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Abstract 

Emotions play an important role in daily life decisions. For example, we are likely to 

choose, judge, or evaluate things around us in different ways depending on whether 

we are feeling sad, anxious, or happy. Emotional reactions to life events and outcomes, 

such as winning an award, or getting a divorce, should also predict individualsô 

subsequent decisions. However, the mechanisms by which such interactions between 

emotions and decisions unfold are still poorly understood. The aim of this thesis was 

two-fold: first, to characterize a computational model of how emotions are integrated 

into decisions; second, to provide a better understanding of the cognitive and neural 

mechanisms by which manipulating emotions can alter decisions.  

Following the general introduction and methods description, the first experimental 

chapter shows that integrating emotions (self-report feelings) in a computational 

model of decision-making could reliably predict peopleôs gambling choices, indicating 

a unique contribution of feelings to decisions. The second experimental chapter 

explores the influence of incidental emotional priming on gambling choice and the 

underlying neural mechanisms, using functional magnetic resonance imaging (fMRI). 

The findings suggest that how external emotions impact decisions, at both behavioural 

and neural levels, varied with individual differences in levels of trait anxiety. The third 

experimental chapter attempts to extend this finding by testing how risky decisions are 

altered in patients with clinical anxiety, relative to healthy controls; demonstrating a 

dissociation between sensitivity to risk, which was enhanced in anxiety, and sensitivity 

to monetary losses, which was not associated with anxiety.  

This thesis provides a more complete understanding of the complex interactions 

between emotions, mood and decision-making. In the final chapter the findings are 

discussed in light of influential theories in cognitive neuroscience and behavioural 

economics that posit a central role for emotions in determining the choices we make. 
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Chapter 1 General introduction  

1.1 Behavioural economics theories of decision-making under risk 

This section will first introduce the framework under which economic decision-

making was examined over the past few decades in the fields of behavioural economics 

and psychology. It will describe the models and theories that have been developed, 

with a specific focus on Prospect Theory, which will be used throughout the different 

chapters of this thesis.  

Economic decisions can be defined as any decision between two or more alternatives, 

whereby each alternative has to be evaluated by the decision-maker, who will then 

choose the option to which they assign the highest value. These decisions can 

encompass a large range of types of alternatives, including everyday goods, food 

items, investment products, monetary gambles, etc. In particular, many decisions we 

make on a daily basis involve some level of risk or uncertainty, in the sense that the 

exact outcome of the decision may not be known with certainty at the time of the 

decision. In economics, the distinction between risk and uncertainty emerged after 

seminal work by Frank Knight (Knight, 1921). Risk means that the probabilities of 

each possible outcome in the decision are fully known, such as decisions to flip a fair 

coin, or to buy a lottery ticket while knowing the total number of tickets being sold. In 

contrast, uncertainty means that the underlying probabilities are not fully known and 

the decision-maker has to assess them, such as when betting on the outcome of a sport 

event, or deciding on an investment with a variable return.  

The decisions used throughout this thesis involved monetary gambles and fall into the 

description of decisions made under risk, given that the probabilities of each possible 

outcome in the gambles were always made explicit to the participants. 
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1.1.1 Expected Utility Theory: a normative model 

1.1.1.1 Expected value maximization 

Historically, Pascalôs Wager in the 17th century laid the ground for decision theory to 

specify how the expected value of a risky decision option should be calculated. For 

example, for a risky gamble that offers 90% chance of winning £1 and 10% chance of 

winning £50, the expected value (EV) can be calculated as the sum of the products 

between each potential outcome value and its probability:  

EV = 0.9 * 1 + 0.1 * 50 = £5.9 

Let us imagine that a participant can choose between playing this gamble or receive a 

sure amount of £5. According to a theory of expected value maximization, a decision-

maker should choose the gamble given that its expected value is higher than the sure 

outcome of £5. However many people when faced with such a prospect would choose 

to receive the guaranteed £5. This is because, contrary to what expected value 

maximization theory would assume, most people do not have a neutral attitude towards 

risk. Instead most people are risk averse and would avoid a risky prospect in which 

their chances of earning less than the sure outcome are high (90% here) while their 

chances of earning more are low (only 10% here). Risk aversion explains many daily 

life behaviours, in particular decisions to purchase insurance. Yet, it is not accounted 

for by a decision rule that would only seek to maximize expected value. 

1.1.1.2 Expected utility hypothesis 

Daniel Bernoulli first offered an account of this problem in the 18th century with 

Expected Utility Theory (EUT; 1738, later translated in Bernoulli, 1954). In particular, 

EUT proposes that people do not evaluate prospects by their objective expected value, 

but instead attribute ñutilityò to them, in a way that does not vary linearly with value. 

The main assumption is that as the initial value or wealth of a person increases, the 

change in utility associated with a one-unit change in value will decrease, a 

phenomenon also referred to as decreasing marginal utility. For example, this can be 

illustrated in the observation that winning Ã100 will matter less to a ñwealthyò person, 

who already has Ã10,000 in their pocket, than to a ñpoorò person, who only has Ã10 in 
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their pocket. Therefore, the change in utility associated with a change in value of 

+Ã100 will decrease with higher initial wealth. According to Bernoulliôs EUT, 

expected utility can be calculated as the product between the probability of an outcome 

and the utility of that outcome. The utility function is assumed to be concave, such that 

the increase in utility between any given value v and v+1 will be bigger than between 

v+1 and v+2. A logarithmic shape was first proposed for the utility function, taking 

into account this concavity and explaining risk aversion. To illustrate that, let us take 

a slightly simpler example than the one described above, for example a choice between 

winning £5 for sure and a gamble with 50% chance of winning £10 and 50% of 

winning nothing. According to expected value maximization theory, a decision-maker 

should be completely indifferent between these two options because their expected 

value is the same. EUT, in contrast, predicts than the utility associated with winning 

£5 will be larger than half (probability of winning = 50%) the utility of winning £10 

(Figure 1-1A), explaining why most people would choose the sure option in that case. 

1.1.1.3 Axiomatization of Expected Utility Theory 

It was not before the middle of the 20th century that Von Neumann and Morgenstern 

(VNM; 1947) provided an axiomatization of EUT (as well as its modern name; 

expected utility was called ñmoral expectationò by Bernoulli, to contrast with 

mathematical expectation), with necessary and sufficient conditions for the theory to 

hold and explain a decision-makerôs choices. VNM posit that such a utility function, 

the maximization of which would predict a rational agentôs decisions, exists provided 

that the agentôs preferences satisfy the following four axioms: 

- Completeness: for any two given options L and M, the agent has well-defined 

preferences, i.e. either prefers L, M, or is indifferent 

- Transitivity: the agentôs preferences are consistent across any three given 

options, i.e. if L is preferred over M and M preferred over N, then L should be 

preferred over N. 

- Continuity: preference for an intermediate option is equivalent to a 

probabilistic compound lottery between the better and worse options, i.e. given 

L Ò M Ò N, there is a probability p such that the agent is indifferent between M 

and the following lottery: p*L + (1-p)*N. 
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- Independence: an agentôs preference for an option over another should hold 

independently of the presence of a third option. This also implies substitution, 

or reduction of compound lotteries, such that if L is preferred over M, then any 

probability mixture p*L should be preferred over p*M. 

1.1.1.4 Violations of Expected Utility Theory 

However, several violations of these axioms were observed in the following years, 

making EUT a prescriptive or normative model (explaining what rational agents 

should do) rather than a descriptive model (actually explaining the way people 

behave). One of the first and main violations, which came from observing peopleôs 

decisions, was the certainty effect, also called Allais paradox (Allais, 1953). A 

variation of Allaisô example was given by Kahneman & Tversky (1979) to illustrate 

the violation. Participants were given the following two choice problems: 

- Problem 1: Choice between 80% chance of winning £4,000 (A) or £3,000 for 

sure (B). 

- Problem 2: Choice between 20% chance of winning £4,000 (C) or 25% chance 

of winning £3,000 (D). 

Most participants choose B over A, which implies that the utility they associate with 

winning £3,000 is greater than 0.8 times their utility of winning £4,000 [u(3,000) > 

0.8*u(4,000)]. However, when faced with problem 2, most participants choose C over 

D, which implies the opposite inequality [0.2*u(4,000) > 0.25*u(3,000), equivalent to 

u(3,000) < 0.8*u(4,000)]. This constitutes a violation of the substitution or 

independence axiom, in that Problem 2 corresponds to the same choice as Problem 1, 

with each option weighted by a 0.25 probability. This violation suggests that by 

removing the certainty of the sure option in Problem 1, reducing the probability of 

winning from 1 to 0.25 had a stronger effect on choice than a reduction from 0.8 to 

0.2. The certainty effect was also demonstrated for non-monetary outcomes. 

Another violation of EUT occurs when introducing negative prospects (potential 

losses) into the decision options. For example, if presented with Problem 1 described 

above, most people choose B; but if presented with the equivalent problem involving 

losses ï i.e. choice between 80% chance of losing £4,000 (A) or losing £3,000 for sure 
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(B), most people choose A. This effect was named the reflection effect by Kahneman 

and Tversky (1979), indicating (i) that the reflection of prospects around zero reverses 

preferences and (ii) that certainty is not always desirable; instead, certainty is desirable 

for gains but aversive for losses. This results in risk-seeking in the loss domain 

(Fishburn and Kochenberger, 1979), an effect not accounted for by EUT. 

