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ABSTRACT	

	

Amphibians	face	an	extinction	crisis	with	no	precedent.	Two	emerging	infectious	

diseases:	ranaviral	disease	caused	by	viruses	within	the	genus	Ranavirus	and	

chytridiomycosis	due	to	Batrachochytrium	dendrobatidis	(Bd),	have	been	linked	with	

amphibian	mass	mortalities	and	population	declines	in	many	regions	of	the	globe.	The	

African	clawed	frog	(Xenopus	laevis)	has	been	indicated	as	a	vector	for	the	spread	of	

these	pathogens.	Since	the	1970s,	this	species	has	been	invasive	in	central	Chile.	We	

collected	X.	laevis	and	dead	native	amphibians	in	Chile	between	2011	and	2013.	We	

conducted	post-mortem	examinations	and	molecular	tests	for	Ranavirus	and	Bd.	Eight	

of	187	individuals	(4.3%)	tested	positive	for	Ranavirus:	seven	X.	laevis	and	a	giant	

Chilean	frog	(Calyptocephallela	gayi).	All	positive	cases	were	from	the	original	area	of	

X.	laevis	invasion.	Bd	was	found	to	be	more	prevalent	(14.4%)	and	widespread	than	

Ranavirus	and	all	X.	laevis	Bd-positive	animals	presented	low	to	moderate	levels	of	

infection.	Sequencing	of	a	partial	Ranavirus	gene	revealed	100%	sequence	identity	

with	Frog	Virus	3.	This	is	the	first	report	of	Ranavirus	in	Chile	and	these	preliminary	

results	are	consistent	with	a	role	for	X.	laevis	as	an	infection	reservoir	for	both	

Ranavirus	and	Bd.	

	

INTRODUCTION	AND	PURPOSE	

	

Amphibians	are	considered	the	most	imperilled	class	of	vertebrates	(Stuart	et	

al.	2004).	In	recent	years,	evidence	for	the	critical	involvement	of	emerging	infectious	

diseases	in	the	decline	of	amphibian	populations	has	grown	and	become	more	

convincing,	especially	in	the	case	of	chytridiomycosis	caused	by	Batrachochytrium	

dendrobatidis	(Bd;	Berger	et	al.	1998).	Lethal	outbreaks	caused	by	Ranavirus	have	

been	reported	in	many	parts	of	the	world	(Cunningham	et	al.	1996;	Jancovich	et	al.	

1997;	Green	et	al.	2002;	Greer	et	al.	2005;	Fox	et	al.	2006;	Muths	et	al.	2006;	Balseiro	

et	al.	,	2010;	Une	et	al.	2009;	Kik	et	al.	2011;	Stöhr	et	al.	2013),	long-term	population	

declines	confirmed	for	the	common	frog	(Rana	temporaria)	in	the	United	Kingdom	

(Teacher	et	al.	2010)	and	severe	amphibian	community	level	impacts	described	in	
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Spain	(Price	et	al.	2014).	Chytridiomycosis	has	been	implicated	in	the	extinction	of	

several	amphibian	species	from	Australia,	Costa	Rica	and	Chile	(Daszak	et	al.	1999;	

Pounds	et	al.	2006;	Schloegel	et	al.	2006;	Soto-Azat	et	al.	2013a,	b).	

	

Ranaviruses	cause	systemic	haemorrhagic	disease	in	amphibians,	fish	and	

reptiles	(Hyatt	et	al.	2000;	Miller	et	al.	2011).	The	pathogen	infects	multiple	

amphibian	hosts,	including	tadpoles	and	adults,	and	may	persist	in	aquatic	and	

terrestrial	environments	through	amphibian,	fish	or	reptile	reservoirs	(Hyatt	et	al.	

2000).	The	chytrid	fungus	Bd	is	a	highly-pathogenic	and	virulent	pathogen,	which	

appears	to	be	capable	of	infecting	the	entire	class	Amphibia	(Berger	et	al.	1998;	Gower	

et	al.	2013;	Olson	and	Ronnenberg	2014).	In	susceptible	adult	amphibians,	Bd	

colonizes	the	skin,	disrupting	the	integrity	of	the	epidermis,	with	subsequent	

electrolyte	depletion	and	osmotic	imbalance	leading	to	death	(Voyles	et	al.	2009).	

