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Abstract 

Childhood maltreatment is a key risk factor for poor mental and physical health. Recently, 

variation in epigenetic processes, such as DNA methylation, has emerged as a potential 

pathway mediating this association; yet, the extent to which different forms of maltreatment 

may be characterized by unique vs shared epigenetic signatures is currently unknown. In this 

study, we quantified DNA methylation across the genome in buccal epithelial cell samples 

from a high-risk sample of inner-city youth (n = 124; age = 16-24; 53% female), 68% of 

whom reported experiencing at least one form of maltreatment while growing up. Our 

analyses aimed to identify methylomic variation associated with exposure to five major types 

of childhood maltreatment. We found that: (i) maltreatment types differ in the extent to which 

they associate with methylomic variation, with physical exposures showing the strongest 

associations; (ii) many of the identified loci are annotated to genes previously implicated in 

stress-related outcomes, including psychiatric and physical disorders (e.g. GABBR1, 

GRIN2D, CACNA2D4, PSEN2); and (iii) based on gene ontology analyses, maltreatment 

types not only show unique methylation patterns enriched for specific biological processes 

(e.g. physical abuse and cardiovascular function), but also share a ‘common’ epigenetic 

signature enriched for biological processes related to neural development and organismal 

growth. A stringent set of sensitivity analyses were also run to identify high-confidence 

associations. Together, findings lend novel insights into epigenetic signatures of childhood 

abuse and neglect, point to novel potential biomarkers for future investigation and support a 

molecular link between maltreatment and poor health outcomes. Nevertheless, it will be 

important in future to replicate findings, as the use of cross-sectional data and high rates of 

polyvictimization in our study make it difficult to fully disentangle the shared vs unique 

epigenetic signatures of maltreatment types. Furthermore, studies will be needed to test the 

role of potential moderators in the identified associations, including age of onset and 

chronicity of maltreatment exposure.  

Keywords: DNA Methylation; epigenome-wide; child abuse; neglect; maltreatment; stress 
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Introduction  

Childhood maltreatment, encompassing abuse and neglect, is a major public health concern 

that continues to affect up to one in four children worldwide, with often devastating 

developmental consequences (WHO, 2014). Children who experience maltreatment are at 

increased risk for a range of psychiatric problems, including anxiety, depression, post-

traumatic stress, and antisocial behaviour (Cicchetti and Toth, 2005). The effects of 

maltreatment can extend well into adulthood, compromising relationship quality, economic 

productivity and physical health (Danese et al., 2009).  

The theory of latent vulnerability proposes that maltreatment exposure calibrates a 

range of biological and neurocognitive systems in line with a threatening and unpredictable 

early environment (McCrory and Viding, 2015). While potentially adaptive in the short term, 

such changes can increase vulnerability in the long term. Consistent with this view, numerous 

biological correlates of maltreatment have now been identified, including accelerated cellular 

ageing, neuroendocrine dysregulation, heightened inflammatory response as well as altered 

brain structure and function (Danese et al., 2011, McCrory et al., 2012, Shalev et al., 2013). 

Recent evidence indicates that, as well as affecting common biological pathways, different 

forms of maltreatment may also exert unique effects. For example, while abuse has been 

associated with changes in neural circuitry underlying threat processing, neglect has been 

associated with biological adaptations to low-complexity environments (Sheridan and 

McLaughlin, 2014).  

A key challenge for current research is to understand how, at a molecular level, these 

environmental exposures are translated into phenotypic variation. Epigenetic processes, such 

as DNA methylation (DNAm), which control the functional regulation of gene expression are 

of particular interest in this regard, as mounting evidence suggests they can be modified by 

environmental factors (Jaenisch and Bird, 2003). For example, animal studies have found that 

a number of environmental stressors, such as poor maternal care, induce stable alterations in 

DNAm in the regulatory regions of several HPA axis genes (e.g. the glucocorticoid receptor), 

which in turn influence responses to future stressors (Turecki and Meaney, 2014). Similarly, 

a small number of human studies have documented a link between childhood maltreatment 

and aberrant DNAm in genes important for stress-response, immune function and 

neurodevelopment (Lutz and Turecki, 2014). DNAm has also been shown to regulate a wide 

range of neurobiological processes, including neurogenesis, synaptic plasticity, learning and 

memory (Baker-Andresen et al., 2013, Day et al., 2013) and aberrations in DNAm have been 

observed in a range of diseased states, including stress-related psychiatric disorders such as 

post-traumatic stress and major depression (Bergman and Cedar, 2013, Klengel et al., 2014).   

To date, most epigenetic studies of maltreatment have focused on variation in the 

vicinity of a limited set of pre-selected candidate genes (i.e. GR, FKBP5, BDNF and 5-HTT) 

(Lutz and Turecki, 2014). As such, little is known about the broader effect of maltreatment on 

DNAm across the genome. This is a substantial limitation in light of the fact that 

maltreatment impacts multiple aspects of functioning, across psychological, physical, and 

social domains. Furthermore, existing studies have primarily examined global maltreatment 

(Labonte et al., 2012, Prados et al., 2015, Suderman et al., 2014, Yang et al., 2013), so that 

the extent to which different maltreatment types may have common vs distinct epigenetic 

signatures is unclear. To address these outstanding questions, we explored the relationship 
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between DNAm and five types of maltreatment in a sample of high-risk youth, using 

genome-wide DNAm data drawn from buccal epithelial cells.  

 

Methods and Materials 

Participants 

The current sample was recruited as part of a larger study examining the effects of 

developmental adversity on individual functioning (n = 204, age range = 16-24 years). 

Analyses only included participants for whom DNAm data was available (n = 124). Youth 

from deprived inner London areas were recruited through multiple channels including inner-

city colleges, internet websites and a charity providing services and support to self-referred 

youth. The sample was 53% female and ethnically diverse (49% White, 33% Black, 18% 

other). The study was carried out in accordance with the latest version of the Declaration of 

Helsinki. The study design was reviewed and approved by the UCL Research Ethics 

Committee (ID No: 2462/001) and all participants provided informed consent prior to 

participation, after the nature of the procedures had been fully explained. Further details of 

the sample and recruitment procedures are available elsewhere (Cecil et al., 2014).  