 

Figure 1-1. Expected Utility Theory (A) and Prospect Theory (B,C) models. A. 

Schematic representation of the utility function of EUT plotted as a function of 

objective value or wealth relative to an initial or total state of wealth v0. The function 

assumes decreasing marginal utility as value increases, and reflects risk aversion in 

choice, mainly by the fact that utility associated with a small, sure gain, will be higher 

than the probability-weighted utility of a risker, higher gain. B. Prospect Theory value 

function is plotted as a function of increase (gains) and decrease (losses) in value 

relative to a reference point. The S-shape reflects decreasing (absolute) marginal utility 

for both increasing losses and increasing gains, consistent with risk aversion for gains 

and risk seeking for losses. The stronger slope of the function in the loss compared to 

the gain domains [|V(-5)|>|V(+5)|] explains loss aversion. C. Prospect Theory 

probability weighting function associating actual and perceived probabilities of 

potential outcomes. People tend to overweigh small probabilities and underweigh high 

probabilities. 
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1.1.2 Prospect Theory: a descriptive model 

Prospect Theory (PT) was proposed by Kahneman and Tversky (1979) to address these 

violations and provide a descriptive theory of decision-making under risk, which is 

still used as one of the leading models of choice. In contrast to EUT, which is 

reference-independent and assumes that utility is applied to changes in wealth relative 

to an absolute total or initial wealth (v0 in Figure 1-1A), PT introduces the presence 

of a reference point, relative to which changes in value can be positive or negative, 

resulting in gains and losses, respectively. 

1.1.2.1 Value function 

Prospect Theoryôs value function (Figure 1-1B) replaces the utility function from EUT 

and can be defined by the following properties: it is concave for gains and convex for 

losses; it is steepest near the reference point, with maximal sensitivity in the first units 

of gains and losses; and it is steeper in the loss than in the gain domain. Similar to the 

standard utility function of EUT, the concavity of the value function in the gain domain 

contributes to risk aversion for gains. On the other hand, its convexity in the loss 

domain will contribute to risk seeking for losses. This can be easily illustrated with the 

example of a choice between 50% chance of losing £10 or a sure loss of £5. The 

convexity of the function will result in the value of a £5-loss being more negative than 

half the value of a £10-loss, resulting in the risky option being preferred. Finally, the 

fact that the value function is steeper in the loss relative to the gain domain contributes 

to loss aversion; the tendency of most people to be more sensitive to losses relative to 

gains in their decisions (Kahneman et al., 1991; Tversky and Kahneman, 1991; Hardie 

et al., 1993). This is reflected in the function by the fact that the negative value of 

losing an amount is greater than the positive value of winning the same amount (see 

example in Figure 1-1B with ±£5). 

The parametrization of this value function was established later (Tversky and 

Kahneman, 1992), with a power function: 

      (Eq. 1-1) 
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where Ŭ and ɓ represent the curvature of the function in the gain and loss domains, 

respectively, and ɚ represents the loss aversion coefficient. A decision-maker whose 

behaviour is consistent with Prospect Theory will exhibit Ŭ<1 (concavity and risk 

aversion for gains), ɓ<1 (convexity and risk seeking for losses), and ɚ>1 (loss 

aversion). 

1.1.2.2 Probability weighting 

In addition to the value function, Prospect Theory assumes that during decision-

making the value of a possible outcome is not directly multiplied by its probability, 

but by a decision weight w(p). The relationship between actual probabilities and 

decision weights or perceived probabilities is illustrated in Figure 1-1C. This 

probability weighting function accounts for several violations of the substitution 

axiom of EUT such as the certainty effect (Allais, 1953; Kahneman and Tversky, 

1979). In particular, the examples described above suggest that people are more 

sensitive to changes in probabilities close to certainty (p=1 or p=0) than intermediate 

probabilities. This is reflected in the probability weighting function by a steeper slope 

for more extreme probabilities, close to 0 and 1, and an inflexion point around p=0.5. 

Similar to diminishing marginal utility, this function represents diminishing sensitivity 

to changes in probability as probability gets closer to intermediate values. This 

inverted S-shape results in low probabilities being overweighted and high probabilities 

underweighted. It can also explain the fourfold pattern of risk attitudes observed in 

several studies (Fishburn and Kochenberger, 1979; Kahneman and Tversky, 1979; 

Tversky and Kahneman, 1992), such that people exhibit risk aversion for gains and 

risk seeking for losses at intermediate to high probabilities (as described above), while 

at low probabilities the pattern is reversed with risk seeking for gains and risk aversion 

for losses. An example from Kahneman and Tversky (1979) illustrating the latter effect 

with low probabilities is that most people choose a 0.1% chance of winning £5,000 

over a sure gain of £5 (risk seeking for gains) but choose a sure loss of £5 over a 0.1% 

chance to lose £5,000 (risk aversion for losses). This is because the 0.1% probability 

is overestimated, making the gain gamble more attractive than it really is and the loss 

gamble less attractive than it really is.  
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The original formulation of Prospect Theory (Kahneman and Tversky, 1979) accounts 

for decisions made under risk with a maximum of two non-zero potential outcomes. 

The formulation published in 1992 (Tversky and Kahneman, 1992), Cumulative 

Prospect Theory, employs separate probability functions for gains and losses as well 

as cumulative decision weights ï applying weights to the cumulative distribution 

function rather than to separate events. By doing so, the theory can also accommodate 

decisions under uncertainty (where the probabilities are unknown), as well as 

prospects with any finite number of potential outcomes. 

However, for the purpose of this thesis, given that all the gambling tasks involved 

decisions under risk (where probabilities are fully known) with a maximum of two 

non-zero potential outcomes, the original version of Prospect Theory was used. In 

addition, because the probabilities were never varied and all tasks used 50-50 gambles, 

I assumed a neutral probability weight ï i.e. w(0.5)=0.5 ï and did not model a 

probability weighting function. This is a common assumption in many studies focusing 

on loss and risk aversion rather than probability weighting and using 50-50 gambles 

(Tom et al., 2007; Sokol-Hessner et al., 2009, 2013; De Martino et al., 2010; Chib et 

al., 2012). 

1.1.3 Decision-making biases and phenomena explained by Prospect Theory 

In addition to risk and loss aversion, many decision-making biases can be explained 

by Prospect Theory, making it a good descriptive model of peopleôs decisions. A few 

examples will be described in this section. 

1.1.3.1 Framing effect 

Most normative models of economic decisions, including EUT, assume that decisions 

should not be influenced by how the options are described to the decision-maker. 

Prospect Theory, however, predicts that a decision option framed as a potential loss or 

a potential gain, even though the actual expected value is the same, will impact 

decisions differently. An example of the framing effect was reported by Tversky and 

Kahneman (1981), with the Asian disease example. Specifically, participants are told 

that the outbreak of an Asian disease is expected to kill 600 people and are asked to 

choose between two possible programmes to combat the disease. With programme A, 



20 

 

200 people will be saved; and with B, there is 1/3 probability that everyone will be 

saved and 2/3 probability to no one will be saved. When offered this choice, framed in 

terms of the number of people saved, most participants choose A over B. However 

when presented with the same choice framed in terms of losses ï C (400 people will 

die) versus D (1/3 probability that nobody will die and 2/3 probability that everyone 

will die) ï participants mostly select D over C. Tversky and Kahneman attribute this 

bias to the S-shape of the value function, inducing risk aversion (choice of the sure 

option to save 200 people) when options are framed in terms of gains and risk seeking 

(choice of the risky programme) when options are framed in terms of losses. The 

framing effect has also been demonstrated using monetary gambles  (Tversky and 

Kahneman, 1981; De Martino et al., 2006). In De Martino et al. (2006), participants 

received an initial endowment (e.g. £50) at the beginning of each trial and had to decide 

between a risky gamble and a sure option. The risky gamble always included a 

probability (p) to keep all the endowment and a probability (1-p) to lose it all; but 

depending on the context, the sure option was framed as a gain (e.g. keep £20) or as a 

loss (e.g. lose £30). Even though the value and final outcome in both cases were 

exactly the same, participants chose to gamble about 60% of the time in the loss frame 

and only 40% of the time in the gain frame; framing thus affected about 1/5 of 

decisions in that study. 

1.1.3.2 Endowment effect and status quo bias 

Prospect Theory can also be applied to riskless choice (Tversky and Kahneman, 1991) 

and account for several manifestations of behaviour that are thought to be driven by 

loss aversion, such as the endowment effect and the status quo bias. The endowment 

effect was first reported by Thaler (1980), who observed that people require more 

money to compensate for the loss of a good compared to the amount they would be 

willing to pay to purchase this same good. This effect was later tested in a series of 

experiments (Kahneman et al., 1990), showing that students endowed with a mug 

(worth $5) asked a price of about $7 to sell it, while another group of students not 

endowed with the mug were only willing to pay $3 to buy it. Similarly, people exhibit 

a strong preference for options that induce no change of their current situation relative 

to other options. This is known as the status quo bias and was first introduced by 

Samuelson and Zeckhauser (1988), who documented the bias using hypothetical daily 
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life decisions about jobs, investments, cars, etc, as well as a field study involving 

decisions about medical insurance plans. Experimental demonstrations came from 

Knetsch and Sinden (1984) and Knetsch (1989) who gave participants in their studies 

different compensation items (e.g. some participants were given a mug and others a 

chocolate bar). When offered the opportunity to trade their item with a member of the 

other group, approximately 90% declined and preferred to stick to their initial item. 