Tadpoles	and	resistant	species	or	populations	may	act	as	reservoirs	of	infection	

(Berger	et	al.	1998;	Daszak	et	al.	1999;	Schloegel	et	al.	2006).	The	type	species	of	

Ranavirus,	Frog	Virus	3	(FV3)	and	a	hypervirulent	genotype	of	Bd,	termed	the	global	

pandemic	lineage	(BdGPL),	are	known	to	be	globally	widespread,	while	other	species	

of	Ranavirus	and	other	lineages	of	Bd	appear	to	be	more	restricted	in	distribution	

(Farrer	et	al.	2013;	Duffus	et	al.	2015).	Although	poorly	studied	in	South	America,	

evidence	of	Ranavirus	has	been	obtained	from	free-ranging	amphibians	in	Venezuela,	

Argentina	and	Peru	(Zupanovic	et	al.	1998;	Fox	et	al.	2006;	Warne	et	al.	2016)	and	

from	farmed	North	American	bullfrogs	(Lithobates	catesbeianus)	from	Uruguay	and	

Brazil	(Galli	et	al.	2006;	Mazzoni	et	al.	2009).	Better	studied,	Bd	appears	to	be	widely	

distributed	in	South	America	(Mazzoni	et	al.	2003;	Hanselmann	et	al.	2004;	Pounds	et	

al.	2006;	Schloegel	et	al.	2010,	2012;	Solís	et	al.	2010,	2015;	Bourke	et	al.	2011;	Soto-

Azat	et	al.	2013a;	Olson	and	Ronnenberg	2014;	James	et	al.	2015;	Warne	et	al.	2016).	

	

Chilean	batrachofauna	consist	of	63	anuran	species,	characterized	by	a	high	

degree	of	endemism	(72%,	Soto-Azat	et	al.	2015).	Since	its	introduction	in	the	1970s,	

the	African	clawed	frog	(Xenopus	laevis)	has	become	established	throughout	much	of	

central	Chile	(Lobos	and	Jaksic	2005)	and,	recently,	Bd	infection	has	been	described	in	
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this	species	in	Chile	(Solís	et	al.	2010).	Whilst	X.	laevis	is	generally	resistant	to	

developing	ranavirosis	or	chytridiomycosis,	it	is	tolerant	to	infection	with	both	

causative	pathogens	(Robert	et	al.	2007;	Ramsey	et	al.	2010).	This	species	is	thus	

theoretically	capable	of	disseminating	both	Ranavirus	and	Bd	to	new	geographical	

areas	and	amphibian	populations,	where	it	might	also	serve	as	a	reservoir	of	infection	

(Hanselmann	et	al.	2004;	Fisher	and	Garner	2007;	Schloegel	et	al.	2010;	Greenspan	et	

al.	2012).	Here,	we	investigated	the	Ranavirus	and	Bd	carrier	status	of	X.	laevis	in	Chile	

and	looked	for	evidence	of	infection	in	sympatric	native	species.		

	

MATERIAL	AND	METHODS	

	

Study	area.	Amphibians	were	collected	from	seven	sites	in	central	Chile	from	2011	to	

2013	(see	Fig.	1),	all	within	or	near	the	invasive	range	of	X.	laevis.	These	included	

natural	environments	as	well	as	those	transformed	through	agriculture.	Only	adult	

frogs	were	collected	and	each	site	was	visited	once	during	the	amphibian	breeding	

season	(November	to	March).	We	also	responded	to	reports	of	mortality	events	by	

visiting	sites	as	soon	as	possible	to	collect	fresh	carcasses.	

