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ABSTRACT 

Purpose: Previous studies have identified many genetic loci for refractive error and myopia. We 

aimed to investigate the effect of these loci on ocular biometry as a function of age in children, 

adolescents and adults.  

Methods: The study population consisted of three age-groups identified from the international 

CREAM consortium: 5,490 individuals aged <10 years; 5,000 aged 10-25 years; and 16,274 

aged >25 years. All participants had undergone standard ophthalmic examination including 

measurements of axial length (AL) and corneal radius (CR). We examined the lead SNP at all 

39 currently known genetic loci for refractive error identified from genome-wide association 

studies (GWAS), as well as a combined genetic risk score (GRS). The beta coefficient for 

association between SNP genotype or GRS versus AL/CR was compared across the 3 age 

groups, adjusting for age, sex, and principal components. Analyses were Bonferroni-corrected. 

Results: In the age-group <10 years, 3 loci (GJD2, CHRNG, ZIC2) were associated with 

AL/CR. In the age-group 10-25 years, 4 loci (BMP2, KCNQ5, A2BP1, CACNA1D) were 

associated; and in adults 20 loci were associated. Association with GRS increased with age; β = 

0.0016 per risk allele (P = 2E-08) in <10 years, 0.0033 (P = 5E-15) in 10-25 year-olds, and 

0.0048 (P = 1E-72) in adults. Genes with strongest effects (LAMA2, GJD2) had an early effect 

that increased with age.  

Conclusion: Our results provide insights on the age span during which myopia genes exert 

their effect. These insights form the basis for understanding the mechanisms underlying high 

and pathological myopia. 
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INTRODUCTION 

The prevalence of myopia (nearsightedness) has increased dramatically in developed countries 

in recent decades [Bar Dayan, et al. 2005; Vitale, et al. 2009]. Myopia is a complex, 

multifactorial disease with increasing public health burden due to a strong rise worldwide. In 

particular high myopia is associated with blinding complications such as myopic macular 

degeneration, glaucoma and retinal detachment [Curtin and Karlin 1971; McBrien and Gentle 

2003; Saw 2006]. High myopia mostly has its onset in early childhood before age 10 years 

[Fledelius 2000]. 

The eye’s dimensions alter markedly during the peak development phase between birth 

and the late teenage years, ultimately exerting very strong effects on final refractive error (RE) 

in later adult life. A complex process called emmetropisation aims to coordinate ocular 

development, bringing light into clear focus on the retina. Early life myopia is characteristically 

associated with excessive axial length (AL) increase. This results in a mismatch of the optical 

effects of the various refractive components of the eye, resulting in a focal point in front of the 

retina. Such a mismatch can be described by the ratio of AL to corneal radius (CR), AL/CR ratio, 

which has a high correlation with RE [Hashemi, et al. 2013; Ip, et al. 2007] and is independent 

of cycloplegia which may vary between studies.  

Various studies have examined the heritability of myopia showing increased risk for first-

degree relatives of affected individuals [Farbrother, et al. 2004; Guggenheim, et al. 2000] and 

twins [Sanfilippo, et al. 2010; Young, et al. 2007]. Numerous genetic loci that cause familial high 

myopia (MYP1-18) have been discovered using linkage analysis [Baird, et al. 2010]. More 

recently, genome wide association studies (GWAS) in large cohorts have been performed to 

identify further determinants for REs in the general population. The first single nucleotide 

polymorphisms (SNPs) identified were near GJD2 [Solouki, et al. 2010] and RASGRF1 [Hysi, et 

al. 2010]. Later many more loci were found in studies of large populations (CREAM; 

23andMe)[Kiefer, et al. 2013; Verhoeven, et al. 2013] [Wojciechowski and Hysi 2013]. 
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All previously published refractive error GWAS studies were performed in cohorts 

enrolling participants aged 25 years and older. We aimed to study the effect size of the 39 

GWAS-identified genetic regions associated with refractive error to date, as a function of age.  