Measures 

Childhood maltreatment – Childhood maltreatment was assessed using the 28-item, self-

report Childhood Trauma Questionnaire (CTQ; Bernstein and Fink, 1998). The CTQ screens 

for experiences of maltreatment “while growing up” and comprises of 5 continuous 

subscales: emotional abuse, sexual abuse, physical abuse, emotional neglect and physical 

neglect. The scales show high internal consistency in our sample ( = .70 – .97). For 

descriptive purposes only, we also classified participants as having experienced maltreatment 

(i.e. yes/no) if they scored above the ‘Low’ threshold specified by the CTQ manual for at 

least one maltreatment type. By including ‘I currently feel unsafe at home’ as an additional 

yes/no item we were able to ascertain that none of the participants in the study were currently 

vulnerable to violence in the domestic environment (e.g. by family or partner). As such, the 

present study investigates the effects of childhood (i.e. past) maltreatment. 

DNA methylation – DNA was extracted from buccal epithelial cells using procedures 

described in Freeman et al. (2003). 500ng of high molecular weight DNA was subjected to 

sodium bisulfite conversion using the EZ-DNA methylation kit (Zymo Research, Orange, 

CA, USA) using the manufacturers standard protocol. DNAm was quantified using the 

Illumina HumanMethylation450 BeadChip (Illumina, USA) with arrays scanned using an 

Illumina iScan (software version 3.3.28). The Illumina 450K array interrogates >485,000 

probes covering 99% of Reference Sequence (RefSeq) genes, with an average of 17 CpG 

sites per gene region. As the samples were run in a single batch, there was no need for batch 

correction. To account for potential chip and position effects, we randomized sample chip 

allocation and placement on the chip. Initial data quality control was conducted using 

GenomeStudio (version 2011.1) to determine the status of staining, extension, hybridization, 

target removal, bisulfite conversion, specificity, non-polymorphic and negative controls. 

Samples that survived this stage were checked for concordance between their reported and 

assessed sex and then quantile normalised using the dasen function within the wateRmelon 
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package (wateRmelon_1.0.3; Pidsley et al., 2013) in R. Probes were removed if they were 

cross-reactive, polymorphic, used for sample identification on the array, had a SNP at the 

single base extension with a minor allele frequency larger than 5% (i.e. common 

polymorphisms) or were located on the Y chromosome, leaving a total of 413,239 probes 

(Chen et al., 2013; Price et al., 2013). DNAm levels are indexed by beta values (ratio of 

methylated signal divided by the sum of the methylated and unmethylated signal, M/M+U). 

Data Analysis 

All analyses were performed within the R statistical environment (version 3.0.1). Methylation 

data was regressed for sex, age and self-reported ethnicity to account for potential 

confounding effects (Liang and Cookson, 2014). The analysis proceeded in three steps. First, 

we ran five independent epigenome-wide association analyses – one for each maltreatment 

type measured – using linear regression models. Probes were considered significant if they 

survived a False Discovery Rate (FDR) correction of q < 0.05. Only maltreatment types that 

were associated with at least one FDR-corrected probe were carried forward to the next step. 

Second, we identified which probes were most consistently associated with all types of 

maltreatment, by ranking them in order of average standardized effect size. Third, we 

examined enriched biological pathways for genes that were associated only with one type of 

maltreatment vs those that were associated with all maltreatment types, using an optimized 

gene ontology method that controls for a range of potential confounds, including background 

probe distribution and gene size (see OS1 for details). More specifically, genes were 

considered ‘unique’ if the probes annotated to them were specifically associated with one 

maltreatment type and none other (i.e. p<0.005 with one type of maltreatment, and p>0.05 

with the other two types of maltreatment). Conversely, genes were considered ‘shared’ if 

probes annotated to them were associated across maltreatment types (p<0.05 consistently 

across all three forms of maltreatment). To calculate statistical power to detect effects, we 

used the pwr package with a p-value threshold of 1.00E-06 to reach 80% power (Tsai & Bell, 

2015) in the context of a linear regression model. Results showed that, with a sample size of 

124 individuals, we could expect to detect an effect size of ≥ 0.32, indicating that the study is 

appropriately powered for detecting medium-to-large effects. 

 

Results  

Descriptives and correlations between study variables shown in Table 1. Based on the CTQ 

cut-off, the majority of youth in the current study reported having experienced at least one 

form of maltreatment while growing up (68%; n = 84). The reported experiences were often 

severe: 75% of physically abused youth were left with bruises or marks as a result of injuries; 

50% of sexually abused youth reported being threatened; and 60% of physically neglected 

youth reported not having enough to eat. Poly-victimization was common, with 74% of 

maltreated youth reporting two or more forms of maltreatment, consistent with previous 

studies (Radford et al., 2011).  

********************************** Table 1********************************* 
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Maltreatment types differ in the extent to which they associate with DNAm variation 

We first examined associations between DNAm across the genome and individual 

maltreatment types (measured continuously). No probes were identified as being 

differentially methylated at a FDR<0.05 for emotional abuse and emotional neglect (OS2); as 

such, these two types of maltreatment were excluded from further analysis. With regards to 

other maltreatment types, the number of differentially methylated probes (DMPs) was: 34 for 

physical abuse, 7 for sexual abuse, and 118 for physical neglect. The 10 top-ranked DMPs for 

each of these maltreatment types are displayed in Table 2 (see OS3 for a complete table of 

FDR-corrected probes). Associations between DNAm and each maltreatment type are 

graphically represented in Figure 1A (see OS4 for quantile-quantile plots for each analysis).  