	

Sampling.	Our	opportunistic	sampling	consisted	of	animals	that	had	died	in	the	wild	

as	well	as	euthanized	animals	(in	this	case	only	X.	laevis).	Amphibian	carcasses	found	

recently	dead	were	collected	following	mortality	events.	Carcass	numbers	ranged	

from	single	animals	to	79.	We	also	received	the	internal	organs	of	eight	individuals	

harvested	for	human	consumption	from	a	commercial	giant	Chilean	frog	

(Calyptocephallela	gayi)	aquaculture	facility.	In	addition,	X.	laevis	was	live	captured	

using	funnel	traps	set	up	at	the	margin	of	water	bodies.	This	species	is	considered	

harmful	under	the	Chilean	Wildlife	Act	(Law	Nº	19473),	and	can	be	captured	all	year	

round	without	limits	on	the	number	and	use	of	captured	individuals.	Traps	were	

baited	with	chicken	heart	and	checked	twice	daily.	Captured	X.	laevis	were	then	

euthanized	individually	via	immersion	in	a	buffered	solution	of	10	g/L	tricaine	

methanesulfonate	(Dolical	80%,	Centrovet),	which	has	been	demonstrated	to	be	safe	

for	Bd	studies	based	on	molecular	detection	(Webb	et	al.	2005).	Immediately	after	
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collection	of	dead	amphibians	or	euthanasia	of	X.	laevis,	each	individual	was	skin	

swabbed	for	Bd	detection	following	Hyatt	et	al.	(2007),	examined	for	gross	lesions	and	

dissected	following	standard	necropsy	procedures	to	obtain	liver,	kidney	and	spleen	

for	molecular	tests	for	Ranavirus.	New	sterile	disposable	scalpels	were	used	to	avoid	

cross-contamination.	Tissues	were	collected	separately	in	2	ml	sterile	Eppendorf	

tubes	containing	95%	sterile	ethanol.	Each	individual	was	handled	using	a	new	pair	of	

disposable	gloves.	Furthermore,	in	order	to	minimize	any	contamination	of	samples	

or	the	spread	of	pathogens	within	or	between	study	sites	by	researchers,	equipment	

or	materials,	a	strict	field	sampling	and	disinfection	protocol	was	followed,	with	

reference	to	Phillot	et	al.	(2010).	

	

PCR	assay	for	Bd.	Tips	of	skin	swabs	were	each	added	to	1.5	ml	Eppendorf	tubes	

containing	60	ml	of	PrepMan	Ultra	(Applied	Biosystems)	and	between	30	to	40	mg	of	

Zirconium/silica	beads	of	0.5	mm	diameter	(Biospec	Products).	For	each	sample,	DNA	

was	extracted	following	the	protocol	of	Boyle	et	al.	(2004).	Extracted	DNA	was	diluted	

(1:10)	in	double-distilled	water	and	analysed	using	a	quantitative	real-time	PCR	

Taqman	assay	(qPCR)	with	primers	specific	for	the	ITS-1/5.8S	ribosomal	DNA	region	

of	Bd.	In	addition,	bovine	serum	albumin	(BSA)	was	included	in	the	Taqman	

mastermix	to	minimise	PCR	inhibition	(Garland	et	al.	2010).	Each	assay	was	run	in	25	

μl	PCR	reactions	and	thermocycling	conditions	were	2	min	at	50°C,	10	min	at	95°C,	

followed	by	15	s	at	95°C	and	1	min	at	60°C	for	50	cycles.	For	each	sample,	diagnostic	

assays	were	performed	in	duplicate,	and	standards	of	known	zoospore	concentration	

were	included	within	each	PCR	plate,	as	were	negative	controls.	In	order	to	quantify	

the	Bd	genome	equivalents	(GE)	in	each	well,	we	multiplied	the	qPCR	result	by	120,	as	

described	by	Hudson	et	al.	(2016).	A	result	was	considered	positive	when:	(1)	

amplification	(i.e.	a	clearly	sigmoid	curve)	occurred	in	both	replicate	PCR	assays,	(2)	

values	higher	than	0.1	GE	were	obtained	from	both	replicated	reactions,	and	(3)	a	

sample’s	mean	GE	value	was	greater	than	its	standard	deviation.	