  

METHODS 

Study specific analysis 

We included 18 cohorts from 8 different countries in Europe, Asia and Oceania, with a total of 

5,490 children <10 years, 5,000 individuals of 10-25 years, and 16,274 adults, all with 

phenotypic and genome-wide genotypic data available. Age cut off points were based on prior 

knowledge regarding eye growth. The eye has the highest growth rate before the age of 10 

years, and generally does not grow in axial length after age 25 years [Zadnik, et al. 2003]. 

Details on subject recruitment procedures can be found in the supplemental materials. Each 

study participant was genotyped with either an Affymetrix or Illumina SNP array (supplemental 

table I). All studies were conducted according to the Declaration of Helsinki. The studies were 

approved by the local review boards. Written, informed consent for the collection and analysis of 

measurements of all study participants was obtained.  

SNPs 

A total of 39 SNPs were included in this analysis. The SNPs were selected based on their 

known association with RE and myopia in the GWAS carried out by CREAM [Verhoeven, et al. 

2013] and 23andMe [Kiefer, et al. 2013](supplementary table II). An unweighted genetic risk 

score (GRS) was calculated for each participant by summing the dosage of risk alleles (scale 0-

2) for all 39 SNPs. The risk score was normally distributed.   

Ocular biometry 

The ocular biometry measurements included AL and CR, and the AL/CR ratio was calculated. 

Multiple measurements of AL and CR were taken of the right eye and left eye, were averaged to 

calculate a mean AL and CR for each eye. The average AL of both eyes was divided by the 
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average CR of both eyes to calculate the AL/CR ratio. Details of the phenotypic assessment 

protocols/instruments used in each study can be found in the supplemental material. 

Meta-analysis 

All studies performed linear regression models with each SNP or the GRS as determinants, and 

the AL/CR ratio as outcome. Analyses were adjusted for the potentially confounding effects of 

age and gender, and additionally – to account for ancestry differences within the sample – for 

principal components where applicable. A meta-analysis was performed to estimate the beta 

effects using an inversed variance weighted fixed effect model with METAL [Willer, et al. 2010]. 

Meta-analyses were performed in each age stratum separately, and in combined strata of all 

participants <25 years. Several children measured in TEST (Twins Eye Study Tasmania) and 

GTES (Guangzhou Twin Eye Study) had follow up measurements at an older age; therefore, 

only data from the oldest age were used in the combined analysis. In the Asian studies the 

following SNPs were excluded due to low minor allele frequency (MAF) <0.05 in the Chinese 

population: rs17428076, rs1656404, rs14165, rs13091182, rs12205363, rs11145465, 

rs10882165, and rs17183295. 

Pathway analysis 

Loci with significant effects (P <0.05) were further explored to identify differences in effect of 

early-onset genes (significant loci identified in groups <10 years, 10-25 years or the combined 

analysis) and late-onset genes (adult subjects). Data were analysed through the use of 

QIAGEN’s Ingenuity®. 

 Pathway Analysis  (IPA®, QIAGEN Redwood City, www.qiagen.com/ingenuity) and the online 

software tool Database for Annotation, Visualization and Integrated Discovery (DAVID) [Huang 

da, et al. 2009a; Huang da, et al. 2009b]. 
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RESULTS 

Our study sample of children <10 years comprised 5,490 participants derived from 5 studies; 

one of European ancestry (TEST), three of Asian ancestry (SCORM, STARS, and Guangzhou 

Twins), and one of mixed European, African, and Asian ancestry (Generation R). Our sample of 

individuals aged 10-25 years included 5,000 participants derived from 6 studies; 4 of European 

ancestry (TEST, ALSPAC, BATS and RAINE) , and 2 of Asian (STARS, Guangzhou Twins) 

ancestry. Our sample of adults >25 years compromised 16,274 participants derived from 10 

studies; 9 of European ancestry (Croatia Split, -Kurcula and – Vis study, Gothenburg Health 

Study, EPIC-Norfolk and the Rotterdam Study I-III), and one Asian study (Nagahama). General 

characteristics per study are shown in Table I. 

