When the 

effect of transition energy is removed in Fig. 3(c) by calculating 2 spectra for the first transition 

of oligomers of similar size (Npi = 140-150) in the all-trans conformation the extinction of 

different materials becomes comparable. Even in this representation DPP-TT-T shows an 

unremarkable extinction strength.  However, when variations in chain conformation are 

considered, the advantage of DPP-TT-T becomes evident. Fig 3(b) shows f1 as a function of Npi 

for the same set of materials but in the ‘all-cis’ configuration when successive monomers are 

oriented alike and the backbone is curved. Now the specific oscillator strength decreases with 

Npi after reaching a maximum. The loss in extinction is due to the oligomer curvature which 

causes 01 to increase sublinearly with Npi, but the size of the effect is chemical structure 

dependent. For example, Si-CPDTBT suffers a strong loss in specific extinction due to its high 

curvature, resulting from the large angle mon of 44° between vectors joining successive 

monomer pairs while DPP-TT-T with mon = 27° and a longer monomer suffers the least (see 

Figure S6.1). Much of the lost oscillator strength is recovered in higher-lying states, but these 

are less useful for solar light harvesting. Allowing that at room temperature, any conjugated 

polymer will sample a range of conformations, the pure ‘trans’ and pure ‘cis’ cases represent the 

limits between which the average extinction must lie. In the case of DPP-TT-T the lower (cis) 

limit lies closer to the upper (trans) limit than for any other polymer studied in this evaluation.  

It is important to note that curved and linear oligomers differ in their oscillator strength 

but not, to a first approximation, in the transition energy since the different conformers studied 

here are not strained. The effect is captured in the concept of persistence length, which can be 

related directly to , as opposed to conjugation length which is usually related to transition 

energy29,30. DPP-TT-T offers by far the highest theoretical persistence length (p) (of tens of nm, 

see Fig S6.8) of all materials studied here, as estimated by a simple method adapted from Flory 

31, (SI section S6.8) which takes into account the thermodynamic conformational landscape. 
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DPP-TT-T benefits from the relatively long monomer, small mon and relative preference for 

‘trans’ alignment. The high linearity of DPP-TT-T was also noted in a computations study of 

polymer conformations in solution32. The positive correlation between persistence length and 

extinction coefficient has been used previously to infer conformation from extinction33, but not 

in the context of designing strongly absorbing conjugated polymers. We note here that 

calculated values of p are generally larger than values determined experimentally33,34 

suggesting that other factors than the theoretical potential energy surface may influence chain 

extension in practice. 

Within this picture we can rationalize a chain length dependence of oscillator strength in 

DPP-TT-T. In a solution processed polymer sample many conformers will be present in a variety 

of permutations of relative monomer alignment with chain extension lying between the all-

trans and all-cis limits. The estimated persistence length reflects this distribution. The range of 

conformations together with the monomer length, monomer alignment and torsional potential 

results in a range of absorption strengths. In the case of DPP-TT-T, the chain curvature and 

hence oscillator strength is relatively insensitive to chain conformation (i.e. all likely 

conformations are relatively straight) and this leads to an average extinction that exceeds that 

of all other materials studied here. For completeness, we also analysed the correlation of 

oscillator strength to spatial overlap of the hole and particle transition orbitals and found no 

correlation (Fig S6.11). 

To test the proposal that persistence length dominates optical extinction in solution we 

identified additional polymers with long monomers and high expected co-linearity (small mon), 

namely, an indacenodithiophene-co-benzothiadiazole polymer IDTBT35 and an alternative DPP 

based polymer diketopyrrolopyrrole-terthiophene (DPP3T). IDTBT and DPP3T each have high 

λp and show high solution absorption (Supplementary Figure S9.2). The optical extinction in 

films of IDTBT and DPP3T reaches a maximum of between 1.4 and 1.5, comparable to DPP-TT-T 

(Figure 4), and in the case of IDTBT  increases with MW (see Supplementary Figure S9.3).  
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 We now address the MW dependence of the extinction of DPP-TT-T. Examining the gel 

permeation chromatography data, we find that for both low and high MW fractions, the majority 

of the MW distributions lie at MWs beyond the point where the calculated specific extinction 

begins to saturate (Figure S1.1). Therefore the lower specific extinction for low MW polymer is 

not explained by limited polymer chain length. An alternative hypothesis is that the chains in 

the LMW and HMW samples are present in different distributions of conformation. This idea is 

supported by the higher relative strength of the second shoulder (apparent 0-1 vibronic peak) 

in the absorption spectrum for the LMW than the HMW sample (Fig. 2 for films, Fig S5.1 for 

solutions). It has been shown that oscillator strength is transferred from the 0-0 to higher 

vibronic transitions as a polymer is curved36,37. Interestingly, Marcus and co-workers also 

showed that as a polymer becomes more coiled oscillator strength is lost from the lowest 

electronic transition and gained by higher electronic transitions36.  