	

PCR	assay,	DNA	sequencing	and	DNA	sequence	analysis	for	Ranavirus.	Small	

pieces	(0.01-0.05	g)	of	sampled	visceral	organs	of	the	same	animal	were	pooled	and	
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analysed.	Samples	were	homogenised	together	in	tubes	containing	250	μl	of	lysis	

buffer	and	then	incubated	at	56ºC	overnight.	DNA	was	extracted	using	a	Wizard 

Genomic	DNA	Purification	Kit	(Promega)	following	the	manufacturer’s	instructions.	

MCP-F	and	MCP-R	primers	were	used	to	amplify	a	530	base	pair	fragment	of	the	

Ranavirus	major	capsid	protein	(MCP)	in	25	μl	PCR	reactions,	following	the	protocol	of	

Mao	et	al.	(1997),	modified	by	Greer	et	al.	(2005).	Thermocycling	conditions	were	

94ºC	5	min,	94ºC	30	s,	55ºC	30	s	and	60ºC	30	s,	cycled	35	times,	followed	by	an	

extension	of	72ºC	2	min.	All	PCR	assays	were	run	in	duplicate	with	a	positive	

(previously	obtained	FV3	DNA)	and	a	negative	(water)	control	tested	alongside	the	

unknown	samples.	PCR	products	were	stained	with	Sybr	Safe	(Invitrogen)	and	

visualized	following	electrophoresis	on	2%	agarose	gels.	Samples	were	considered	

positive	when	bands	matched	the	size	of	the	positive	control	bands.	The	PCR	products	

of	positive	samples	were	submitted	(Beckman	Coulter	Genomics,	UK)	for	Sanger	

sequencing	of	both	DNA	strands.	Sequences	generated	from	the	reverse	primer	were	

reverse-complemented	prior	to	alignment	of	all	sequences	using	MEGA6	(Tamura	et	

al.	2013).	Sequences	were	trimmed	to	remove	low	quality	base	calls	and	checked	by	

eye	for	consistency	between	complementary	DNA	strands.	We	then	compared	our	

processed	sequences	to	other	publicly	available	Ranavirus	sequences	in	the	National	

Center	for	Biotechnology	Information	(NCBI)	nucleotide	database	using	BLAST.	

	

RESULTS	

	

A	total	of	187	individuals	of	four	amphibian	species	were	investigated	for	

evidence	of	Ranavirus	and	Bd	infection.	Characteristics	and	results	of	molecular	tests	

for	each	study	site	are	shown	in	Table	1.	Of	the	amphibians	examined,	96	X.	laevis	

were	captured	with	the	use	of	baited	funnel	traps,	79	X.	laevis	and	four	individuals	of	

native	species	were	collected	dead	from	mortality	events,	and	the	tissues	of	eight	C.	

gayi	were	obtained	from	an	aquaculture	facility.	Overall,	4.3%	and	14.4%	of	animals	

tested	were	positive	for	Ranavirus	and	Bd,	respectively.	All	Ranavirus-positive	

amphibians	(7	X.	laevis,	1	C.	gayi),	were	from	two	sites	within	the	Metropolitan	Region	

near	to	Santiago,	the	original	site	of	X.	laevis	introduction	in	Chile	(Fig	1.).	Bd	was	
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found	to	be	more	widespread	amongst	sites	and	species,	with	all	but	one	site	with	X.	

laevis	being	positive	(Fig.	1).	

	

All	Ranavirus-positive	X.	laevis	were	apparently	healthy	individuals;	they	were	

live	captured	and	did	not	present	any	lesions	consistent	with	ranavirosis.	In	contrast,	

the	other	Ranavirus-positive	animal,	a	2.2	kg	female	C.	gayi	(22.4	cm	snout-vent-

length,	and	estimated	to	be	more	than	15	years	old	based	on	size),	was	found	dead	by	

a	member	of	the	public	and	then	collected	for	investigation.	The	animal	had	been	

stored	frozen	until	the	post-mortem	examination,	where	it	presented	with	abundant	

clear	serosanguinous	subcutaneous	fluid.	Within	the	intracoelomic	cavity,	a	large	

amount	of	a	dark	serosanguinous	fluid	was	found.	Internal	organs	were	moderately	

oedematous.	The	internal	surface	of	the	left	lung	was	extensively	haemorrhagic.	No	

other	macroscopic	changes	were	noticeable.	Histopathological	analyses	were	not	

informative	as	autolysis	of	organs	was	advanced.	None	of	the	other	amphibians	

studied	from	mortality	events,	comprising	two	four-eyed	toads	(Pleurodema	thaul),	a	