 

Genetic risk score 

The genetic risk score was associated with a higher AL/CR ratio even in children aged <10 

years (table II), and this association increased in magnitude with older age. Specifically, AL/CR 

increased with each age category from β 0.0019 (SD 0.0003) per risk allele in children <10 

years, to 0.0033 (SD 0.0004) in participants aged 10-25 years, to 0.0051 (SD 0.0003) in adults 

(figure I). Only the adult group showed evidence for heterogeneity (heterogeneity P-value 

0.0005) between studies, therefore, meta-analyses for this age category were also performed 

using the random effect model  (β 0.0048; SD 0.0007; supplementary table IV). The variance 

explained by the genetic risk score increased from 0.7% in the children aged 6 from the 

Generation R study, to 3.7% for the adult participants in the RS I-III (Fig II). 

 

Genetic loci 

In children <10 years, 9/39 loci were significant at P <0.05, and 3/39 were significant after 

correction for multiple-testing for 39 SNPs (P <0.00128). The 3 loci significant after Bonferroni 

correction were in the vicinity of the genes GJD2, ZIC2 and CHRNG. The 2 nominally-significant 
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loci with the greatest effect size (beta) were close to the CHRNG and PRSS56 genes. The other 

5 loci were near KCNQ5, SHISA6, KCNMA1, BMP2 and BICC1. Interestingly, the SNP at the 

BMP2 locus had a reversed effect from that observed in adult samples, i.e., the risk allele was 

associated with a lower AL/CR ratio. In individuals aged 10 - 25 years, 10/39 loci showed 

nominally significant association with AL/CR ratio, of which 5 survived Bonferroni correction 

(BMP2, TOX, KCNQ5, A2BP1 and CACNA1D). Five of the 10 SNPs above were already 

nominal significantly associated with AL/CR ratio in children <10 years (GJD2, BICC1, ZIC2, 

BMP2 and PRSS56); of the remaining nominally-significant loci, the variant with the greatest 

effect in 10-25 year-olds was the SNP at the LAMA2 locus. One variant differed significantly in 

effect between children <10 years and those aged 10-25 years. This was the SNP at the BMP2 

locus which, as mentioned above, showed an opposite effect to that expected in children aged 

<10 years (Figure III). One of the loci (TOX) showed evidence for heterogeneity (supplementary 

table III) in effect between study cohorts in the age category 10-25 years (Heterogeneity P = 

0.001). With random effect model the effect of this SNP decreased to β 0.0062 (SE 0.0073; P 

0.40)(supplementary table IV). In the combined analysis of all studies <25 years, BICC1 and 

PRSS56 reached Bonferroni adjusted significance; one additional locus (PDE11A) showed a 

nominally significant effect for AL/CR ratio. In adults, 31/39 loci showed a significant effect, of 

which 19/39 were Bonferroni significant. All loci, except for ZBTB38 (β -0.0004; SE 0.0019), 

showed an association in the expected direction (i.e. risk allele associated with a higher AL/CR 

ratio). As in 10-25 years, one locus significant in adults showed evidence for heterogeneity 

(LOC100506035); with random effect model this locus lost statistical significance 

(supplementary table III and IV). Figure IV displays all estimated effect sizes per age group.  

Pathway analysis 

Pathway analyses were performed to gain insight into the mechanisms for early versus late-

onset eye growth and myopia development. We hypothesized that loci with at least a moderate 

(nominally significant P<0.05) effect in children and adolescents most likely had an early onset. 
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Hence, a locus was defined as early onset when nominally significant (P<0.05) in the group<10 

years of age or the group 10-25 years and no evidence for heterogeneity (in Figure IV all loci 

above the green line). Loci nominally significant in the adult population without a significant 

effect in the group<10 years of age or the group 10-25 years were grouped as late onset genes 

(in Figure IV all loci below the green line). We utilized two types of pathway analysis software. 