All the above effects can be explained by shifts in the value function reference point, 

which then induce preference reversals. In the framing effect, positively framing an 

option results in placing the reference point below the value of the option, while 

negatively framing the same option has the effect of shifting the reference point to a 

higher value than the value of that option. Therefore, the former is perceived as a gain 

and the latter as a loss. In the endowment effect, subjects endowed with the mug have 

a higher reference point than subjects without a mug; selling their mug is thus 

perceived as loss, which has to be compensated to a greater extent given loss aversion. 

Finally, in the status quo bias, each participantôs reference point is at the value of the 

object they own. When asked to trade that object against another, even though both 

objects may objectively have the exact same value, loss aversion implies that what will 

be lost in the trade will loom larger than what will be gained, hence the reluctance to 

trade. 

1.1.4 Neurobiological basis of risk and loss aversion in decision-making 

More recently, many studies have focused on characterizing the neurobiological basis 

economic decision-making under risk, in order to better understand how those biases 

arise in the brain. Human neuroimaging studies, using functional magnetic resonance 

imaging (fMRI), have addressed this question by having participants completing a 

variety of risky decision-making tasks in the MRI scanner, while recording blood 

oxygen level-dependent (BOLD) signal in their brain. Other studies have used 

pharmacology in both humans and animals, as well as direct neural recordings in 

rodents and non-human primates, in order to specifically examine the involvement of 

neurotransmitters such as dopamine in risk-taking. Despite providing insights into the 

involvement of brain systems in a cognitive process, these techniques are all 
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correlative, and therefore cannot give a definite answer as to whether these systems 

are causally involved. 

1.1.4.1 Human neuroimaging studies of decisions under risk in humans 

Looking at general financial risk-taking, Kuhnen and Knutson (2005) designed a task 

where participants had to make a choice between a safe bond (always worth $1) and 

one of two risky stocks. One stock was better than the other and subjects were informed 

of the underlying probably distributions but were not told which stock was the ñgoodò 

one and which stock was the ñbadò one. The fMRI results showed that pre-choice 

activity in the nucleus accumbens (NAcc) predicted subsequent risky choices (stock), 

while pre-choice activity in the anterior insula predicted subsequent risk averse choices 

(bond). In Christopoulos et al. (2009) participants completed a more explicit task in 

which they had to choose between a safe option (e.g. 50 points for sure) or a gamble 

with two equiprobable outcomes (e.g. 50% chance of winning 40 points and 50% 

chance of winning 60 points). The gamble could either be low risk (40-60) or high risk 

(10-90, reflecting higher variance), and the value of the sure option was dynamically 

adjusted across trials using a staircase procedure that took into account the 

participantôs previous choices, such that the utility of the safe option was closely 

matched to that of the gamble. This design allowed the authors to demonstrate (i) 

encoding of expected value or reward magnitude in the ventral striatum, (ii) encoding 

of objective risk during choice in the dorsal anterior cingulate cortex (dACC), and (iii) 

individual differences in risk aversion (calculated as the difference in certainty 

equivalent between low- and high-risk gambles) in the right inferior frontal gyrus 

(IFG).  

Using a similar design combined with a second experiment involving simple responses 

to visual stimuli associated with different levels of risk and reward values, Tobler et 

al. (2009) identified a cluster of activation in the lateral prefrontal cortex and suggested 

that this region integrated value and risk. Specifically, activity in this region tracked 

value across all participants and was modulated by risk differently depending on 

individual differences in risk attitudes: activity was enhanced by risk in risk-seeking 

participants and suppressed by risk in risk-averse participants, suggesting a possible 

tracking of utility. ñPureò value, independent of risk, was tracked in the ventral 
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striatum. These results are consistent with other studies that have examined the neural 

basis of decision values between non-risky options (Plassmann et al., 2007; Chib et 

al., 2009), e.g. goods or food items, suggesting that the utility or subjective value of 

these options is also encoded in parts of the prefrontal cortex (PFC), namely 

ventromedial (vmPFC) and dorsolateral (dlPFC). However, other studies suggest that 

the ventral striatum may also play a key role in integrating several decision variables 

in a subjective value signal rather than simply coding ñpureò objective reward (Hsu et 

al., 2005; Preuschoff et al., 2006). For example, Preuschoff et al. (2006) found that the 

ventral striatum encoded both expected reward and risk (calculated as reward 

variance); however, the two signals were temporally distinct, with immediate encoding 

of reward and delayed encoding of risk, suggesting a sequential integration process 

before the decision is made. 

1.1.4.2 Human neuroimaging studies of loss processing and loss aversion 

Another set of studies has examined the neural basis of loss aversion, with the general 

hypothesis that, similar to potential losses being overweighted relative to potential 

gains, some brain systems may be more sensitive to potential losses than potential 

gains. This is exactly what Tom et al (2007) found in an influential study. Participants 

in this study had to make a series of decisions to accept or reject mixed gambles 

offering a 50% chance of winning and a 50% chance of losing. The win and loss 

amounts were varied parametrically and orthogonally such that their neural signature 

could be assessed independently. The authors found that a number of brain regions, 

including ventral striatum and vmPFC, responded to both increasing gains and 

decreasing losses (no region responded to increasing losses) and exhibited ñneural loss 

aversionò, such that the response to decreasing losses was stronger than the response 

to increasing gains. In addition, this neural loss aversion estimate in the ventral 

striatum was correlated with behavioural loss aversion (ɚ parameter estimate) across 

participants. This study suggests that the ventral striatum may play an important role 

in representing utility or subjective value rather than simply coding for objective 

expected value or reward magnitude as suggested by some of the studies described 

above (Christopoulos et al., 2009; Tobler et al., 2009). In particular, it may constitute 

the neural signature of the steeper slope observed for losses relative to gains in 

Prospect Theoryôs value function. Tom et al had also hypothesized that the amygdala 
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would be involved in loss aversion, given previous evidence of its role in processing 

losses and negative stimuli (Breiter et al., 2001; Kahn et al., 2002). Even though they 

failed to evidence such a role for the amygdala, subsequent studies did.  

A first strong piece of evidence came from a clinical neuropsychology study in which 

two patients with amygdala damage failed to exhibit any loss aversion on a similar 

task to the one used by Tom et al, suggesting that the amygdala is not only involved 

in, but also necessary for loss aversion (De Martino et al., 2010). In a recent fMRI 

study (Canessa et al., 2013), the authors replicated Tom et alôs finding by 

demonstrating stronger loss-related deactivations compared to gain-related activations 

(i.e. ñneural loss aversionò) in the ventral striatum. They additionally demonstrated a 

role for the amygdala in specifically processing losses (independent of the processing 

of gains), as well as in tracking neural loss aversion in a way that correlated with 

individual differences in behavioural loss aversion. Furthermore, Canessa et al. (2013) 

also revealed some structural correlates of loss aversion, with increased grey matter 

volume of amygdalar and para-amygdalar nuclei in individuals with higher loss 

aversion.  

Finally, in another study (Sokol-Hessner et al., 2013), the authors specifically used 

Prospect Theoryôs value function equation (Eq. 1-1 above) to generate each subjectôs 

utility value associated with each decision from their individual parameter estimates, 

including loss aversion. They found a strong neural signature of decision utility in the 

bilateral striatum consistent with previous studies (Preuschoff et al., 2006; Tom et al., 

2007). They analysed the relationship between brain activity and individual 

differences in loss aversion at the time of outcome (instead of the time of decision, 

which was examined by previous studies) and found that the extent to which the 

amygdala responded to loss relative to gain outcomes also correlated with behavioural 

loss aversion. This role of the amygdala in loss aversion through the enhanced 

sensitivity to losses, relative to gains, both during decision and outcome stages is 

consistent with a general role for the amygdala in processing the value of affective and 

behaviourally relevant stimuli, which has been proposed by recent reviews (Morrison 

and Salzman, 2010; Pessoa and Adolphs, 2010; Ousdal et al., 2012). 
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1.1.4.3 Influence of dopamine on risk taking: evidence from pharmacology studies 

and dopamine neuron recordings 

Dopamine is a molecule released by a small number of neurons in the brain, and has 

been implicated in numerous functions. Dopaminergic neuronsô cell bodies are 

confined to only a few areas, mainly the substantia nigra and the ventral tegmental 

area, both part of the midbrain. These neurons project to several other brain areas, two 

of which are the ventral striatum and the prefrontal cortex. As described above, these 

regions have been implicated in economic decision-making, valuation processes, and 

risk-taking. It is therefore possible that dopaminergic transmission may play a role in 

these processes. 