Bullock’s	toad	(Telmatobufo	bullocki)	and	79	X.	laevis,	gave	Ranavirus-positive	results.	

Most	(24	of	27)	Bd-positive	cases	were	categorized	as	low	to	moderate	intensity	

infections	by	qPCR	(30-9,816	GE),	including	all	Bd-positive	X.	laevis.	Three	C.	gayi,	

however,	had	severe	intensities	of	infection	(<25,368	GE)	indicative	of	disease.	

However,	no	signs	or	lesions	attributable	to	chytridiomycosis	were	observed	in	any	of	

the	surveyed	animals.	All	C.	gayi	from	one	site	(Longaví)	were	infected	with	Bd	(and	

negative	to	Ranavirus).	The	individual	of	C.	gayi	found	dead	in	Talagante,	co-habiting	

with	X.	laevis,	resulted	positive	for	Ranavirus,	but	negative	for	Bd.	Three	animals	with	

co-infections	were	detected,	all	of	which	were	X.	laevis:	two	from	Maipú	and	one	from	

Talagante	(Fig.	1,	Table	1).	

	

Nucleotide	sequences	of	Ranavirus	PCR	products	were	obtained	from	four	

positive	frogs	(3	X.	laevis,	1	C.	gayi).	All	sequences	were	100%	identical	to	each	other	

and	to	FV3	(NCBI	ref.	AY548484)	and	had	99%	similarity	with	Rana	grylio	Iridovirus	

(JQ654586),	Rana	catesbiana	virus	(AB474588),	and	Common	midwife	toad	Ranavirus	

(KP056312);	98%	similarity	with	Bohle	Iridovirus	(AY187046)	and	95%	similarity	
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with	Ambystoma	tigrinum	virus	(KR075877).	The	sequences	showed	no	significant	

similarity	to	any	non-Ranavirus	sequences	in	the	NCBI	nucleotide	database,	

confirming	the	specificity	of	the	PCR	assay.		

		

DISCUSSION	

	

We	found	evidence	of	infection	of	the	emerging	amphibian	pathogens,	

Ranavirus	and	Bd,	in	the	invasive	X.	laevis	and	in	native	species	in	central	Chile.	

Although	clinical	chytridiomycosis	was	not	detected,	a	Ranavirus-positive	individual	

of	C.	gayi	which	had	been	found	dead	had	internal	lesions	consistent	with	ranavirosis.		

Unfortunately,	the	condition	of	the	tissues	(frozen/thawed	and	autolysed)	precluded	

histopathological	examination,	so	this	presumptive	cause	of	death	could	not	be	

confirmed.	Of	the	animals	tested,	4.3%	were	positive	for	Ranavirus.	Our	sequence	

analyses	of	the	MCP	region	of	Ranavirus	are	a	robust	confirmation	of	our	initial	PCR	

findings,	and	follow	OIE	recommendations	(OIE	2015)	to	support	imperfect	molecular	

methods	with	corroborative	evidence,	especially	when	assessing	Ranavirus	

occurrence	in	a	previously	unstudied	region.	In	addition,	these	sequence	data	serve	as	

initial	genetic	characterisation	of	the	Ranavirus	found	in	central	Chile,	which	appears	

to	be	closely	related	to	the	type	Ranavirus,	FV3.	Our	findings	further	extend	the	

patchy,	global	distribution	of	this	virus	type	(Duffus	et	al.	2015).	Isolation	and	whole	

genome	sequencing	of	local	isolates,	as	well	as	the	development	of	primers	targeting	

hypervariable	DNA	regions	of	Ranavirus	to	distinguish	between	different	strains,	will	

undoubtedly	help	to	further	characterize	ranaviruses	in	Chile	and	may	provide	

information	on	their	evolutionary	history	and	source	(endemic	vs	introduced)	through	

comparative	phylogeny	(Holopainen	et	al.	2009;	Jancovich	et	al.	2015).	