Physical abuse: The top-ranked DMP, cg20000641, was significantly hypermethylated with 

increased exposure to physical abuse (p=3.54E-11, q=1.47E-05; Table 2A, Figure 1B). This 

probe is located in the promoter region of PSEN2, a gene encoding a presenilin enzyme 

involved in amyloid precursor protein processing that is robustly implicated in Alzheimer’s 

disease (O’Brien and Wong, 2011). Two top-ranked probes were annotated to SMC1A 

(cg02353937: p = 2.90E-09, q=7.89E-04; cg22311608: p = 8.45E-08, q=0.01), a gene 

involved in chromosomal maintenance and DNA repair (Kim et al., 2002). Also of interest 

were DMPs annotated to genes highly expressed in the brain, including SHC2 (cg19736040: 

p = 1.38E-06, q=0.05), involved in neurotrophin-activated Trk receptor signaling within 

cortical neurons and synaptic plasticity in the hippocampus (Epa et al., 2004), and IMPACT 

(cg03013329: p = 2.10E-06, q=0.05), encoding a protein that facilitates neurite outgrowth 

and modulates kinase activation in neurons (Roffe et al., 2013).  

Sexual abuse: The top-ranked DMP associated with sexual abuse (cg17106653, p=4.16E-09, 

q=1.72E-03; Table 2B, Figure 1B) was located in the promoter region of the glutamate 

receptor GRIN2D, a gene implicated in CNS plasticity and excitatory synaptic transmission 

(Traynelis et al., 2010). Other annotated genes of interest include MGMT (cg26528551: p = 

6.84E-08, q=0.01) implicated in DNA repair mechanisms and DIP2C (cg23983710: p = 

5.83E-07, q=0.03), a gene primarily expressed in the brain but whose biological function is 

poorly understood.  

Physical Neglect: The top-ranked DMP associated with physical neglect was cg00691266 in 

EVPN (p=1.01E-07, q=0.01; Table 2C), encoding a protein involved in epidermal growth. 

Several probes were annotated to genes related to brain function, including SYNJ2 

(cg27083825: p = 1.02E-07, q=0.01; Figure 1B), involved in nervous system development 

and neuronal vesicle uncoating (Montesinos et al., 2005); and GABBR1 (cg18116160: p = 

4.01E-07, q = 0.02) a GABA class B receptor important for inhibitory synaptic transmission 

(Kumar et al., 2013). Probes annotated to genes involved in histone regulation were also 

identified, including SETDB1 (cg17918089: p = 1.14E-07, q=0.01), JADE1 (cg09863040: p = 

2.10E-07, q=0.01), and HIST1H1A (cg08054907: p = 5.12E-07, q=0.02).  

Sensitivity analyses: Given that quantile-quantile plots from our epigenome-wide analyses 

indicated skewing of significant results (OS4), we carried out a set of sensitivity analyses to 

test the robustness of the identified associations. First, to minimize the influence of unknown 
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confounders, we ran a surrogate variable analysis (sva package in R; Leek et al., 2012) that 

enabled us to identify unwanted sources of variation in our DNA methylation data. The 

analysis identified 11 surrogate variables representing different sources of variation/noise. 

We then re-ran associations between each form of maltreatment and DNAm additionally 

controlling for these 11 surrogate variables. While variations in significance levels were 

observed across a number of probes (both increases and decreases in p-value), all sites 

remained significantly associated with maltreatment severity (p< 0.05), with the exception of 

two probes related to physical neglect (see OS5). A total of 45 sites (physical abuse: n = 26; 

sexual abuse: n = 7 and physical neglect: n = 12) also survived genome-wide correction (q < 

0.05). Overall, associations with physical and sexual abuse were the least affected by 

unmeasured confounding, and those with physical neglect were the most affected.  

Second, to examine the potential influence of outliers, we applied the winsorize 

function within the robustHD package to the DNAm data and reran epigenome-wide 

analyses, controlling for covariates. The winsorizing method uses censoring rather than 

exclusion, which is preferable with small sample sizes (Sheskin, 2003). Specifically, for each 

probe, values <5% or >95% of the score distribution were transformed to match the closest 

value within this percentile, which enables scores to maintain their relative weight without 

exerting an undue influence on the linear regression model. Although the vast majority of 

associations remained significant after winsorizing (97%; p<0.05), none of the transformed 

DMPs survived genome-wide correction (q>0.05; OS5). It is important to note, however, that 

this sensitivity analysis is highly conservative as it transforms, for each probe, scores at the 

tail ends of the distribution regardless of presence or absence of outliers. As such, this 

approach reduces the range of methylation scores across all probes, resulting in more limited 

variability.  

Third, we performed bootstrapping as a complement to winsorizing using Mplus 

(version 6.1.1; Muthen & Muthen, 2011). Bootstrapping is advantageous with small samples 

as it derives an approximation of the sampling distribution via repeated resampling of the 

available data to yield bias-corrected 95% confidence intervals (CI). Associations were 

considered significant if bootstrapped 95% CIs (10,000 times) did not cross zero. The number 

of DMPs that survived bootstrapping were: n = 29 for physical abuse, n = 1 for sexual abuse, 

and n = 108 for physical neglect. Hence, sites associated with sexual abuse were the most 

affected by this sensitivity analysis, potentially reflecting the low number of individuals 

scoring high on this exposure, resulting in more extreme values. 

Based on the above results, we compiled a list of high-confidence associations (see 

OS5), in order to highlight DMPs that were the most robustly implicated across the three 

sensitivity analyses and as such may be particularly promising candidates for prioritization in 

future studies. High-confidence associations were defined as having (i) an SVA q-value < 

0.05, (ii) a winsorized p-value < 0.05, and (iii) significant bootstrapped 95% CIs. The 

resulting number of high-confidence associations for each exposure were: n = 20 for physical 

abuse, n = 1 for sexual abuse and n = 10 for physical neglect. 

********************************** Table 2********************************* 

********************************** Figure 1********************************* 
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Variability in certain DNAm loci consistently associate with all maltreatment types 

The top 20 hyper- and hypomethylated DMPs consistently associated with all three 

maltreatment types (i.e. physical abuse, sexual abuse and neglect) are shown in Table 3, 

ranked by average standardized effect size. The top-ranked hypermethylated probe, 

cg08796898 (Figure 1C), is located in HUWE1, an important regulator of neural 

proliferation linked to intellectual disability (Vandewalle et al., 2013). Other genes annotated 

to hypermethylated probes include: (i) CACNA2D4 (cg27516159), identified as a shared risk 

locus for multiple psychiatric disorders (Smollen et al., 2013); (ii) WBSCR17 (cg25579180), 

a gene widely expressed in the brain and associated with neurodevelopmental delay 

(Nakamura et al., 2005); (iii) LRP4 (cg12627354), involved in neuromuscular junction 

maintenance and acetylcholine signaling; and (iv) GRB10 (cg26163537), an insulin 

modulator. 