To test this hypothesis, several studies have used pharmacological administration of 

levodopa (L-DOPA), a precursor of dopamine, in human subjects. Cools et al. (2003) 

found that Parkinsonôs patients on L-DOPA exhibited increased impulsivity and delay 

aversion during gambling. More recently Rutledge et al. (2015) have examined the 

effect of L-DOPA administration in healthy volunteers on a gambling task analysed in 

a Prospect Theory framework combined with a Pavlovian approach-avoidance bias for 

gain relative to loss outcomes. They found that L-DOPA increased risky decisions 

involving potential gains, but not potential losses, and that this effect was best 

explained by a value-independent Pavlovian approach bias towards risky gains, rather 

than by an effect of L-DOPA on Prospect Theory parameters (ɚ, Ŭ, or ɓ). Another 

recent study from the same group (Rigoli et al., 2016) demonstrated a very similar 

effect using a slightly different paradigm and behavioural model. Specifically, their 

task did not involve losses, only choices between a sure small gain, and a risky 50-50 

gamble between zero and a higher gain; it also included a context manipulation with 

overall option values varying between low-value context and high-value context 

blocks. Their model captured behaviour well by distinguishing between subjectsô 

general propensity to gamble, their sensitivity to reward variance (or risk), and the 

influence of context on their choices. Interestingly, L-DOPA only affected the general 

propensity to gamble, making subjects more likely to gamble overall, independent of 

risk or context, consistent with the effect observed in Rutledge et al. (2015). 
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Finally, animal studies have also provided evidence for a role of dopamine in risk-

taking and encoding of subjective value. In rodents, administration of the dopamine 

releaser amphetamine and stimulation of dopamine D1 and D2 receptors with receptor-

selective agonists (St. Onge and Floresco, 2009; Ferenczi et al., 2016), as well as 

electrical stimulation of midbrain dopamine neurons (Stopper et al., 2014), all increase 

risky decisions in the animals. Conversely, the blockade of these receptors and the 

suppression of phasic dopamine bursts induce risk aversion. Optogenetic stimulations 

of midbrain dopamine neurons have been shown to increase reward-seeking in rodents 

(Tsai et al., 2009; Witten et al., 2011; Ferenczi et al., 2016), whereas stimulation of 

D2 receptor-expressing cells in the nucleus accumbens, which are thought to detect 

pauses and dips in dopamine signalling, increased the animalôs sensitivity to past 

losses and reduced risk taking in subsequent choices (Zalocusky et al., 2016). This 

provides a causal role for dopamine transmission in controlling risk taking behaviour. 

Direct neural recording of midbrain dopamine neurons in monkeys demonstrated that 

dopamine responses scale with the marginal utility of reward (i.e. showing diminishing 

sensitivity to value) rather than objective reward value (Stauffer et al., 2014) and 

integrate the subjective value of the reward across multiple attributes, here reward 

magnitude, risk, and reward type (Lak et al., 2014).  

These studies suggest that the dopamine system, through its actions on a distributed 

network of regions, in particular the striatum, makes an important contribution to the 

representation of Prospect Theoryôs value function, and resulting decision-making 

behaviours under risk.  

1.2 Emotions are integral to the decision-making process 

The preceding assessment of subjective valuation processes and economic decisions 

would not be complete without an overview of the role played by emotion and affect. 

For decades economists have ignored the roles played by emotions, mood, and 

affective states in economic decisions, which can strongly influence the way people 

evaluate prospects and choose between them. An extensive part of the literature has 

examined these roles of emotions during economic decisions, which can broadly be 

separated into integral and incidental influences, as discussed in the following two 

sections. 
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Firstly, integral emotions can be defined as emotions induced by the decision at hand, 

whether it be the value of potential payoffs, the risk, the presence of a potential loss, 

the effect of past outcomes, etc. It is important to note that emotion-related processes 

are referred to by different terms in the literature, such as ñemotionò, ñaffectò, ñmoodò, 

or ñfeelingsò. Throughout this thesis, I will follow the view of Phelps et al. (2014), 

recognizing that ñemotion is not a unitary construct, but rather a compilation of 

component affective processesò (Phelps et al., 2014, p.265; see also Lerner et al., 

2015). ñAffectò is most commonly used as a general term that refers to all of these 

component processes together. ñEmotionò indicates an internal or external discrete 

reaction to an event, which is usually multifaceted and biologically mediated, and 

includes physiological responses, facial expressions, action tendencies (approach or 

avoid), bodily reactions, and subjective feelings. These emotional reactions can 

usually be measured and examined in the context of their influence on choice, for 

example. ñFeelingò indicates a subjective component of emotion, which can be 

assessed by self-report questions asking people how they feel in a given context or in 

response to an event. ñMoodò, in contrast, refers to feelings that are more diffuse and 

persist in time without the need for a triggering event. 

1.2.1 Somatic marker hypothesis 

One early theory of the integral role of emotional responses in economic decision-

making was proposed by Antonio Damasio and Antoine Bechara, as the somatic 

marker hypothesis (see Bechara and Damasio, 2005 for a review). Damasio and 

Bechara were among the first to suggest that instead of emotions interfering with 

decision-making by making people irrational, emotions may instead inform and be 

beneficial to decisions. The key idea behind the theory is that during choice, especially 

conflicting or difficult choice, bodily emotional reactions arise in response to 

pleasurable or aversive decision options, as well as thoughts and memories. These 

responses are encoded in the brain as ñsomatic markersò, somehow informing the brain 

of the emotional state of the body. These somatic markers then influence decisions by 

directing the decision-maker towards more advantageous options, an effect that can 

occur consciously or unconsciously. 
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Most of the experimental evidence for the theory came from the Iowa Gambling Task 

(IGT), first introduced in 1994 (Bechara et al., 1994), followed by several variants 

(Bechara et al., 2000). In the original task, participants are presented with four decks 

of cards labelled A, B, C and D, and have to pick a card from one of the decks on each 

trial. The decks are constructed such that A and B always win $100 (high-paying 

decks) and C and D (low-paying decks) always win $50; however, every so often some 

cards in each deck are associated with a monetary loss. The frequencies and 

magnitudes of losses vary across decks, causing high-paying decks A and B to have 

an overall long-term negative payoff (disadvantageous decks), and low-paying decks 

C and D a long-term positive payoff (advantageous decks). The other difference 

between decks is that losses in decks A and C are more frequent, but of smaller 

magnitude; while losses in decks B and D are less frequent but of much higher 

magnitude. These probabilities and payoffs asymmetries are not explicitly provided to 

participants, but must instead be learned over time. 

The first study using this task compared the performance of healthy volunteers with 

that of patients with vmPFC damage (Bechara et al., 1994). The authors found that 

while healthy volunteers were able to learn the underlying statistics of the task and 

select more cards from advantageous decks overall, vmPFC patients failed to show 

such an effect and consistently chose the high-paying but disadvantageous decks 

throughout, suggesting that their decisions are guided by immediate rewards rather 

than future losses. Following this result, Bechara et alôs hypothesis was that vmPFC 

may be the neural substrate of somatic markers and that when damaged, patients are 

not sensitive to the emotional reactions provoked by losses throughout the task and 

therefore cannot integrate this signal to guide their decisions towards advantageous 

decks. 

To test this hypothesis more precisely, Bechara et al directly measured emotional 

reactions in a subsequent set of studies by examining anticipatory skin conductance 

responses (SCRs) in healthy controls and patients with vmPFC (Bechara et al., 1997) 

or amygdala (Bechara et al., 1999) damage. They found that control subjects exhibited 

strong SCRs just before selecting a card; and these SCRs were stronger for bad than 

good decks, even before participants started exhibiting a preference for good decks in 

their choice behaviour. In contrasts, SCRs in patients with vmPFC and amygdala 



29 

 

damage were very low and did not differ for good and bad decks, suggesting an 

important role for these two areas in processing the emotional value of the decision 

options and in using them to guide decisions.  

However, in the following decade, many criticisms of the somatic marker hypothesis 

have emerged, mainly driven by potential confounds associated with the IGT (Maia 

and McClelland, 2004, 2005). In their first study (Maia and McClelland, 2004), the 

authors ran the IGT using more fine-grained methods to assess what participants know 

about the decks and about their own strategy at different time points throughout the 

task, and found that participants report reliable knowledge of the advantageous 

strategy before showing the effect behaviourally, suggesting that they know what they 

should do and implement it consciously. This contrasts with Bechara et alôs suggestion 

that emotional responses arise and are used to guide decisions outside of awareness. If 

Maia and McClellandôs claims are true, then the SCRs observed by Bechara et al could 

constitute a consequence of subjects consciously knowing that the bad decks are bad, 

rather than an unconscious signal that subsequently influences their behaviour (see 

also Dunn et al., 2006 for a review). 

In addition, the design of the task itself presents many confounds that could explain 

impairments in performance (Hinson et al., 2002; Sanfey et al., 2003; Dalgleish et al., 

2004; Fellows and Farah, 2005; Chiu and Lin, 2007; Lin et al., 2007; see Dunn et al., 

2006 for a review). Indeed, an increased propensity to choose the disadvantageous 

decks as observed in the patient populations, and also from a substantial proportion of 

healthy participants, could arise from deficits in reversal learning (Fellows and Farah, 

2005) or working memory (Hinson et al., 2002), from the use of a simple gain-stay-

lose-switch strategy (Chiu and Lin, 2007; Lin et al., 2007), from increased impulsivity 

and risk-taking (Sanfey et al., 2003), reduced sensitivity to losses/reduced loss 

aversion (Dalgleish et al., 2004), or simply from a lack of motivation (Barrash et al., 

2000). 