Ingenuity Pathway Analysis (IPA) 

IPA is a web-based software to analyse and integrate the identified SNPs based on biological 

functions. Analysis were performed in two separate analysis, one analysis with genes with an 

early onset and one analysis with late onset genes. We used the program’s diseases and 

disorder table to identify associated diseases. Genes with an early onset in the age groups <25 

years were enriched in pathways of auditory disease, organismal injury and abnormalities, and 

gastrointestinal disease (at FDR <5%). The genes that were significantly associated in adults 

predisposed to connective tissue disorders, developmental disorder (e.g. microphthalmia; with 

the genes BMP4 and SIX6), and also gastrointestinal disease (supplementary table V).  

Database for Annotation, Visualization and Integrated Discovery (DAVID) 

The software program DAVID is an online knowledge database to identify overlapping functions  

of genes. We performed the  analyses separately for  early and late onset genes. Using the 

categories defined above, early-onset genes were significantly more than expected annotated  

to ion channels and ion transport. The genes annotated to  these categories were CACNA1D, 

CHRNG, GJD2, KCNMA1 and KCNQ5. Late onset genes appeared to be significantly  more 

related to neuron differentiation and visual perception. The genes involved in these categories 

were RORB, SIX6, RASGRF1, CHD7, RGR, RDH5 and GRIA4. (supplementary table VI). 

 

DISCUSSION: 

This study identifies the age span during which the known GWAS-identified loci for refractive 

error have their greatest effect. The current meta-analysis suggests that specific loci had their 
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greatest effect in young children (CHRNG, ZIC2, KCNMA1), while others reached the greatest 

effect during early teenage years (BMP2, CACNA1D, A2BP1). However, most appeared to have 

a gradual effect during the entire age span of myopia development (LAMA2, LRRC4C, DLX1, 

RDH5, GRIA4, RGR, SIX6).  

Strengths of this study were the large sample size, the comparison across 3 distinct age 

categories, and the precision in measurements of ocular biometry. A drawback was the lack of 

complete cycloplegic refraction in children in several studies, which jeopardized valid 

measurements of RE in this age category. Thus, we used AL/CR ratio as an indicator of RE to 

avoid heterogeneity in the outcome. This ratio has a high correlation with RE [Hashemi, et al. 

2013; Ip, et al. 2007] and was available from all studies in the consortium. Another limitation 

was the lack of power to detect statistically significant differences between the age groups for 

most genes. A pooled analysis would have increased statistical power, but raw data from 

individual participants were not available. Ideally, a study using longitudinal data of the same 

children over different age periods would have the best study design for the current analysis.  

Little has been reported on the development and progression of myopia as a function of 

age; however, a number of studies investigated the relationship between development of ocular 

biometry related to age. Until the age of 25 years, corneal curvature, the crystalline lens, and 

axial length all evolve with age, and thereby influence refractive error. The cornea increases in 

radius until preschool age leading to flattening of the corneal curvature and decrease in 

refractive power [Augusteyn, et al. 2012]; the crystalline lens grows until 10 years of age, also 

reducing refractive power [Mutti, et al. 2012; Mutti, et al. 1998]. This decrease in refractive 

power is compensated by axial elongation which increases from 17 mm in newborns [Lim, et al. 

2015] to 23.3 mm in 12-13 year olds [French, et al. 2012]. The average AL in emmetropic adults 

is 23.5 mm [Fotedar, et al. 2010; Gordon and Donzis 1985]. The highest growth rate of AL 

occurs in the first years of life and relates to emmetropisation; the growth rate after early teens 

is more gradual but mainly relates to myopisation [Gordon and Donzis 1985]. The exact age at 
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which eye growth stops is not known; generally this occurs before age 20 years, but increase in 

AL has been described up to the age of 25 years in university students [Fledelius 2000; 

Midelfart, et al. 1992].  