With regard to hypomethylated probes, we identified multiple markers annotated to 

genes that are involved in response to environmental stimuli, including: (i) two probes in 

RPTOR (cg07870603, cg09596252), a gene involved in cell growth regulation in response to 

climatic factors, nutrient and insulin levels (Sun et al., 2010); and (ii) GJD3 (cg22896075), 

which encodes a connexin thought to facilitate environmental adaptation by regulating 

physiological processes such as neuronal excitability (Belousov and Fontes, 2013). Another 

gene, DNAJB6 (cg27496299; Figure 1C), has been found to reduce cellular toxicity and act 

as a molecular chaperone for neuronal proteins, including huntingtin (Mansson et al., 2014). 

Finally, TIAM2 (cg01786585) has been implicated in neurogenesis, particularly in the 

hippocampus, as well as promoting neural migration in the cerebral cortex (Chiu et al., 1999).  

DNAm variation implicates both maltreatment-specific and shared functional pathways 

As a final step, we examined enriched biological pathways for genes that were either (i) 

annotated to DMPs that associated with only one type of maltreatment (p<0.005); or (ii) 

annotated to DMPs that associated with all maltreatment types (p<0.05 across physical abuse, 

sexual abuse and neglect). Following these criteria, neglect showed ‘unique’ epigenetic 

variation in probes annotated to a larger number of genes (n =329) than physical (n =119) and 

sexual abuse (n = 47). A considerable proportion of genes showed epigenetic variation across 

all three maltreatment type (i.e. ‘shared’ genes; n = 2,348; consistent direction of effects).  

Gene ontology analyses were performed for the above sets of genes (except sexual 

abuse, due to the low number of annotated genes), controlling for a range of potential 

confounds, including background probe distribution and gene size (Figure 2; see OS1 for 

details). Results indicated that genes associated with DNAm variation specific to physical 

abuse were enriched for biological processes including cardiovascular function (e.g. cardiac 

muscle hypertrophy, heart rate), fear response, and wound healing (1.04E-12 <p<7.65E-03), 

while those associated with neglect-specific variation were enriched for regulation of 

cholesterol efflux, as well as processes related to cellular function and metabolism (2.91E-11 

<p<1.04E-02; see OS6 for a full list of terms). In contrast, genes associated with epigenetic 

variation shared across maltreatment types were significantly enriched for biological 

processes primarily related to regulation of nervous system development (e.g. neurogenesis, 

glial proliferation, neurotransmitter biosynthesis, oligodendrocyte development) and 
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organismal growth (e.g. organ morphogenesis, negative regulation of growth, response to 

growth factor; see OS7 for a full list of terms; 4.20E-10<p< 1.44E-02).   

********************************** Figure 2********************************* 

Discussion 

 This study is the first to characterize genome-wide DNAm patterns associated with different 

types of childhood abuse and neglect. Strengths include the availability of quantitative data 

on a range of different exposures, the inclusion of a sample of youth featuring high rates of 

adversity, and the analysis of methylome-wide data. Here, we highlight three key findings: (i) 

specific types of maltreatment, particularly physical exposures, are associated with DNAm 

variation at multiple loci; (ii) many of the identified loci are annotated to genes previously 

implicated in psychiatric and medical disorders; and (iii) gene ontology analyses indicate 

that, while maltreatment types show distinct patterns of methylomic variation, they also share 

a common epigenetic ‘signature’ enriched for biological processes related to neural 

development and organismal growth. The use of stringent sensitivity analyses further enabled 

us to identify high-confidence associations, which point to promising candidate loci for 

prioritization in future studies. 

 

Findings lend novel insights into the relationship between maltreatment and DNA 

methylation 

Of the maltreatment types investigated, we found that physical exposures – including 

physical abuse, sexual abuse and physical neglect – all associated with epigenetic variation at 

multiple loci, with neglect showing the largest number of DMPs after genome-wide 

correction (despite having comparable prevalence rates to physical abuse). In contrast, no 

significant loci were identified for emotional abuse and emotional neglect (after multiple 

correction). This was unexpected given that emotional abuse, in particular, has been 

recognized as an important independent predictor of poor individual functioning (Rees, 

2010). Consequently, more work is required to clarify whether results reflect a true lack of 

associations or whether other factors may be at play (e.g. challenges with the 

operationalization of emotional abuse; polyepigenetic effects of smaller magnitude; tissue 

specificity). It is also interesting to note that we identified an unexpectedly high number of 

associations between maltreatment types and DNAm sites located on the X-chromosome. 

Given that sex was controlled for in the analyses, these results suggest that maltreatment 

exposure may influence these DNAm sites similarly for boys and girls. Although sex 

differences were not examined in the present study due to sample size limitations, it will be 

of interest in future to test the potential role of sex in the relationship between maltreatment 

and DNAm.  

Comparability with previous findings on maltreatment and DNAm is limited by the 

fact that, while other epigenetic studies have examined maltreatment as a global construct, we 

investigated DNA methylation profiles associated with specific forms of abuse and neglect. 

As such, a strict test of replication was not possible. Furthermore, past studies have varied 

widely on factors such as choice of tissue (e.g. saliva, blood or brain), DNAm platform (e.g. 
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Illumina 450k vs MeDIP), methodology (e.g. filtering of probes, covariates), maltreatment 

measure (e.g. self-report vs official records), population (e.g. community vs clinical) and 

sample characteristics (e.g. age, sex), making it difficult to assess our findings in the context 

of previous work in the area. 