1.2.2 Risk as feelings hypothesis 

Loewenstein et al. (2001) proposed the ñrisk as feelingsò hypothesis to account for the 

effect of emotions directly induced by the decision at hand and experienced at the time 
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of the decision. Specifically, the hypothesis makes a distinction between expected 

emotions, i.e. what one expects to feel later given the expected outcome of the 

decision, and current, immediate emotions, felt at the time of decision, which are more 

visceral reactions to having to make a decision. In the context of a risky decision for 

example, the level of risk can induce some negative emotions like anxiety or dread (or 

maybe some positive emotions like excitement for a risk-seeking individual). These 

emotions are unrelated to the outcome of the decision, but instead derive directly from 

the decision itself. 

Originally, most proposals have considered that such emotions induced by the 

decision, if any, would simply be a by-product or consequence of the decision, but 

would not impact the decision in return. Instead, the risk as feeling hypothesis proposes 

that this interaction is bidirectional: the decision generates feelings which in turn 

influence the decision; explaining, for example, why an individual who feels more 

anxious than another at the prospect of a risky decision will more likely to choose a 

safe option. 

In addition, the risk as feeling hypothesis argues that contrary to expected emotions, 

which usually inform and are beneficial to the decisions (as suggested by the somatic 

marker hypothesis), the immediate emotional reactions to the decision (e.g. risk-

induced fear) usually differ from the more cognitive evaluation of the decision and 

therefore tend to interfere with peopleôs behaviour and bias their decisions away from 

the rational course of action. Focusing mainly on the example of fear, Loewenstein et 

al. (2001) suggest that the following factors are key in making the emotional responses 

diverge from an objective cognitive evaluation: vividness of the fear response, 

dependent on past experience and mental imagery; insensitivity of fear responses to 

probabilities; learning differences varying with the type of risk, etc. 

In a recent review (Lerner et al., 2015), the risk as feelings hypothesis was integrated 

into a more complete model synthesising more recent finding in the literature on 

emotion-decision interactions. This model, called the emotion-imbued choice (EIC) 

model generally aims to describe ñways in which emotion permeates choice processesò 

(Lerner et al., 2015, p.814). The model is reproduced in Figure 1-2A. In particular it 

includes generic processes that form the basis of economic decision-making and come 
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from normative models such as expected value maximization or EUT (black arrows 

on Figure 1-2A). These reflect the fact that (i) several attributes of the decision 

options, such as potential payoffs, probabilities, delay, etc, are evaluated, compared, 

and the highest value option is chosen; and (ii) there are individual differences in this 

process based on peopleôs personality and preference (e.g. high sensation-seekers are 

likely to take more risks than low sensation-seekers).  

A first deviation from the normative models, but accounted for by models such as 

Prospect Theory or the somatic marker hypothesis, is shown by the green arrow. This 

represents the influence of emotions about expected potential outcomes on the 

decision. The main addition of the EIC model, as outlined in the risk as feeling 

hypothesis, is the presence and influence of current emotions, experienced 

immediately at the time of the decision. The red arrows show that these current 

emotions (i) are generated by the evaluation process itself and will in turn influence 

this evaluation and the subsequent decisions, (ii) can be influenced by the attributes of 

the decision options, by incidental influences and by individual differences, and (iii) 

reciprocally interact with expected emotions, such that someone anticipating a painful 

shock may experience fear now, and the current experience of fear may enhance the 

negative expected utility of the shock. 

1.2.3 Fear processing theory of loss aversion 

A similar theory has been proposed about the role of fear in loss aversion, but 

stemming more from neuroscientific findings (in contrast with the psychological 

explanation in the risk as feelings hypothesis). An account of loss aversion as an 

expression of fear (Camerer, 2005), has emerged given the numerous findings 

indicating a common neural and physiological basis to both fear processing and loss 

aversion/anticipation. 

With respect to fear processing, a network involving the amygdala, insula and striatum 

has repeatedly been identified. In a study by Phelps et al. (2001), responses in the 

amygdala and insula tracked the anticipation of an aversive outcome (an electric 

shock) relative to safe cues (no shock delivered), and correlated across subjects with 

SCRs, providing evidence for a neural and physiological signature of the expression 
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of fear. The same year, LeDoux and Gorman provided a model of fear processing 

involving the amygdala and the striatum (LeDoux and Gorman, 2001), mainly drawn 

from classical fear conditioning paradigm in animals, and depicted in Figure 1-2B. 

The model suggests that fear-arousing stimuli are processed in the lateral nucleus of 

the amygdala, which is also the area where the conditioned and unconditioned stimuli 

are integrated initially. Subsequent exposure to the conditioned stimulus will lead to a 

passive fear response such as freezing, through neurons in the central nucleus of the 

amygdala, which in turn activates brainstem centres responsible for the different 

components of the fear response (freezing, hormonal and autonomic responses). 

However, this model also adds the possibility of an active coping response, whereby, 

through activation of the basal nucleus of the amygdala and the striatum, the animal 

can learn to avoid the fear-arousing event in the future. Further work has confirmed 

that amygdala-striatal interactions also play a key role in the acquisition of avoidance 

responses in humans (Delgado et al., 2009). 

Interestingly, the anticipation of losses as well as loss aversion have been associated 

with very similar neural correlates. Responses in the amygdala and ventral striatum 

have been found to track the anticipation of monetary losses during risky decision-

making tasks (Kahn et al., 2002; Hahn et al., 2010; Canessa et al., 2013) and to reflect 

individual differences in loss aversion (Tom et al., 2007; Canessa et al., 2013; Sokol-

Hessner et al., 2013). In addition, as discussed above, De Martino et al. (2010) have 

provided causal evidence for a necessary role of the amygdala in loss aversion. 

Physiological responses consistent with the expression of fear have also been reported 

to correlate with loss aversion, such as SCRs, heart rate and pupil dilation (Sokol-

Hessner et al., 2009; Hochman and Yechiam, 2011). 

Taken together, the studies discussed above point towards the hypothesis that fear 

processing is likely an integral component of loss aversion. 
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Figure 1-2. Summary of models of integral emotional influences on choice. A. 

Emotion-imbued choice (EIC) model, drawing on the risk as feelings hypothesis, 

reproduced from Lerner et al. (2015). B. LeDouxôs model of fear processing, 

suggesting that amygdala-striatal interactions underlie active avoidance of aversive 

stimuli, and may be responsible for the integral effect of fear in loss averse choices. 

Reproduced from LeDoux and Gorman (2001). 

1.2.4 Emotion as a proxy for value / subjective utility 

Prospect Theory itself makes key assumptions about an integral role of emotions in 

choice. Although Prospect Theory was not directly derived by eliciting peopleôs 

feelings to predict choice, an implicit assumption of the theory is that subjective value 

or utility is a proxy for feelings, which in turn influence choice. Kahneman expresses 

this assumption in his book, Thinking, Fast and Slow, p.286: ñéHumans described by 

Prospect Theory are guided by the immediate emotional impact of gains and lossesò 

(Kahneman, 2011). He explains this assumption by the interaction between two 

opposing systems (System 1 and System 2) during the decision-making process. 

System 1 is the ñemotionalò system, fast and automatic and requiring no or very little 



34 

 

effort or voluntary control to operate. In contrast, the ñcognitiveò System 2 is more 

deliberative, reflective and slow and operates via the allocation of cognitive resources 

and effortful mental computations. 

Some early neuroimaging research has tried to separate these two systems in the brain, 

with regions such as the striatum, amygdala, medial PFC, OFC and insula proposed to 

constitute the ñemotionalò brain, and regions such as the dlPFC, rostral PFC, and 

posterior parietal cortex forming the ñcognitiveò brain (see Cohen, 2005 for a review 

applied to economic decisions). However more recent research indicates that there is 

no clear distinction between these two systems, and in particular, ñno clear evidence 

for a unified system that drives emotionò (Phelps et al., 2014, p.265), suggesting that 

such a dual-systems view may not hold and that the interaction between emotion and 

decisions is much more intricate. In this review, Phelps et al argue that emotion per se  

has value, and as such can be encoded in value-related areas such as the vmPFC 

(Winecoff et al., 2013) and integrated during the decision-making process in the same 

manner as any other decision variable or attribute. This is consistent with Kahnemanôs 

view that utility is a proxy for emotional associations with decision options. However, 

this hypothesis has never been empirically tested by explicitly measuring emotions; 

this is what I set out to do in the study presented in Chapter 3 of this thesis. 

In addition, this assumption that emotion is an integral component of choice suggests 

that changing emotion should influence decisions. A review of this literature 

examining the role of external, incidental, influences of emotions on decisions is 

presented in the next section. 

1.3 Incidental effect of emotions on decisions 

Previous research has shown that everyday decisions, such as consumption behaviour, 

indulgence, or assessing risk, are influenced by emotional states. In the laboratory, 

there are two major ways in which incidental emotions can be experimentally 

manipulated in order to study their effect on decision-making. The first type of 

methods includes mood induction procedures, whereby a relatively long-lasting 

affective state is induced in the participants who are then given a decision-making task 

to complete while in that state (see section 1.3.1). The second way includes more subtle 
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trial-by-trial emotional priming procedures, whereby an emotional stimulus is 

presented to the participant on each trial of the task prior to making a decision (see 

section 1.3.2). 