One of the key detected GWAS-identified loci for refractive error is on chromosome 15 

near the GJD2 gene, that encodes a gap junction protein known as CX36. This protein not only 

processes cone-to-cone and cone-to-rod signals [Lee, et al. 2003] but also directs signaling 

between other retinal cells [Feigenspan, et al. 2001; Hidaka, et al. 2004]. This cell-to-cell 

communication appears to be under regulation of light exposure and dopamine [Bloomfield and 

Volgyi 2009], two factors that have an established role in eye growth and myopia development. 

Our data suggest that GJD2 has an early-onset, indicating that altered retinal cell signaling, 

perhaps via reduced light exposure and low dopamine levels, may be a first step in myopia 

development. As expected, some early-onset genes also had a reported role in eye 

development. Knockout of LAMA2, a gene encoding the large extracellular glycoprotein laminin-

α2; causes growth retardation including smaller eyes with compressed cellular layers [Gupta, et 

al. 2012]. Mutations in the serine protease gene PRSS56  cause a severe decrease of AL 

leading to microphthalmia [Nair, et al. 2011].  Another developmental gene is ZIC2, an 

enhancer-binding factor required for embryonic stem cell specification [Luo, et al. 2015]. This 

gene may be important for development of retinal architecture, as it is known to be involved in 

differentiation and proliferation of retinal progenitor cells [Watabe, et al. 2011], and development 

of retinal ganglion cell trajectories [Herrera, et al. 2003]. Strikingly, several other genes involved 

in eye development, such as SIX6, CDH7, and DLX1, did not show an early onset but were 

more significant after the age of 10 years. Other early-onset genes were ion channels such as 

KCNQ5, a potassium channel present in cone and rod photoreceptors [Zhang, et al. 2011], and 

CACNA1D, a calcium channel present in photoreceptors [Xiao, et al. 2007]. CHRNG has as yet 

an unknown role in myopia development. It encodes the γ subunit of the embryonal 
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acetylcholine receptor, which is widely expressed in the retina [Hruska, et al. 1978; Hutchins 

and Hollyfield 1985], and is associated with multiple pterygium syndrome [Vogt, et al. 2012].   

Several remarkable patterns of effect were notable. For instance, the lead SNPs at the 

BMP2,  MYO1D, PTPRR, and BMP4 loci showed an opposite effect in children <10 years than 

in those who were older. This is not uncommon in biology, as such a trajectory has also been 

described for the FTO locus in relation to body mass index in children [Sovio, et al. 2011]. 

Interestingly, gene expression studies of BMP2 in chickens showed that mRNA of this gene in 

the retinal pigment epithelium is up- or down-regulated depending on the location of the image 

plane [Zhang, et al. 2012]. When the image was focused behind the retina, mRNA was 

downregulated and the vitreous chamber enlarged. This underscores a bidirectional role for 

BMP2 in modulation of eye growth.   

Most genes had a late onset. BMP4 has a similar function to BMP2 as it is also responds 

to optical defocus with bidirectional regulation of eye growth [Zhang, et al. 2013]. SIX6 is a 

DNA-binding homeobox and has a SIX domain, which binds downstream effector molecules. It 

is known to influence eye size in zebrafish with knocked down SIX6 expression [Iglesias, et al. 

2014]. Other genes play a less obvious role in myopiagenesis. MYO1D is involved in membrane 

trafficking in the recycling pathway and expressed in oligodendrites [Benesh, et al. 2012]. 

RORB, a gene encoding a nuclear receptor-directing photoreceptor differentiation, is known to 

activate and generate S-opsin [Jia, et al. 2009; Srinivas, et al. 2006]. DLX1 belongs to the DLX 

family of homeobox transcription factors, and produces GABAergic interneurons during 

embryonic development.  