 Nevertheless, we note here two of the most similar studies to ours, which have also 

used the Illumina 450k platform in peripheral tissues to investigate methylome-wide 

associations with childhood maltreatment. The first study (Yang et al. 2013) used DNA from 

saliva specimens to compare methylomic differences between a sample of maltreated and 

non-maltreated children, using a case-control design. The second study (Prados et al. 2015) 

used blood samples to compare DNAm patterns in adults with borderline personality disorder 

and exposure to high levels of childhood maltreatment vs adults with major depression 

disorder who had experienced low levels of childhood maltreatment (assessed using the same 

measure as our study, the CTQ). Comparing findings from our respective genome-wide 

analyses, we identified one overlapping DNAm site that was associated with maltreatment 

(after genome-wide correction) across both our study and Yang et al.’s (CILP2cg01487433), and 

no overlap with the DNAm sites reported in Prados et al’s study. In addition, we identified 

several overlapping genes between studies (29 with Yang’s et al.’s study; 1 with Prados et 

al.’s study) that had at least one genome-wide significant probe annotated to them. However, 

because these genes varied widely in DNAm probe coverage, it is unclear whether they were 

identified across studies because they robustly associate with maltreatment or because they 

may have had a larger number of DNAm probes annotated to them. As a whole, DMPs were 

found to differ between our study and previous ones. As such, it will be important in future to 

establish whether discrepancies may reflect the examination of global vs individual forms of 

maltreatment, methodological differences between studies or the presence of false positives, 

all issues that should be considered when interpreting the present findings. 

We note that the use of sensitivity analyses in the present study (surrogate variable 

analysis, winsorizing and bootstrapping) enabled us to identify a subset of DMPs that were 

most robustly associated with maltreatment exposure (i.e. ‘high-confidence associations’; n = 

31, 20% of total DMP set), and consequently may show promise as candidate loci for further 

investigation. Of interest, DMPs associated with physical neglect were most affected by the 

surrogate variable analysis, suggesting that the methylomic signature of this maltreatment 

type may in part reflect other sources of variability (e.g. genetic architecture, unmeasured 

exposures, confounding sources). In contrast, DMPs associated with sexual abuse were the 

most affected by the winsorizing and bootstrapping analyses, which may instead reflect the 

low number of individuals reporting high levels of this exposure. In general, associations 

between DNAm and physical abuse were the most robust, with 59% of DMPs (n = 20) 

classified as high-confidence. While these findings may be used in future to inform locus-

prioritization, it is important to note that the identification of high-confidence associations 

was based on a stringent set of criteria, so that the extent to which ‘lower-confidence’ DMPs 

may be robustly associated with maltreatment exposure will still need to be established via 

replication in independent samples.  
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The identified DNA methylation markers support a molecular link between maltreatment 

and poor health outcomes 

Our analyses identified multiple DMPs annotated to genes previously associated with 

psychiatric and medical disorders. The top-ranked DMP for physical abuse was located in the 

promoter region of PSEN2, a gene implicated in neurodegeneration and Alzheimer’s disease 

(O’Brien and Wong, 2011). Although we are not aware of any study directly investigating the 

link between physical abuse and these conditions in advanced age, early life factors, 

including stress and the quality of the maternal relationship, have been associated with both 

neuropsychological impairment and dementia (Pechtel and Pizzagalli, 2011, Vaillant et al., 

2014). It will therefore be of interest to test whether PSEN2 methylation mediates the effect 

of abuse on cognitive function and neurodegenerative risk. Maltreatment-associated DNAm 

changes were additionally identified in a number of other genes implicated in cognitive 

deficit and intellectual disability, including HUWE1, WBSCR17 and SMC1A (Deardorff et 

al., 2007, Nakamura et al., 2005, Vandewalle et al., 2013). 

Findings also suggest a role of other loci previously implicated in psychopathology. 

Notably, one of the most hypermethylated markers across maltreatment types was located in 

CACNA2D4. Genetic variation within this gene has been identified as a shared risk locus for 

multiple psychiatric conditions that are associated with experience of childhood adversity, 

including attention deficit-hyperactivity disorder, bipolar disorder, major depressive disorder, 

and schizophrenia (Smollen et al., 2013). Interestingly, expression levels of this gene have 

been found to modulate neural hippocampal activity during emotional processing as well as 

prefrontal activity during executive tasks (Bigos et al., 2010) – functional patterns that are 

disrupted in maltreated individuals (Hart and Rubia, 2012). Furthermore, genetic variation in 

SYNJ2, another gene identified in our epigenome-wide analyses, has been linked to corpus 

callosum abnormalities (Edwards et al., 2014), which are robustly associated with 

maltreatment (McCrory et al., 2012). Other psychopathology-relevant genes included 

glutamate and GABA receptors (GRIND2D, GABBR1), which play a key role in excitatory 

and inhibitory neurotransmission, respectively (Kumar et al., 2013, Yamamoto et al., 2015). 

Prospective studies will be needed to explicitly test whether the DNAm sites identified in the 

present study associate with psychopathological outcomes and, if so, whether they may 

mediate the influence of abuse and neglect on later mental health.  

 

Gene ontology analyses contribute to a better understanding of biological pathways that 

may be affected by childhood abuse and neglect. 

Gene ontology analyses were performed to explore biological pathways that may be uniquely 

affected by specific forms of maltreatment vs those ‘shared’ across maltreatment types. With 

regards to ‘maltreatment-specific’ pathways, we found that physical abuse was primarily 

associated with DNAm variation in the vicinity of genes enriched for cardiovascular 

processes, including regulation of heart rate and myocardial hypertrophy. This is consistent 

with evidence from epidemiological studies of elevated risk of heart disease among 

individuals who were physically abused as children, even after controlling for other 

childhood stressors, adult lifestyle factors and unhealthy behaviors (Fuller-Thomson et al., 
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2010, Springer et al., 2007).  Other enriched processes of interest related to wound healing, 

fear response and regulation of stress-activated protein kinase signaling.  These pathways are 

in line with growing evidence from neuroendocrine and imaging studies of an association 

between physical abuse, HPA axis dysregulation and altered threat processing at neural and 

behavioral levels (Carpenter et al., 2011, McCrory et al., 2011, Turecki and Meaney, 2014). 