1.3.1 Mood and stress induction procedures 

1.3.1.1 Behavioural findings 

Stress is generally characterized by a short and specific physiological, neural and 

hormonal response to an event (McEwen, 2007) and may in that sense not fit the 

criteria for the definition of a mood state, which usually refers to a more long-lasting 

state than a response to a specific external event. However, I include in this section 

both effects of stress and other mood induction procedures together, as the methods 

used to study these effects are usually very similar: an induction procedure followed 

by the decision-making task. 

Mood induction procedures are varied and range from showing participants a short 

emotional film clip (Lerner et al., 2004; Han et al., 2012; Lee and Andrade, 2014), 

having them read some emotional scenarios either fictional (Raghunathan and Pham, 

1999) or from news report (Johnson and Tversky, 1983), or asking them to write about 

a past emotional event or about things that make them feel a given emotion (Lerner 

and Keltner, 2001; Yen and Chuang, 2008). Various stress induction procedures have 

also been used to induce fear and anxiety, including threat of shock (ToS), the Trier 

social stress test (TSST), and the cold pressor test (CPT). During the ToS paradigm 

(Schmitz and Grillon, 2012), subjects typically perform a cognitive task while either 

at risk of or safe from rare, but unpleasant, electric shocks. The TSST (Kirschbaum et 

al., 1993) has several variants but usually involves telling the participant that he/she 

will have to give a presentation and/or perform mental arithmetic in front of a panel of 

academic judges, followed by an anticipation phase and the actual test phase, often 

video recorded. Performance on a subsequent decision-making task is usually 

compared with performance of another group of subjects who perform a sham version 

of the TSST, in which they are asked to write a short essay or perform some arithmetic 

task on paper, but they donôt have to speak and there is no audience or video recording. 

In the CPT, participants have to submerge their non-dominant hand in a bucket of ice 

water (between 0 and 3°C) for 3 minutes, while control participants do the same with 
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a bucket of water at room temperature. Those methods have substantial differences: 

while ToS induces anticipatory anxiety and participants perform a decision-making 

task while at threat of receiving a shock at any moment (Engelmann et al., 2015; 

Robinson et al., 2015a, 2015b), the TSST and CPT are used because they induce a 

strong stress response, which can be measured physiologically by increased salivary 

cortisol and heart rate, and during which decision-making is measured (Lighthall et 

al., 2009; Mather et al., 2009; Porcelli and Delgado, 2009; Pabst et al., 2013; Buckert 

et al., 2014). Therefore, during ToS paradigms decisions are made under stress, 

whereas in TSST and CPT the decision-making task occurs during recovery from 

stress, after the stressful event is over. Because of this difference, these techniques may 

produce different effects on decision-making behaviour. 

A summary of studies that have used either mood or stress induction procedures 

described above to study their modulatory effect on decision-making under risk is 

presented in Table 1-1, with studies separated into those that used stress induction 

procedures such as ToS, CPT or TSST (Table 1-1A), negative mood induction (Table 

1-1B) and positive mood induction (Table 1-1C). In addition to the variability in the 

mood and stress induction procedures, the tasks used were also very different. Because 

the focus of this thesis is the examination of economic decisions in the framework of 

Prospect Theoryôs value function, the last column of the table summarizes the effect 

implied by each studyôs finding in terms of mood- or stress-induced changes in risk or 

loss aversion. Note, however, that many of these studies did not directly assess risk 

and loss aversion, and therefore the observed results could also be explained by other 

factors. 
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Table 1-1. Summary of effects of mood and stress induction on decision-making 

Study Task 
Mood induced 

(technique) 
Result 

Implied 

effect 

A. Stress/anticipatory anxiety induction 

(Lighthall et 

al., 2009) 
BART Stress (CPT) 

ŷ risk in men 

Ź risk in women 
Depends on 

gender 

(Mather et al., 

2009) 
Driving task Stress (CPT) 

Ź risk in older adults 

(= in younger adults) 
ŷ risk aversion 

(Porcelli and 

Delgado, 

2009) 

PGT (lotteries) Stress (CPT) 
Ź risk in gain domain 

ŷ risk in loss domain 
ŷ reflection 

effect 

(Putman et al., 

2010) 
PGT (lotteries)  

Stress 

(Administration 

of cortisol) 

ŷ risk for high-risk 

gamble with large gain 

(= otherwise) 
Ź risk aversion 

(Clark et al., 

2012) 
PGT (lotteries) Fear (ToS) Ź risk-taking ŷ risk aversion 

(Pabst et al., 

2013) 

GDT 

(modified 

version) 

Stress (TSST) 
Ź risk in loss domain 

(= in gain domain) 
ŷ risk aversion 

(Buckert et al., 

2014) 
PGT (lotteries) Stress (TSST) 

ŷ risk in gain domain 

(= in loss domain) 
Ź risk aversion 

(Robinson et 

al., 2015a) 
IGT Anxiety (ToS) 

Ź risk in low trait 

anxious 

ŷ risk in high trait 

anxious 

Depends on 

trait anxiety 

(Robinson et 

al., 2015b) 

Framing 

effect; Delay 

discounting 

Anxiety (ToS) No effect No effect 

(Engelmann et 

al., 2015) 

PGT (50-50 

gambles vs 

safe option) 

Anxiety (ToS) No effect No effect 

B. Negative mood induction 

(Raghunathan 

and Pham, 

1999) 

One-shot 

gamble choice 

Anxiety (read 

scenario) 
Ź risk-taking ŷ risk aversion 

Sadness (read 

scenario) 
ŷ risk-taking Ź risk aversion 

(Lerner and 

Keltner, 2001) 

Risk 

perception task 

Fear (self-

description) 

Ź optimistic risk 

estimates 
ŷ risk aversion 

Anger (self-

description) 

ŷ optimistic risk 

estimates 
Ź risk aversion 

(Lerner et al., 

2004) 

Endowment 

effect (EE) 

Disgust  
(film clip) 

No EE (Ź selling 

prices) 
Ź loss aversion 

Sadness  

(film clip) 

Reverse EE (buying 

prices > selling prices) 
Ź loss aversion 

(Yen and 

Chuang, 2008) 

Status quo bias 

(3 choices) 

Sadness (self-

description) 
Ź status quo bias Ź loss aversion 

(Han et al., 

2012) 
Status quo bias 

Disgust (film 

clip) 
Ź status quo bias Ź loss aversion 

(Lee and 

Andrade, 

2014) 

Cash-out game 

(stock market 

simulation) 

Fear (film clip) Ź risk-taking ŷ risk aversion 
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C. Positive mood induction 

(Isen et al., 

1988) 

PGT (mixed 

50-50 

gambles) 

Positive affect 
(giving bag of 

candy) 

ŷ negative utility of 

losses (= for gains, no 

effect on risk) 
ŷ loss aversion 

(Yen and 

Chuang, 2008) 

Status quo bias 

(3 choices) 

Happiness (self-

description) 
ŷ status quo bias ŷ loss aversion 

(Lee and 

Andrade, 

2014) 

Cash-out game 

(stock market 

simulation) 

Excitement 

(task framing) 
ŷ risk-taking Ź risk aversion 

ŷ means increased; Ź decreased, = no effect. BART: Balloon Analogue Risk Task, 

PGT: Probabilistic Gambling Task, GDT: Game of Dice Task, IGT: Iowa Gambling 

Task. CPT: Cold Pressor Test, ToS: Threat of Shock, TSST: Trier Social Stressor Test.  

Instead of describing each study in detail, the main effects that seem to emerge from 

this literature on the influence of mood and stress on risky decisions are summarized 

below in four main points, although evidence is overall rather mixed.  

First, the induction of fear, stress or anticipatory anxiety tends to decrease peopleôs 

propensity to take risks (or increase risk aversion). This was found using a one-gamble 

shot game in a large sample (Raghunathan and Pham, 1999), a computer-based driving 

game (Mather et al., 2009), a cash-out game framed as a stock market simulation (Lee 

and Andrade, 2014), and probabilistic gambling tasks (Porcelli and Delgado, 2009; 

Clark et al., 2012). However, two recent studies, both using the ToS manipulation, 

failed to evidence any effect of anticipatory anxiety on the framing effect, temporal 

discounting (Robinson et al., 2015b), risk or loss aversion (Engelmann et al., 2015). 

Finally, a few studies reported more nuanced effects of fear or stress on risk-taking 

either due to individual differences based on trait anxiety level (Robinson et al., 

2015a), gender (Lighthall et al., 2009), or age (Mather et al., 2009), or differential 

effects in the gain and loss domains (Putman et al., 2010; Pabst et al., 2013; Buckert 

et al., 2014). A possible explanation of this fear-induced decrease in risk taking could 

come from a modulation of the perception of risk, such that when people are afraid or 

anxious they tend to overestimate the likelihood of negative events and underestimate 

the likelihood of positive events (Johnson and Tversky, 1983; Lerner and Keltner, 

2001), possibly resulting in increased risk aversion in choice. This effect also extends 

to real-life risky behaviour, such that participants induced with fear (through story 

telling) and general negative affect (continuous music listening) report a lower 
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inclination to engage in a range of hypothetical risky behaviours such as binge drinking 

or riding a bike without a helmet (Lindquist and Barrett, 2008). 