In conclusion, our study suggests that only a small proportion of the currently known 

GWAS-identified loci for RE exert their full effect at a young age. Furthermore, some of the 

pathways previously-identified by GWAS meta-analyses [Verhoeven, et al. 2013] can now be 

separated into early- and late-onset pathways. For example, genes coding for ion channels 

typically had an early onset, while genes related to connective tissue and visual feedback 
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mechanisms appeared to become more important at a later age. As the currently known genes 

play only a minor role in early-onset myopia, we question whether this type of myopia is caused 

by common variants in other genes, or whether rare variants with large effects determine early-

onset. Future research may shed more light on genes for early-onset myopia, and unravelling 

these genes will open up strategies for prevention of high myopia.  
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Table I Participating studies and characteristics stratified per age group 

*GTES= Guangzhou Twin Eye Study, RS I-III = Rotterdam Study I-III, GHS=Gutenberg Health Study 

 

Age <10 years 

Study N AL/CR (SD; range) Age (SD) Gender, % Female 

STARS 207 2.99 (0.150; 2.76 – 3.46) 5.45 (2.11) 47.3 

Generation R 3,874 2.87 (0.083; 2.38 – 3.90) 6.18 (0.51) 50.3 

SCORM 898 3.02 (0.112; 2.63 – 3.45) 7.48 (0.87) 47.7 

TEST 166 2.94 (0.101; 2.65 – 3.25) 7.53 (1.21) 52.4 

GTES 345 2.97 (0.100; 2.62 – 3.45) 8.73 (0.79) 50.1 

Total 5,490  

Age 10-25 years 

STARS 96 3.23 (0.127; 2.95 – 3.60) 12.23 (1.7) 58.3 

GTES 699 3.13 (0.147; 2.58 – 3.82) 14.83 (1.2) 52.9 

TEST 182 2.99 (0.108; 2.68 – 3.51) 15.16 (4.0) 60.4 

ALSPAC 1,996 2.99 (0.099; 2.57 – 3.52) 15.46 (0.3) 53.6 

BATS 983 3.03 (0.106; 2.67 – 3.82) 19.07 (3.2) 53,8 

RAINE 1,044 3.05 (0.104; 2.63 – 3.54) 20.04 (0.4) 48.9 

Total 5,000  

Age >25 years 

Nagahama 2,762 3.13 (0.153; 2.62 – 3.86) 52.05 (13.8) 49.0 

Croatia-Split 730 3.02 (0.128; 2.38 – 3.90) 52.16 (13.0) 61.2 

Croatia Korcula 832 2.99 (0.203; 2.26 – 5.73) 56.62 (13.3) 64.7 

Croatia-Vis 573 2.99 (0.121; 2.50 – 3.83) 55.93 (13.8) 60.4 

GHS 2 936 3.07 (0.160; 2.50 – 4.01) 59.26 (10.6) 50.0 

GHS 1 1,919 3.06 (0.151; 2.30 – 3.88) 60.17 (10.7) 47.1 

EPIC-Norfolk 6,051 3.05 (0.146; 2.42 – 3.95) 68.9 (8.0) 54.3 

RS I-III 2,471 3.05 (0.143; 2.43 – 3.86) 70.02 (8.8) 53.6 

Total 16,274  
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Table II Effect size of myopia related genes in age groups <10 years, 10-25 years, 25> years 

    
<10 years 10 - 25 years Combined >25 years 

Variant Chr Gene RA Beta (SE) P Beta (SE) P Beta (SE) P Beta (SE) P 

Allele Score - - - 0.0019 (0.0003) 10^-11 0.0033 (0.0004) 10^-15 0.0024 (0.0002) 10^-24 0.0051(0.0003) 10^-72 

rs1652333 1 CD55 G 0.0033 (0.0017) 0.05 0.0006 (0.0024) 0.80 0.0026 (0.0014) 0.07 0.0084(0.0017) 10^-6 

rs4373767 1 ZC3H11B T 0.0010 (0.0017) 0.55 0.0032 (0.0023) 0.16 0.0019 (0.0014) 0.16 0.0053(0.0017) 0.002 

rs17412774 2 PABPCP2 A 0.0007 (0.0017) 0.69 0.0010 (0.0023) 0.67 0.0008 (0.0014) 0.57 0.0063(0.0017) 10^-4 