In contrast, the most enriched biological process specifically linked to neglect was regulation 

of cholesterol efflux, followed by other processes including DNA damage response, 

ribosomal function and zymogen activation.  Although this finding necessitates replication, it 

is worth noting that these processes have been shown to respond to diet and nutrient 

availability (Fenech and Bonassi, 2011, Mizushima et al., 2004), which may be particularly 

compromised in youth who have experienced neglect (as evidenced in our sample). Together, 

our data suggest that physical abuse and neglect may affect epigenetic regulation of separate 

biological pathways, which may in part underlie differential effects observed at a phenotypic 

level (Sheridan and McLaughlin, 2014). Sexual abuse could not be examined due to the 

limited number of genes showing ‘unique’ epigenetic variation, which may reflect lack of 

power due to lower prevalence rates in our sample.  

In addition to showing specific epigenetic variation, maltreatment types were also 

found to share a common methylomic signature, primarily enriched for processes related to 

neurodevelopment and organismal growth. This is consistent with a large body of evidence 

from animal and human studies documenting the impact of maltreatment and early life stress 

on brain structure, function and development. For example, maltreatment has been 

consistently associated with reduced volume of the corpus callosum, prefrontal cortex and 

hippocampus (Hart and Rubia, 2012, McCrory et al., 2012). Broader developmental delay 

and growth failure is also well established amongst maltreated children (Leslie et al., 2005, 

Olivan, 2003). Findings are also in line with previous epigenetic studies that have 

documented an association between global maltreatment exposure and DNAm changes in 

genes enriched for neural (e.g. Labonte et al, 2012: ‘neuron projection’, ‘dendrite’; Yang et 

al, 2013: ‘neurogenesis’, ‘axonal guidance’) and developmental (e.g. Suderman et al, 2014: 

‘multicellular organismal development’) processes.  In future, it will be important to explore 

whether epigenetic regulation of these ‘core’ processes in response to maltreatment is 

functionally relevant at a transcriptomic level, and whether they relate directly to other 

biological markers of neurodevelopment and growth, such as imaging data and markers of 

cellular ageing.  

Limitations and future directions 

The current findings should be interpreted in light of a number of important limitations. First, 

although rates of maltreatment in our sample were high, analyses were based on a modestly 

sized group of inner-city youth, which precluded the possibility of addressing more nuanced 

research questions (e.g. sex differences). Furthermore, our assessment of maltreatment was 

based on self-reports that lacked information regarding maltreatment timing and duration, 

both of which are likely to moderate the association between maltreatment and DNA 

methylation. In future, it will be important to replicate findings using larger samples, ideally 
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featuring externally-validated maltreatment histories that will make it possible to investigate 

how DNAm patterns may vary by age of onset and chronicity of exposure to different forms 

of maltreatment. Second, due to the high rates of polyvictimization in our sample, it was not 

feasible to compare methylomic patterns between individuals who experienced single forms 

of maltreatment in isolation. Instead, we examined methylome-wide associations for each 

maltreatment type dimensionally, and then explored the presence of unique vs shared 

signatures at a functional pathway level, as opposed to a DNAm site level. Even though 

associations were always strongest for the maltreatment type under investigation, it is 

therefore still possible that the identified sites may have in part reflected the combined effect 

of exposure to multiple maltreatment types. Furthermore, the identification of unique vs 

shared biological pathways linked to maltreatment were based on gene ontology analyses, 

which can be susceptible to bias (Timmons et al., 2015), and consequently will necessitate 

replication. Third, data on smoking status and medication use were not available in the 

present study.  As these exposures have been shown to alter DNAm patterns (particularly in 

blood; Gao et al., 2015), it will be important to replicate findings controlling for these 

potential confounders. It is noteworthy, however, that none of the DNAm sites identified in 

the present study overlapped with those found to be robustly affected by smoking in a recent 

systematic review (i.e. DNAm sites associated with smoking in at least three independent 

reports; Gao et al., 2015). Fourth, findings were based on DNAm from buccal cell samples 

and can thus only be considered to represent biomarkers of exposure. Although buccal 

epithelial cells have been shown to converge more strongly with brain methylation patterns 

compared to other peripheral tissues (e.g. blood; Smith et al., 2015), further investigation will 

be needed to establish the relevance of our findings to the brain.  Because we did not have 

access to RNA samples in the present study, we were also unable to establish the extent to 

which the identified DNAm sites associate with gene expression levels. As such, the analysis 

of transcriptomic data will be important for assessing the functional significance of the 

observed DNAm changes. Finally, the cross-sectional nature of the study meant that we were 

unable to establish the causal role of the identified DMPs. Longitudinal assessments featuring 

repeated DNAm measures will be needed to explore prospective interrelations between 

maltreatment exposure, DNAm and developmental outcomes.  

Conclusions 

The current findings shed new light on how maltreatment may alter epigenetic mechanisms 

that regulate gene expression, providing a possible biological link between early adversity 

and poor health outcomes. Different forms of maltreatment were found to have distinct as 

well as shared signatures, pointing to a complex relationship between the nature of early 

adverse experience and multiple biological processes relevant for healthy normal 

development.  
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Figure legends: 

Figure 1. Associations between DNA methylation and maltreatment types.  

(A) Manhattan plots for physical abuse, sexual abuse and physical neglect; (B) scatterplots of 

DMPs indicated in (A) for each maltreatment type; and (C) scatterplots of hyper- and hypo-

methylated DMPs across maltreatment types. N.b. The dotted line represents FDR correction 

(i.e. DMPs above the line are significant at q<0.05). 

 

Figure 2. Unique vs shared enriched biological processes across maltreatment types. 

Significantly enriched biological processes for genes uniquely associated with each 

maltreatment type (physical abuse [green], physical neglect [blue]) vs those shared across 

maltreatment types (red), based on GO analysis. GO analysis was not run independently for 

sexual abuse (SA) due to limited gene n. Circles represent GO terms that survive FDR 

correction. The X axis represents -log(10) p values. The opacity of the circles indicates level 

of significance (darker = more significant). The size of the circles indicates the percentage of 

genes in our results for a given pathway compared to the total number of genes in the same 

pathway (i.e. larger size = larger %; range = 6.51% - 100%). Abbreviations: PA, physical 

abuse; PN, physical neglect; SA, sexual abuse.  
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Table 1. Descriptives and correlations between study variables. 