Second, there is much less evidence for an influence of positive affect on risk-taking 

than for negative affect. By framing their task as an exciting game to the participants, 

Lee and Andrade (2014) found that their original effect of fear in reducing risk taking 

was reversed, such that the excitement induced by the framing of the game resulted in 

an increase in risk taking. In an earlier study (Isen et al., 1988), inducing positive affect 

by giving participants a bag of candy before the start of the experiment had no effect 

on peopleôs sensitivity to gains and risk taking, leaving open the question of whether 

positive affect increases risk taking. Even though this question still needs 

investigating, it has important implications for the financial domain, since a recent 

study has suggested that excitement-induced increases in risk-taking could contribute 

to financial market bubbles (Andrade et al., 2016). 

Third, a small body of evidence using paradigms in which task performance is assumed 

to be driven by loss aversion seems to converge towards an effect of mood valence on 

loss aversion, but in the opposite direction from the effect on risk aversion, with 

positive affect increasing loss aversion and negative affect decreasing loss aversion. 

Using positive affect induction, Isen et al. (1988) found that subjects under positive 

affect were more sensitive to losses and exhibited a greater negative utility of high 

losses than subjects under neutral affect. Similarly, using a status quo bias task, Yen 

and Chuang (2008) found that the preference for the status quo option increased with 

happiness induction, but decreased with sadness induction, consistent with increased 

and decreased loss aversion, respectively. Finally, the endowment effect, which is also 

thought to result from loss aversion, was found to be eliminated following disgust 

induction, and even reversed following sadness induction (Lerner et al., 2004), 

consistent with reduced loss aversion. However, only one study to date has directly 

examined how loss aversion is affected by emotion induction, in this case anticipatory 

anxiety using ToS, and found no effect (Engelmann et al., 2015), possibly calling into 

question the interpretation of fear processing as an integral driver of loss aversion, as 

described in section 1.2.3 above. Instead a possible alternative could come from an 

emotion-induced shift in reference points. Positive affect induction may move 

someoneôs reference point higher, making losses loom even larger, and vice versa for 



40 

 

negative affect induction. However, such an interpretation, taken alone, would also 

imply increased risk aversion following positive affect and increased risk-taking 

following negative affect, which does not seem supported by the current literature, 

suggesting that other processes are at play. 

Finally, a valence-driven dichotomy appears too simplistic, as several studies have 

demonstrated opposite effects of two emotions within the same valence on risk taking. 

Raghunathan and Pham (1999) found that while anxiety induction increased risk 

aversion, sadness induction in contrast increased risk seeking. Similarly, Lerner and 

Keltner (2001) induced fear and anger in separate groups of participants by asking 

them to describe three to five things, as well as the details of one particular situation, 

that make or has made them most afraid/angry. When examining optimistic risk 

estimates (the subjective perception of risk associated with positive events), they 

showed a fear-induced decrease and an anger-induced increase in optimistic risk 

estimates. A theory that could account for these effects is the appraisal-tendency 

framework (ATF; Lerner and Keltner, 2000, 2001; Lerner et al., 2015). Specifically, 

the ñATF posits that emotions predispose individuals to appraise the environment in 

specific ways toward similar functional endsò (Lerner et al., 2015, p.805). Different 

dimensions, such as certainty, pleasantness, or individual control, will influence the 

appraisal tendency attributed to the emotion and affect behaviour in a goal-directed 

manner. A dimension on which an emotion scores high will be more likely to influence 

behaviour by activating the corresponding appraisal tendency. For example the 

differential effect of fear and anger on risk-taking may be driven by the certainty 

dimension, which is high for anger and low for fear, inducing an appraisal tendency 

towards risk in angry individuals and away from risk in afraid individuals.  

1.3.1.2 Neuroimaging findings 

Only a handful of studies to date have attempted to examine the neural correlates of 

such mood effects on decision-making under risk. In the case of stress or anxiety, 

obvious candidate regions include the amygdala and striatum, which play an important 

role in adaptive fear responses (LeDoux and Gorman, 2001), as well as parts of the 

prefrontal cortex, such as the OFC, vmPFC, or dmPFC, whose activity and 



41 

 

connectivity with the amygdala have been shown to be modulated by stress (Arnsten, 

2009; Roozendaal et al., 2009; Robinson et al., 2012). 

In 2012, Lighthall et al adapted their version of the Balloon Analog Risk Task (BART) 

for fMRI. In this task, participants are required to inflate a balloon as much as possible 

but stop before it explodes. They thus face sequential choices where they have to 

decide whether to pump the balloon one more time (therefore gaining more money) or 

collect their current reward and moving to the next balloon. The behavioural findings 

from the original study (Lighthall et al., 2009) revealed no main effect of stress on risk 

taking but an exploratory post-hoc analysis demonstrated a gender difference in the 

effect of stress (induced by CPT) on risk taking: stress increased risk taking in men 

but decreased risk taking in women. In the fMRI version of the task (Lighthall et al., 

2012), which had to be adapted to fit the constraints of scanning, the authors failed to 

replicate their gender-by-stress interaction on risk-taking, with overall low risk-taking 

in all participant groups (stressed men, non-stressed men, stressed women, non-

stressed women). However, they found a post-hoc interaction on reward collection 

rates and decision times, such that male participants under stress made faster decisions 

and collected more rewards than non-stressed male participants, while female 

participants under stress made slower decisions and collected fewer rewards than non-

stressed female participants. These interactions were reflected in the activity of the 

insula and dorsal striatum (putamen) during decisions, such that stress increased 

activity in these regions for men but decreased it for women, potentially reflecting 

increased (decreased) motivation to cash out money and sensitivity to rewards in 

stressed male (female) participants.  

In a recent study (Engelmann et al., 2015), participants completed a gambling task in 

which they had to choose between a sure option and a risky 50-50 gamble. Stress was 

manipulated by having some blocks performed under threat of strong electric shocks, 

while other blocks were only associated with weak shocks. The authors did not find 

any effect of stress on gambling propensity, risk or loss aversion. However, stress 

induced significant task-related changes in the brain, namely a reduction in the 

tracking of expected subjective value and prediction of choice in the ventral striatum 

and vmPFC, as well as a reduction in connectivity between these two regions. These 

results suggest that even though choices were not affected, subjects may rely on 
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different processes when under stress, relying less on (complex) subjective value 

computations and maybe more on more simple heuristics, both strategies resulting in 

similar choices in the specific task used. 

Overall this absence of mood or stress induction behavioural effects when tested in 

fMRI may question the efficacy of these procedures in the MRI scanner, possibly due 

to the design constraints and the impossibility of adapting a mood induction procedure 

into a more flexible event-related design. In addition, except for the ToS manipulation, 

which can easily be implemented within subjects over different blocks, most studies 

described in this section had to employ between-subjects designs, where negative 

mood was typically induced in one group of participants, and positive or neutral mood 

in another. These procedures also raise the possibility that participants may easily infer 

the purpose of the experiment, and purposefully adapt their behaviour to fit with that 

purpose ï known as the ñgood subjectò effect in demand characteristics (Orne, 2009).  

1.3.2 Emotional priming techniques 

In order to address these issues, trial-by-trial emotional priming methods have also 

been used to examine emotional effects on economic decisions in a more controlled 

and automatic way. 

One technique that ensures emotional priming occurs outside of the participantôs 

awareness is subliminal priming, in which emotional pictures, such as faces portraying 

various emotions, are shown to the participant for a very short duration (usually less 

than 30ms). Even though participants do not consciously report the presence of faces, 

these are still processed in the brain, notably in the amygdala (Whalen, 1998; Morris 

et al., 1999), and can influence preference judgments of unrelated visual stimuli 

(Niedenthal, 1990; Murphy and Zajonc, 1993). In the context of consumer-related 

behaviour, Winkielman et al. (2005) found that priming thirsty participants with 

subliminal happy faces, relative to angry faces, made them pour and drink more 

beverage and increased their willingess to pay for the drink, suggesting a possible 

interaction between emotional priming and valuation processes. Another study found 

opposite effects of subliminal priming with guilt- and sadness-related words on 

indulgence and helping behaviour (Zemack-Rugar et al., 2007). Specifically guilt 
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priming decreased indulgence decisions (money allotted to purchasing a CD/DVD 

instead of school supply) and increased helping behaviour (time alloted to charity), 

while sadness priming had the reverse effect. However, there is no evidence to date 

about a possible effect of subliminal emotional primes on economic decision-making 

under risk. 

A few studies have examined this using supraliminal priming. Knutson et al. (2008) 

primed participants by showing them erotic pictures (positive primes), pictures of 

household appliances (neutral primes) or pictures of snakes and spiders (negative 

primes) for 2 seconds before having them choose between a high-risk (e.g. 50% chance 

to win and 50% chance to lose $10) and a low-risk (e.g. 50% chance to win and 50% 

chance to lose $1) gamble. Similar to some of the effects observed with positive affect 

induction above, participants chose the high-risk option more often when primed with 

positive pictures relative to neutral ones. However, negative primes had no effect on 

choice. In addition, participants performed this task during fMRI, and a conjunction 

analysis showed that the same voxels in the ventral striatum (nucleus accumbens) 

responded to both the presentation of positive (versus negative) primes and the 

anticipation of shifting to the high-risk option (versus shifting to the low-risk option). 