	

To	the	best	of	our	knowledge,	this	is	the	first	evidence	of	Ranavirus	in	Chile.	We	

detected	Ranavirus	infection	at	only	two	of	our	study	sites,	but	sample	sizes	were	

generally	small,	limiting	our	ability	to	detect	the	pathogen	if	at	a	low	infection	

prevalence.	This	is	seen	in	the	large	confidence	intervals	obtained	for	those	sites	and	

species	underrepresented	(Tables	1	and	2).	It	is	possible,	therefore,	that	Ranavirus	
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infection	is	more	widespread	than	our	findings	suggest.	Increasing	the	number	and	

range	of	study	sites,	the	numbers	of	animals	sampled	per	site	and	the	number	of	

species	sampled	may	improve	detection	and	extend	the	current	known	distribution	of	

Ranavirus	in	Chile.	

	

In	contrast	to	our	Ranavirus	results,	at	least	one	Bd-positive	animal	was	

detected	from	five	of	our	seven	study	sites.	All	sites	with	X.	laevis	presence	except	one,	

resulted	positive	for	Bd.	In	the	C.	gayi	aquaculture	facility	(area	still	not	invaded	by	X.	

laevis,	but	expected	to	occur	within	the	next	years)	all	studied	animals	(eight)	resulted	

positive	for	Bd.	This	pathogen	has	been	reported	from	X.	laevis	in	central	Chile	(Solís	

et	al.	2010)	and	from	a	range	of	native	species	across	a	latitudinal	extension	of	~3,000	

km	(Bourke	et	al.	2011;	Soto-Azat	et	al.	2013a;	Solís	2015).	In	the	current	study,	we	

found	the	prevalence	of	Bd	infection	to	range	from	zero	to	41.7%	in	the	X.	laevis	

populations	sampled,	with	all	individuals	showing	low	to	moderate	levels	of	infection,	

suggestive	of	a	Bd	reservoir	function	of	this	species	when	co-habiting	with	other	

susceptible	amphibian	species.	Also,	we	found	all	eight	of	the	farmed	C.	gayi	tested	to	

be	Bd-positive,	even	with	molecular	evidence	supporting	the	occurrence	of	

chytridiomycosis,	indicating	endemicity	of	infection	on	the	frog	farm	in	question	and	

possibly	in	other	amphibian	aquaculture	in	Chile,	as	has	been	reported	for	frog	

aquaculture	elsewhere	in	South	America	(Mazzoni	et	al.	2003;	Schloegel	et	al.	2012).		

	

Bd	was	detected	in	one	of	two	dead	P.	thaul	collected	from	the	El	Peral	lagoon	

in	April	2012.	In	contrast,	no	evidence	of	Bd	was	obtained	from	the	79	dead	X.	laevis	

collected	from	a	mass	mortality	event	at	the	same	site	in	2013.	On	27	May	2013	

~2000	X.	laevis	left	El	Peral	lagoon	coincident	with	a	period	of	heavy	rain.	On	the	

following	day,	many	hundreds	of	these	frogs	were	found	dead	in	the	surrounding	area,	

but	only	fresh	carcasses	or	moribund	(euthanized)	animals	were	sampled.	This	mass	

movement	of	X.	laevis	appears	to	be	associated	with	the	colonization	of	new	

environments	that	may	occur	during	heavy	rainfall	(Tinsley	et	al.	1996).	X.	laevis,	

originally	from	Africa,	was	introduced	to	Chile	in	the	1970s,	with	the	initial	site	of	

introduction	being	the	international	airport	near	Santiago.	Solís	et	al.	(2010)	and	Soto-
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Azat	et	al.	(2013a)	speculated	that	Bd	might	have	been	co-introduced	to	Chile	with	X.	

laevis.	Non-native	host	introductions	have	been	identified	as	a	predictor	of	Bd	

occurrence	at	the	global	level	(Liu	et	al.	2013)	and	urban	development	has	been	

positively	correlated	with	the	presence	of	both	Bd	(Murray	et	al.	2011;	Rhor	et	al.	