 

                    Ethnicityb 

Maltreatment type M (SD) 
% above threshold 

(n) 
1 2 3 4 Sex Age White Black Mixed Asian 

1. Emotional abuse 10.06 (4.99) 50.8 (63) –        .01 .17 -.13 .19* -.07 .00 

2. Physical abuse 7.82 (4.70) 33.1 (41) .57*** –      .01 .09 -.16 .26** -.08 -.06 

3. Sexual abuse 6.14 (3.51) 17.0 (21) .41*** .25*** –    .05 .13 -.11 .12 -.01 -.04 

4. Emotional neglect 10.47 (4.81) 49.2 (61) .73*** .55*** .35*** –  -.03 .18* -.20* .21* -.09 .12 

5. Physical neglect 7.55 (3.61) 32.3 (40) .65*** .60*** .36*** .71*** -.07 .14 -.22* .31*** -.11 .00 

 

 

N.B. Intercorrelations between maltreatment types, and their association with socio-demographic characteristics (age, sex and ethnicity). A 

product-moment correlation is used for associations between two continuous variables, while a point-biserial correlation is used for associations 

between one continuous and one dichotomous variable (i.e. sex, ethnicity). Bivariate correlations significant at: *p <.05, **p < .01, ***p < .001. 
a For descriptive purposes, this column shows the percentage of participants who scored above the ‘Low’ maltreatment threshold specified by the 

CTQ manual.  
b Each ethnic group coded as 1 = yes and 0 = no, based on self-reported ethnicity. 
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Table 2. Top 10 DMPs associated with physical abuse, sexual abuse and physical neglect. 

CpG probe Gene Chr Genomic location Position B diff.a Std .Bb P-value FDR (q) 

A. Physical abuse (N FDR-corrected DMPs = 34)           

cg20000641 PSEN2 1 TSS1500 227058046 0.14 0.55 2.53E-11 1.47E-05 

cg02353937 SMC1A/RIBC1 X TSS1500 53449152 0.09 0.50 2.90E-09 7.89E-04 

cg15440363 GPD1L 3 TSS200 32148023 0.05 0.48 2.06E-08 3.64E-03 

cg04412054 GALNS 16 Body 88897539 -0.12 -0.46 5.69E-08 0.01 

cg22311608 SMC1A/RIBC1 X TSS200 53449829 0.09 0.46 8.45E-08 0.01 

cg24365098 C11orf84 11 3'UTR 63594804 -0.12 -0.45 1.43E-07 0.01 

cg03561071 [FAT3] 11 -- 91844355 -0.11 -0.44 4.28E-07 0.03 

cg26454299 PPP3CA 4 -- 102268957 0.10 0.43 5.58E-07 0.03 

cg25047485 [ARHGAP39] 8 -- 145848944 -0.11 -0.43 8.14E-07 0.04 

cg04524770 LMF1 16 Body 946408 -0.11 -0.42 9.96E-07 0.04 

B. Sexual abuse (N FDR-corrected DMPs = 7)           

cg17106653 GRIN2D 19 TSS1500 48897279 0.22 0.50 4.16E-09 1.72E-03 

cg00974464 PRDM15 21 Body 43254115 -0.12 -0.46 6.02E-08 0.01 

cg26528551 MGMT 10 Body 131445415 -0.09 -0.46 6.84E-08 0.01 

cg10795666 MLNR 13 1stExon 49794635 0.09 0.45 2.23E-07 0.02 

cg02618355 MYOM2 8 Body 2024368 -0.09 -0.44 2.88E-07 0.02 

cg26513050 DIAPH2/RPA4 X Body 96138983 -0.18 -0.44 2.91E-07 0.02 

cg23983710 DIP2C 10 Body 370756 -0.16 -0.43 5.83E-07 0.03 

                  

C. Physical neglect (N FDR-corrected DMPs = 118)           

cg00691266 EVPL 17 Body 74015089 -0.08 -0.46 1.01E-07 0.01 

cg27083825 SYNJ2 6 Body 158453594 -0.07 -0.45 1.02E-07 0.01 

cg17918089 SETDB1 1 Body 150899251 0.08 0.45 1.14E-07 0.01 

cg10094509 MAP2K4P1/CHIC1 X TSS1500 72783579 0.09 0.45 1.16E-07 0.01 

cg09863040 JADE1 4 TSS200 129730729 0.02 0.44 2.10E-07 0.01 

cg08796898 HUWE1 X 5'UTR 53713664 0.14 0.44 3.59E-07 0.02 
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cg20668974 ZNF827 4 Body 146857981 0.06 0.44 3.63E-07 0.02 

cg18116160 GABBR1 6 Body 29575145 -0.04 -0.44 4.01E-07 0.02 

cg09084892 FAT1 4 Body 187557837 -0.12 -0.43 4.35E-07 0.02 

cg08054907 HIST1H1A 6 TSS1500 26019358 -0.09 -0.43 5.12E-07 0.02 

 

N.B. Gene names in brackets indicate the most proximal genes to the CpG probe based on Genome Studio. Genes with multiple significant 

probes are highlighted in blue.  
a Beta differences indicate the overall difference (% methylation change) between the predicted unstandardized minimum and maximum values 

of the linear model. 
b Standardized Beta estimates are used as a measure of effect size, where an effect of 0.10 is small effect, an effect of 0.24 is a medium effect, 

and an effect of 0.37 is a large effect. 
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Table 3. Top 20 hyper- and hypo-methylated DMPs across maltreatment types (physical abuse, sexual abuse and neglect), ranked by average 

effect size.  