To examine the vibronic structure for the DPP-TT-T samples studied here we carried out 

resonance Raman (RR) spectroscopy on LMW and HMW C3 polymers in solution. The 

intensities of RR bands are associated with structural changes upon electronic excitation and 

are thus directly related to the displacement between the ground and excited state potential 

energy surface minima along specific normal coordinates, determining in turn the shape of 

absorption spectra. Resonance Raman Intensity Analysis (RRIA) quantifies the Raman spectrum 

and models the RR cross sections as a function of excitation wavelength for the most intense 

bands simultaneously with the absorption spectrum, thus providing the most appropriate 

combination of displacements and transition dipole moments to describe the optical 

response38,39.  

The resonance Raman spectra for the DPP-TT-T samples and the modeling approach are 

described in detail in the Supplementary Information, Section S7.  Primarily C=C stretching 

modes either belonging to the TT or the DPP unit are enhanced upon excitation on the blue side 

of the absorption spectrum. Interestingly, the relative intensities of the bands assigned to TT 



 

10 
 

and DPP units change significantly with excitation wavelength, suggesting contributions from 

different electronic transitions to the absorption spectrum. Moreover our analysis showed that 

the RR cross sections and absorption spectra could not be fit simultaneously with a single 

dipole-allowed electronic transition; such fits greatly overestimated the RR cross sections (Fig. 

S7.3 and S7.4). However, the RR cross sections were reproduced well when a second electronic 

transition lying 160 meV above the first was introduced (Fig 5(a, b)), inducing interference 

between the two transition polarizabilities and thus reducing the RR cross section. This position 

corresponds well to that of the second calculated electronic transition in tetramers of DPP-TT-T, 

which lies 170 meV above the first transition and is dark for linear oligomers but moderately 

bright in curved (all-cis) oligomers with transition dipole moment μ02 oriented perpendicular to 

the chain (Fig 5(c)).  The high energy shoulder observed experimentally in the absorption 

spectrum can be assigned to the sum of contributions from the second electronic transition in 

curved oligomers and the second vibronic peak of the first electronic transition, which is also 

expected to be stronger in curved oligomers36,37.  The presence of a second transition in our 

analysis indicates that both linear (more ‘trans’) and curved (more ‘cis’) conformers exist in 

both LMW and HMW samples, but the fraction of linear conformers is relatively greater in the 

HMW case, giving rise to the higher overall oscillator strength. We tentatively assign the higher 

tendency of chains to lie straight in the HMW case to the increased strength of chain-chain 

interactions (which will be maximized for linear chains) over the chain-solvent interactions, 

consistent with the lower solubility of the longer chains. The hypothesis that chain-chain 

interactions are more important for higher MW is consistent with the stronger effect of solvent 

on the absorption spectrum for the LMW than the HMW polymer (Fig. S5.2 and S7.5).  

Interestingly, we find little correlation between the push-pull character of the transition 

and the normalised transition dipole moment of the first transition, μ01/Npi. (see section S6.10). 

We also find little charge transfer between the thiophene block and the DPP unit upon 

excitation to the first excited state of DPP-TT-T, consistent with a study by Wood et al.20, in 

contrast to the other copolymers studied. We suggest that the low excitation energy in DPP 
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based copolymers is due to coupling of the polymer excitation to the relatively low excitation 

energy and high oscillator strength of the DPP unit alone (See Fig S6.9 and S6.10). The analysis 

shows that donor-acceptor character need not restrict the absorption strength of low energy 

transitions. 

Finally we consider the question of the limit to absorption for a conjugated polymer. 

Figure 6(a) shows the calculated integral of oscillator strength as a function of photon energy 

for long oligomers (120 < Npi < 165) of a range of chemical structures.  We see that the first 

transition contributes the majority of oscillator strength in the visible. In every case the 

integrated f reaches a value much less than unity in the visible, showing that most of the 

available oscillator strength for the -system must reside in higher energy transitions outside 

the visible range.  The low excitation energy and relatively high oscillator strength of DPP-TT-T 

agree well with the trend shown by the experimental results in Figure 6(b). Also shown in 

Figure 6(b) are plots of oscillator strength per atom for the conventional semiconductors, 

silicon, germanium and gallium arsenide. Because the component atoms are, on average, 

tetravalent in these materials the limiting oscillator strength per atom due to the valence 

electrons is four.  The convergence of the data towards that limit show that these inorganic 

materials achieve a much higher fraction of their limiting extinction within the visible region 

than do the organic semiconductors studied. 