2011)	and	Ranavirus	(North	et	al.	2015;	St-Amour	et	al.	2008).	In	Chile,	the	highest	

occurrence	of	Bd	has	been	found	in	the	central	region	between	Santiago	and	

Concepción,	an	area	containing	>70%	of	the	country’s	human	population	(Soto-Azat	et	

al.	2013a;	James	et	al.	2015).	In	addition,	Robert	et	al.	(2007)	found	that	a	significant	

fraction	of	X.	laevis	adults	raised	in	captivity	in	different	places	in	the	United	States	

carried	covert	FV3	infections,	which	may	have	contributed	to	the	spread	of	Ranavirus	

in	the	United	States.	An	apparent	restricted	distribution	of	Ranavirus,	associated	with	

the	occurrence	of	invasive	X.	laevis	in	central	Chile,	compared	to	the	widespread	

distribution	of	Bd	in	the	country,	maybe	the	result	of	different	introductions	processes	

or	mechanisms	of	spread	(for	instance,	better	habitat	suitability	for	Bd).	However,	

whether	either	Bd	or	Ranavirus	are	recent	introductions	to	Chile	via	Xenopus	requires	

further	investigation,	including	comparative	pathogen	genomics.	In	effect,	this	study	

and	preliminary	Bd	genotype	data	provide	evidence	on	the	occurrence	of	FV3	and	

BdGPL	in	the	country.	Efforts	to	isolate	endemic	strains	of	both	pathogens	(if	any)	

have	not	been	successful	so	far,	all	this	giving	support	to	a	role	of	X.	laevis	in	pathogen	

introduction,	maintenance	and	spread.		

	

Amphibian	species	show	differential	susceptibility	to	Bd	and	Ranavirus	

depending	of	life-stage	(Fisher	et	al.	2009;	Miller	et	al.	2011;	De	Jesús	Andino	et	al.	

2012).	Since	samples	obtained	in	this	study	were	opportunistic,	and	included	only	

four	species	(one	potentially	a	competent	reservoir),	and	considering	that	sites	were	

visited	once	and	only	adult	amphibians	were	studied,	our	results	may	underestimate	

the	extent	of	occurrence	of	these	pathogens	in	Chile,	a	reason	to	extend	future	studies	

to	include	sampling	of	tadpoles,	as	well	as	samples	of	additional	sites	and	species.	This	

study	also	is	a	good	example	of	using	wildlife	mortalities	and	invasive	species	as	a	

convenient	source	of	information	to	study	wildlife	diseases	of	conservation	concern	

(Sleeman	et	al.	2012).	
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CONCLUSION	

	

	 Emerging	infectious	diseases	have	been	increasingly	recognized	as	a	threat	to	

biodiversity,	especially	as	wildlife	populations	become	more	fragmented	and	are	

increasingly	living	in	sub-optimal	environments	(Smith	et	al.	2009).	For	example,	

Soto-Azat	et	al.	(2013a)	showed	that	Bd	is	likely	driving	precipitous	declines	of	

Darwin’s	frogs	(Rhinoderma	spp.)	in	Chile.	Currently,	47%	of	Chilean	amphibian	

species	are	threatened	with	extinction	and	37%	have	undergone	population	declines	

(Soto-Azat	et	al.	2015).	Among	these,	the	once	abundant	C.	gayi	is	currently	listed	as	

Vulnerable	by	the	IUCN	and	its	populations	have	markedly	declined	over	the	last	two	

decades,	due	to	over-exploitation	for	food	and	agricultural	development	(Veloso	et	al.	