rs17428076 2 DLX1 C 0.0017 (0.0021) 0.43 0.0029 (0.0027) 0.28 0.0024 (0.0017) 0.16 0.0073(0.0021) 10^-4 

rs1898585 2 PDE11A T 0.0022 (0.0019) 0.26 0.0050 (0.0029) 0.09 0.0034 (0.0017) 0.04 0.0057(0.0021) 0.007 

rs1656404 2 PRSS56 A 0.0073 (0.0024) 0.002 0.0067 (0.0033) 0.04 0.0069 (0.0019) 10^-4 0.0079(0.0024) 0.001 

rs1881492 2 CHRNG T 0.0086 (0.0024) 10^-4 0.0039 (0.0031) 0.21 0.0064 (0.0020) 0.001 0.0085(0.0022) 10^-5 

rs14165 3 CACNA1D G 0.0035 (0.0020) 0.08 0.0082 (0.0026) 0.001 0.0055 (0.0016) 0.001 0.0055(0.0020) 0.005 

rs13091182 3 ZBTB38 G 0.0008 (0.0020) 0.69 -0.0001 (0.0024) 0.98 0.0007 (0.0015) 0.66 -0.0004(0.0019) 0.83 

rs9307551 4 LOC100506035 A 0.0007 (0.0019) 0.70 0.0037 (0.0026) 0.16 0.0020 (0.0016) 0.20 0.0051(0.0020) 0.008 

rs5022942 4 BMP3 A 0.0014 (0.0018) 0.44 -0.0016 (0.0026) 0.54 0.0007 (0.0015) 0.63 0.0006(0.0020) 0.78 

rs7744813 6 KCNQ5 A 0.0050 (0.0017) 0.004 0.0081 (0.0023) 10^-4 0.0060 (0.0014) 10^-5 0.0066(0.0018) 10^-4 

rs12205363 6 LAMA2 T 0.0041 (0.0041) 0.31 0.0138 (0.0046) 0.003 0.0094 (0.0031) 0.003 0.0229(0.0036) 10^-10 

rs7829127 8 ZMAT4 A 0.0025 (0.0020) 0.22 0.0019 (0.0028) 0.49 0.0025 (0.0017) 0.13 0.0072(0.0021) 0.001 

rs7837791 8 TOX G 0.0029 (0.0016) 0.06 0.0083 (0.0022) 10^-4 0.0050 (0.0013) 10^-4 0.0042(0.0017) 0.012 

rs4237036 8 CHD7 T 0.0001 (0.0018) 0.96 0.0032 (0.0024) 0.18 0.0013 (0.0014) 0.37 0.0058(0.0018) 0.001 

rs11145465 9 TJP2 A 0.0035 (0.0022) 0.11 0.0027 (0.0028) 0.33 0.0029 (0.0017) 0.09 0.0062(0.0021) 0.004 

rs7042950 9 RORB G 0.0028 (0.0019) 0.14 0.0031 (0.0026) 0.24 0.0027 (0.0016) 0.08 0.0071(0.0020) 10^-4 

rs7084402 10 BICC1 G 0.0035 (0.0016) 0.03 0.0066 (0.0023) 0.004 0.0050 (0.0013) 10^-4 0.0074(0.0017) 10^-6 

rs6480859 10 KCNMA1 T 0.0040 (0.0018) 0.02 0.0037 (0.0023) 0.10 0.0040 (0.0014) 0.004 0.0015(0.0017) 0.38 

rs745480 10 RGR G 0.0007 (0.0016) 0.67 0.0021 (0.0022) 0.34 0.0011 (0.0013) 0.40 0.0055(0.0017) 0.001 

rs10882165 10 CYP26A1 T 0.0012 (0.0018) 0.49 0.0002 (0.0024) 0.93 0.0007 (0.0014) 0.61 0.0011(0.0018) 0.54 