 The examples of DPP-TT-T, DPP3T and IDTBT show that by enhancing the coupling of a 

conjugated polymer to light through extended persistence length, it can be possible to pull more 

of the available oscillator strength in to the visible region. Our studies indicate several design 

considerations to maximise this effect: namely, to target relatively long monomers with high co-

linearity of successive monomers; to design the torsional potential to be strong and to favour an 

alternating (‘trans’) monomer orientation; to achieve low transition energies by using 

components with low -* excitation energy and high oscillator strength, like the DPP unit, and 

to exploit the competition between polymer-polymer and polymer-solvent interactions to 
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maximise chain extension in solution. Whilst the absorption of a polymer in the solid state will 

also be affected by intermolecular interactions, there is substantial evidence that microstructure 

in the solid state reflects the structure in solution (e.g. Ref 40). By employing these design 

considerations, our results indicate that polymers can be designed such that their absorption is 

less sensitive to conformation, thus allowing their full potential to be realised. Exploiting these 

aspects, along with usual considerations such as charge transport, could open the way to 

significant improvements in device performance as shown here in the case of solar cells. 
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Table 1: Molecular weight information of the batches of material used for detailed study. LMW 

denotes low molecular weight and HMW denotes high molecular weight; Mn is the number 

average molecular weight, Mw is the weight average molecular weight and PDI is the 

polydispersity index. 

Material Mn (kDa) Mw (kDa) PDI 

C1 LMW 55 100 1.8 

C1 HMW 120 265 2.2 

C3 LMW 16 51 3.1 

C3 HMW 84 264 3.1 

 

Table 2: J-V characteristics of devices made using low and high molecular weight C1 and C3 

DPP-TT-T blended with PC70BM: short-circuit current Jsc, open-circuit voltage Voc, fill factor and 

power conversion efficiency. All devices had the following architecture: ITO / ZnO / DPP-TT-

T:PC70BM 1:2 (by weight) / MoO3 / Ag. 

Active Material Jsc (mA cm-2) Voc (V) Fill Factor PCE (%) 

C1 LMW:PC70BM 16.45 0.579 0.61 5.85 

C1 HMW:PC70BM 22.75 0.566 0.63 8.09 

C3 LMW:PC70BM 14.33 0.516 0.62 4.58 

C3 HMW:PC70BM 21.83 0.591 0.66 8.48 
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(a)  

 

(b)  

 

Figure 1: (a) Extinction coefficient   (imaginary part of refractive index) spectra for a selection 

of conjugated polymers that have been widely studied for organic solar cells. The maximum  

lies at around 1, while the energetic breadth of the primary optical transition varies by <20%.  

(b) Extinction coefficient maximum as a function of peak absorption wavelength for a larger set 

of materials, including members of the isoindigo, X, X polymer families. The best performing 

solar cell materials have maximum extinction coefficients of approximately 1.  
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(a)  (b) 

 

 

Figure 2: Molecular structures and refractive indices of DPP-TT-T C1 and C3 polymers. (a) and 

(b) are the chemical structures of C1 and C3 respectively (synthesis details are given in Ref. 21), 

(c) and (d) show the refractive index data for pristine polymer films of C1 and C3 respectively, 

and (e) and (f) show the corresponding data for 1:2 polymer:PC70BM blend films of C1 and C3 

respectively.
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Figure 3: (a)  Normalised oscillator strength f1 of the lowest energy transition as a function of 

number of pi electrons Npi, for oligomers of various structures in the alternating (trans) 

configuration, calculated using TDDFT with CAM-B3LYP/6-31g*.  (b) As (a) for cis 

configuration.(c) Calculated 2 using f1 values for Npi = 140-160 and a Lorentzian broadening 
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function of width 0.2 eV. Note that by definition beta phase oligofluorene does not form the cis 

conformation so is omitted from (b) and (c). 

 

Figure 4: Extinction coefficient of a range of conjugated polymers: PTB7 (orange), P3HT 

(magenta) and PCPDTBT (cyan) exhibit low theoretical persistence length p while DPP3T 

(green), DPP-TT-T (blue), IDTBT (purple) exhibit high theoretical persistence length. 
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Figure 5: (a) Experimental (solid black line) and calculated (dashed red line) absorption cross 

sections of LMW and HMW C3 polymers in 1,2-dichlorobenzene. The dashed black and blue lines 

represent the absorption spectra for the two transitions that contribute to the overall absorption 

band. b) Corresponding experimental (points) and calculated (solid line) Raman excitation 

profiles for the 1492 cm-1 mode of LMW and HMW C3 polymer. (c) Direction and relative strength 

of transition dipole moments for first two electronic transitions in linear and curved tetramers of 

DPP-TTT. The Raman spectra can be explained by a sum of contributions from linear and curved 

oligomers.  
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 Figure 6(a):  Summed oscillator strength per electron in the π-system at various photon 

energies for oligomers in the all-trans conformation with 120 < Npi < 165, calculated using 

TDDFT with CAM-B3LYP/6-31g*.  

 

Figure 6(b): Summed oscillator strength per π-system electron. The corresponding data for key 

inorganic photovoltaic materials are shown for comparison.  
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