2010).	In	addition,	chytridiomycosis	(Soto-Azat	et	al.	2013a)	and	Ranavirus	(this	

report)	have	been	identified	as	potential	additional	threats	to	this	endemic	species	

(Soto-Azat	et	al.	2015).	Whether	Ranavirus	and/or	Bd	are	negatively	impacting	this	

and	other	native	amphibians	in	Chile	should	be	further	investigated.	All	Ranavirus	

positive	cases	were	restricted	to	the	invasive	distribution	of	X.	laevis	and	all	Bd-	

positive	X.	laevis	showed	low	to	moderate	levels	of	infection.	Our	results	are	

consistent	with	a	reservoir	role	of	X.	laevis	for	Ranavirus	and	Bd	in	Chile,	however	

additional	field	and	laboratory	analyses	are	required	to	verify	this.	
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Table	1.	Summary	of	Ranavirus	(Rv)	and	Batrachochytrium	dendrobatidis	(Bd)	

prevalence	by	site	between	2011	and	2013	in	central	Chile.	Results	of	specific	PCR	

assays	from	187	amphibians	of	mixed	species.			

XL=Xenopus	laevis,	PT=Pleurodema	thaul,	CG=Calyptocephalella	gayi,	TB=Telmatobufo	

bullocki.	

	 	

Rinconada 33º29’40’’S; 70º49’47’’W Lagoon XL 24 4 0.167 ±0.160 10  0.417 ±0.213 

El Peral 33º30’18’’S; 71º36’13’’W Lagoon XL, PT 81  

(79 XL, 2 PT) 

0 0 1  0.01 ±0.02 

Talagante 33º41’05’’S; 70º54’28’’W Agriculture 

channels 

XL, CG 41  

(40 XL, 1 CG) 

4 0.098 ±0.095 6 0.146 ±0.113 

San Guillermo 33º50’56’’S; 71º47’11’’W Pond XL 8 0 0 2 0.250 ±0.387 

Talca 35º26’45’’S; 71º42’10’’W Pond XL 24 0 0 0 0 

Longaví 35º55’57’’S; 71º34’57’’W Frog farm CG 8 0 0 8 1.000 

Nahuelbuta 37º49’46’’S; 73º09’49’’W River TB 1 0 0 0 0 
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	Table	2.	Summary	of	Ranavirus	(Rv)	and	Batrachochytrium	dendrobatidis	(Bd)	

prevalence	by	host	species	between	2011	and	2013	in	central	Chile.	

a=Dead	in	the	wild.	
b=Tissue	obtained	from	aquaculture.	
c=Euthanized	after	live	capture.	

	 	

Species n Rv+ Prevalence of 
infection (±95%CI) 

Bd+ Prevalence of 
infection (±95%CI) 

co-
infections 

Prevalence of 
infection (±95%CI) 

Calyptocephalella gayi 9 1a  0.111 ±0.256 8b 0.889  ±0.256 0 0 

Pleurodema thaul 2 0 0 1a 0.500  ±6.353 0 0 

Telmatobufo bullocki 1 0 0 0  0 0 

Xenopus laevis 175 7c 0.040 ±0.029 18c 0.103 ±0.046 3c 0.017 ±0.020 

TOTAL 187 8 0.043 ±0.029 27 0.144 ±0.051 3 0.016 ±0.018 
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Figure	1.	Map	of	central	Chile	showing	locations	of	sites	from	which	amphibians	were	

sampled	for	Ranavirus	and	B.	dendrobatidis	(Bd)	infection	using	PCR.	The	star	

indicates	Santiago,	the	capital	city	of	Chile.	Each	square	indicates	a	site	with	Bd-

positive	animals.	Each	triangle	indicates	a	site	with	Bd-positive	and	Ranavirus-

positive	animals.	Each	circle	indicates	a	site	where	neither	pathogen	was	

detected.	No	site	was	positive	for	Ranavirus	only.	1=Rinconada,	2=El	Peral,	

3=Talagante,	4=San	Guillermo,	5=Talca,	6=Longaví,	and	7=Nahuelbuta.	

	

	