rs1381566 11 LRRC4C G 0.0026 (0.0020) 0.21 0.0040 (0.0034) 0.23 0.0028 (0.0018) 0.12 0.0093(0.0022) 10^-5 

rs2155413 11 DLG2 A 0.0022 (0.0017) 0.18 0.0027 (0.0022) 0.23 0.0023 (0.0013) 0.09 0.0021(0.0017) 0.21 

rs11601239 11 GRIA4 C 0.0011 (0.0016) 0.50 0.0027 (0.0022) 0.22 0.0014 (0.0013) 0.30 0.0055(0.0017) 0.001 

rs3138144 12 RDH5 G 0.0020 (0.0021) 0.35 0.0039 (0.0027) 0.16 0.0028 (0.0017) 0.10 0.0045(0.0019) 0.02 

rs12229663 12 PTPRR A -0.0023 (0.0019) 0.21 0.0046 (0.0026) 0.08 0.0000 (0.0016) 1.00 0.0069(0.0019) 10^-4 

rs8000973 13 ZIC2 C 0.0058 (0.0017) 10^-4 0.0058 (0.0023) 0.01 0.0059 (0.0014) 10^-5 0.0027(0.0017) 0.10 

rs2184971 13 PCCA A 0.0008 (0.0016) 0.61 0.0006 (0.0023) 0.80 0.0009 (0.0014) 0.48 0.0021(0.0017) 0.21 

rs66913363 14 BMP4 G -0.0025 (0.0017) 0.15 0.0040 (0.0024) 0.10 0.0006 (0.0014) 0.68 0.0047(0.0017) 0.006 

rs1254319 14 SIX6 A 0.0007 (0.0017) 0.68 0.0044 (0.0024) 0.07 0.0017 (0.0014) 0.22 0.0054(0.0018) 0.002 

rs524952 15 GJD2 A 0.0069 (0.0016) 10^-5 0.0068 (0.0023) 0.003 0.0067 (0.0013) 10^-7 0.0122(0.0016) 10^-14 

rs4778879 15 RASGRF1 G 0.0018 (0.0017) 0.29 0.0033 (0.0023) 0.15 0.0019 (0.0014) 0.17 0.0051(0.0017) 0.002 

rs17648524 16 A2BP1 C 0.0018 (0.0018) 0.33 0.0079 (0.0024) 0.001 0.0039 (0.0015) 0.01 0.0077(0.0019) 10^-5 

rs2969180 17 SHISA6 A 0.0035 (0.0016) 0.03 0.0017 (0.0023) 0.46 0.0027 (0.0014) 0.05 0.0079(0.0017) 10^-6 

rs17183295 17 MYO1D T -0.0033 (0.0023) 0.16 0.0009 (0.0030) 0.76 -0.0018 (0.0018) 0.33 0.0089(0.0023) 10^-4 
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Values are betas (SE) and P-values, from linear regression models adjusted for sex, age and principal components if applicable meta-analysed 

with inversed variance meta-analysis in METAL. Bold: P <0.05. 

rs4793501 17 KCNJ2 T 0.0029 (0.0016) 0.08 0.0001 (0.0022) 0.95 0.0019 (0.0013) 0.16 0.0041(0.0017) 0.015 

rs12971120 18 CNDP2 A 0.0002 (0.0019) 0.93 0.0048 (0.0026) 0.07 0.0017 (0.0015) 0.27 0.0024(0.0019) 0.22 

rs235770 20 BMP2 T -0.0043 (0.0018) 0.02 0.0121 (0.0025) 10^-6 0.0008 (0.0015) 0.60 0.0043(0.0017) 0.013 
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Figure I. Association between genetic risk score and myopia in the three age groups  

Figure II. Association between non-weighted genetic risk score and AL/CR ratio in children and adults.  

Figure III. Increased effect on AL/CR ratio with age for BMP2 gene.  

Figure IV. Distribution of effects on AL/CR ratio per myopia-related gene in three age groups 
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