  CpG probe Gene Chr Genomic 

location 

Position Physical Abuse   Sexual Abuse    Neglect   Average 

StdB           StdB                     p-value                        StdB                        p-value                        StdB                        p-value                        

A. Hypermethylated                           

  cg08796898 HUWE1 X 5'UTR 53713664 0.38 1.10E-05   0.21 2.19E-02   0.44 3.83E-07   0.34 

  cg21239691 GEMIN8 X TSS200 14048191 0.42 1.24E-06   0.18 4.38E-02   0.39 7.20E-06   0.33 

  cg04704856 FMOD 1 1stExon 203320190 0.32 2.46E-04   0.27 2.61E-03   0.37 2.36E-05   0.32 

  cg12986338 [PDE1C] 7 -- 32338950 0.28 1.39E-03   0.31 4.15E-04   0.35 6.27E-05   0.32 

  cg23436576 TDH 8 Body 11204132 0.35 7.16E-05   0.23 8.75E-03   0.35 6.17E-05   0.31 

  cg25051341 PRDM13 6 Body 100061307 0.27 2.79E-03   0.28 1.40E-03   0.38 1.30E-05   0.31 

  cg19637330 [PAX7] 1 -- 19110922 0.26 3.73E-03   0.31 4.51E-04   0.36 3.98E-05   0.31 

  cg26163537 GRB10 7 TSS1500 50861592 0.36 3.84E-05   0.19 3.76E-02   0.38 1.37E-05   0.31 

  cg25579180 WBSCR17 7 Body 71098623 0.36 4.53E-05   0.32 3.03E-04   0.25 5.24E-03   0.31 

  cg12627354 LRP4 11 TSS1500 46940434 0.26 3.29E-03   0.28 1.56E-03   0.38 1.67E-05   0.31 

  cg08121755 [KRT80] 12 -- 52545978 0.27 2.15E-03   0.34 1.39E-04   0.29 9.09E-04   0.30 

  cg03309770 TVP23A 16 1stExon 10912478 0.38 1.17E-05   0.21 1.66E-02   0.30 6.53E-04   0.30 

  cg21453209 [ZFAND1] 8 -- 82635831 0.32 3.47E-04   0.25 5.99E-03   0.33 2.23E-04   0.30 

  cg20594607 LOC338799 12 TSS200 122241438 0.33 1.94E-04   0.24 7.13E-03   0.31 3.81E-04   0.29 

  cg26840590 PHF1 6 5'UTR 33379330 0.32 2.86E-04   0.22 1.23E-02   0.34 1.39E-04   0.29 

  cg04530860 B9D2 19 TSS200 41870213 0.38 1.69E-05   0.24 7.20E-03   0.26 3.45E-03   0.29 

  cg17962547 GPR123 10 Body 134918974 0.32 3.57E-04   0.25 5.39E-03   0.31 4.39E-04   0.29 

  cg11480019 ADK 10 -- 75936982 0.30 8.66E-04   0.32 3.13E-04   0.25 4.48E-03   0.29 

  cg09387749 HOXD3 2 TSS200 177028680 0.31 5.34E-04   0.24 7.14E-03   0.32 3.50E-04   0.29 

  cg27516159 CACNA2D4 12 Body 1904847 0.28 1.81E-03   0.22 1.27E-02   0.35 6.03E-05   0.28 
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B. Hypomethylated                           

  cg10494397 CC2D2A 4 Body 15593854 -0.39 7.89E-06   -0.24 6.61E-03   -0.42 1.35E-06   -0.35 

  cg27496299 DNAJB6 7 Body 157171202 -0.38 1.56E-05   -0.28 1.84E-03   -0.39 6.90E-06   -0.35 

  cg27632471 C20orf96 20 Body 259123 -0.27 2.41E-03   -0.39 8.78E-06   -0.39 9.42E-06   -0.35 

  cg07870603 RPTOR 17 Body 78880144 -0.28 1.37E-03   -0.38 1.43E-05   -0.33 2.28E-04   -0.33 

  cg09596252 RPTOR 17 Body 78655493 -0.41 3.00E-06   -0.28 1.62E-03   -0.30 7.06E-04   -0.33 

  cg01786585 TIAM2 6 -- 155315188 -0.37 2.00E-05   -0.35 8.70E-05   -0.26 3.59E-03   -0.33 

  cg23523534 NLRP11 19 5'UTR 56347927 -0.33 1.45E-04   -0.32 3.12E-04   -0.32 3.59E-04   -0.32 

  cg16560389 [TCERG1L] 10 -- 133318201 -0.34 9.50E-05   -0.22 1.32E-02   -0.40 3.60E-06   -0.32 

  cg05157878 GCNT2 6 -- 10494860 -0.29 1.05E-03   -0.38 1.57E-05   -0.29 1.30E-03   -0.32 

  cg21473728 MYOM2 8 Body 2031651 -0.36 4.62E-05   -0.20 2.57E-02   -0.39 7.42E-06   -0.32 

  cg21385432 EP400 12 Body 132512858 -0.31 4.33E-04   -0.24 6.55E-03   -0.39 7.04E-06   -0.32 

  cg19279265 ACOX3 4 Body 8388670 -0.27 2.83E-03   -0.41 1.73E-06   -0.26 3.66E-03   -0.31 

  cg03561071 [FAT3] 11 -- 91844355 -0.44 4.28E-07   -0.22 1.35E-02   -0.28 1.99E-03   -0.31 

  cg22896075 GJD3 17 1stExon 38518413 -0.40 5.30E-06   -0.21 2.04E-02   -0.32 3.09E-04   -0.31 

  cg13521944 C22orf9 22 Body 45596948 -0.27 2.45E-03   -0.28 1.69E-03   -0.37 2.97E-05   -0.30 

  cg11650926 [KIAA0947] 5 -- 5568539 -0.30 8.71E-04   -0.19 3.40E-02   -0.43 6.91E-07   -0.30 

  cg21076890 COL4A2 13 Body 110965662 -0.30 8.61E-04   -0.19 3.93E-02   -0.43 5.51E-07   -0.30 

  cg03500617 [FA2H] 16 -- 74812570 -0.31 4.27E-04   -0.19 3.11E-02   -0.41 2.86E-06   -0.30 

  cg02866700 CARS2 13 Body 111333333 -0.30 7.85E-04   -0.26 3.98E-03   -0.35 5.79E-05   -0.30 

  cg13920529 SUGT1P1 9 Body 33402426 -0.34 9.08E-05   -0.21 1.85E-02   -0.35 6.28E-05   -0.30 

 

 

N.B. Gene names in brackets indicate the most proximal genes to the CpG probe based on Genome Studio. Genes with multiple significant 

probes are highlighted in blue.  
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Figure 1. 
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Figure 2.  

 
 