In addition, activity in the ventral striatum partially mediated the effect of positive 

primes on risk taking. This suggests a potential role for the ventral striatum in 

integrating emotional and risk signals into a decision variable. A few years later, a very 

similar priming paradigm was used in a financial investment task, in which subjects 

had to decide between investing in a safe bond or a risky stock (Kuhnen and Knutson, 

2011). Relative to neutral primes, negative pictures overall made people more risk 

averse (i.e. more likely to choose the safe bond), especially if their prior choice was 

already for the safe option. Overall, positive pictures did not have an effect on risky 

choice; however, they tended to make people more risk seeking in trials where their 

previous choice was already the risky stock. The authors speculated that the 

differences from the earlier study (Knutson et al., 2008) may have resulted from the 

use of more potent and arousing negative pictures in the second study. 

Using the framing effect task developed by De Martino et al. (2006), Cassotti et al. 

(2012) added an emotional priming procedure to study the effect of incidental 

emotions on the framing effect. Before each choice, participants were presented with 
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a picture from the International Affective Picture System database (IAPS; Lang et al., 

1997) for 5 seconds. A between-subjects design was used, such that a third of 

participants were primed with pleasant pictures, a third with unpleasant pictures, and 

a third were not primed (control group). Positive pictures abolished the framing effect, 

specifically by decreasing risk seeking in the loss frame, while negative pictures had 

no effect. However, the negative pictures did not distinguish between different 

emotions and consisted of a mix of fearful and sad images. These two emotions have 

been shown to have opposite effects on risk taking using mood induction in previous 

work (Raghunathan and Pham, 1999); it is therefore possible that the effects in Cassotti 

et al. (2012) cancelled each other out. 

At the time when the experiments in this thesis were planned, there was no evidence 

for a possible influence of incidental emotional primes on loss aversion, which is what 

I set out to examine in Chapter 4 of this thesis. However, a very recent study provided 

preliminary evidence that incidental fear cues, presented either during the decision or 

just before, increase monetary loss aversion (Schulreich et al., 2016). This result would 

be consistent with the hypothesis that loss aversion reflects the expression of fear 

(Camerer, 2005) and relies on fear processing systems in the brain (LeDoux and 

Gorman, 2001). Interestingly, this study may point towards some differences between 

effects of long-lasting mood induction procedures and of transient emotional primes. 

A transient fearful cue may trigger rapid fear processing and increase Pavlovian 

avoidance of losses (Seymour and Dolan, 2008; Ly et al., 2014); whereas a more long-

lasting change in mood may recruit different systems in the brain and possibly result 

in opposite effects on behaviour. 

In summary, trial-by-trial emotional priming methods have the advantage, relative to 

mood induction procedures, of being better adapted for event-related fMRI designs, as 

they allow for within-subjects manipulations, and are probably less susceptible to 

demand characteristics. One downside, however, is that the emotional experience is 

likely to be less intense and vivid than during a mood induction procedure. Even 

though the evidence for an effect of incidental emotional cues on risky decision-

making is still limited, and the low number of studies do not yet allow one to draw 

general conclusions on the specific components of emotion (valence, arousal, 
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certainty, etc) that may drive such effects, they help pave the way for some of the work 

presented in this thesis, as well as future investigations. 

1.4 Emotion and decision-making in anxiety 

Anxiety disorders constitute a major global heath burden (Beddington et al., 2008), 

and are characterized by negative emotional processing biases as well as decision-

making impairments (Hartley and Phelps, 2012; Robinson et al., 2013). Anxiety is 

therefore a relevant psychiatric construct to study in relation to this thesis given that 

the interaction between emotion and decision-making may vary with anxiety levels. In 

addition, studying emotion and decision-making processes in anxiety is important and 

could provide a better understanding of cognitive impairments in anxiety and potential 

insights into the development of psychological interventions. 

Anxiety can be examined in two ways: first as a vulnerability factor within healthy 

individuals, by studying individual difference in dispositional levels of anxiety or trait 

anxiety as measured by self-report questionnaires (Sandi and Richter-Levin, 2009; 

Bishop and Forster, 2013); and secondly as a clinical pathology, by comparing patients 

diagnosed with an anxiety disorder with healthy controls. This section examines the 

literature on emotional processing and decision-making in anxiety from both 

perspectives. 

1.4.1 Anxiety and disrupted emotional processing 

Anxiety states are sustained anticipatory responses to unpredictable threats, including 

affective, physiological and cognitive changes, and can in that sense de distinguished 

from fear, which encompasses responses to predictable threats (Grillon et al., 1991; 

Grillon, 2008; Davis et al., 2010). In many situations, anxiety defined as such is 

adaptive because it allows avoidance of potential threats in uncertain environments as 

well as increased vigilance and alertness. However, there are strong individual 

differences in the deployment of these harm-avoidance processes, with some people 

more prone to anxiety than others (high versus low level of dispositional anxiety). 

Clinical anxiety is thought to emerge through a dysregulation of such ñadaptiveò 

anxious response, whereby these harm-avoidance processes become permanent rather 
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than deployed in potentially threatening situations, and as a result start interfering with 

the patientôs daily life and ability to concentrate (Bishop and Forster, 2013; Robinson 

et al., 2013). 

Both dispositional and clinical anxiety have been associated with enhanced detection 

and processing of negative emotional information, particularly threat-related stimuli. 

In two similar studies (MacLeod et al., 1986; MacLeod and Mathews, 1988), subjects 

were presented with pairs of words, one threat-related and one neutral. On some trials 

a dot probe replaced one of the words, and subjects were instructed to press a button 

as quickly as possible when the probe appeared. High trait anxious individuals were 

faster to detect the probe when it replaced a threat word than a neutral word, while low 

trait anxious individuals showed no difference (MacLeod and Mathews, 1988). In 

MacLeod et al. (1986), the same effect was found between clinically anxious patients 

and healthy controls. This suggests an attentional bias towards threat-related stimuli in 

anxious individuals. Similarly, the same authors have demonstrated that unattended 

threat-related stimuli, presented outside the participantsô awareness, act as distractors 

and impair performance of anxious individuals, but not control, in a reaction time task 

(Mathews and MacLeod, 1986). This attentional bias towards threat was also 

demonstrated in younger anxious populations (children and adolescents), both clinical 

(Roy et al., 2008) and dispositional (Telzer et al., 2008), using angry (threatening) 

versus neutral faces. A meta-analysis of 172 studies confirmed the robustness of this 

threat-related attentional bias, both in different clinical anxiety disorders and high trait 

anxious individuals, with a medium effect size (Cohenôs d=0.45; Bar-Haim et al., 

2007; see also Cisler and Koster, 2010 for a review). Despite this specific threat-

induced facilitation effect on attention, it is important to note that anxiety is generally 

associated with attentional deficits, mainly poor attentional control and ability to 

flexibly allocate attention to relevant parts of changing environments (Derryberry and 

Reed, 2002; Eysenck et al., 2007). 

Neuroimaging studies have also provided converging evidence that anxious 

individuals exhibit increased neural responses, particularly in the amygdala and PFC, 

to fearful and angry faces. This has been shown both in high trait versus low trait 

anxious individuals (Etkin et al., 2004; Stein et al., 2007; Telzer et al., 2008), as well 

as in clinically anxious patients relative to non-anxious controls (Monk et al., 2006; 



47 

 

Blair et al., 2008). A recent study has also provided evidence of increased functional 

connectivity between the amygdala and dmPFC during processing of fearful versus 

happy faces in patients with anxiety relative to healthy controls (Robinson et al., 2014). 

Finally, anxiety is also associated with difficulties in regulating emotions; both 

implicitly, as demonstrated using a task that creates emotional conflict and requires 

adaptation to that conflict to perform accurately (Etkin et al., 2010; Etkin and 

Schatzberg, 2011), and in daily life, with difficult ies in deploying cognitive reappraisal 

to regulate emotions (Farmer and Kashdan, 2012). Using fMRI, impairments in 

emotional conflict adaptation in anxious individuals were shown to be associated with 

reduced connectivity between the pregenual or ventral anterior cingulate cortex (ACC) 

and the amygdala, a mechanism thought to play a central role in emotion regulation, 

with ACC hypothesized to dampen the emotional response in the amygdala (Etkin et 

al., 2010; Etkin and Schatzberg, 2011). 

1.4.2 Anxiety and economic decision-making 

An early model of anxiety suggested that intolerance to uncertainty is a pivotal feature 

of generalized anxiety disorder (GAD; Dugas et al., 1998). Anxious individuals find 

uncertain situations particularly aversive and distressing, possibly because they exhibit 

a deficit in learning about the outcomes of their actions in very uncertain environments 

(Browning et al., 2015). This deficit, and resulting intolerance to uncertainty, are likely 

to play a key role in the development and maintenance of pathological anxiety.  

In addition, such intolerance for uncertainty should have important consequences on 

economic decisions in which uncertainty and risk are involved. The results of studies 

that have investigated risk perception and risk taking in anxious individuals are 

summarized in Table 1-2, with studies separated according to whether they examine 

the effect of dispositional (Table 1-2A) or clinical (Table 1-2B) anxiety.  
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Table 1-2. Summary of effects of dispositional and clinical anxiety on risky 

decision-making. 

Study Task 
Manifestation 

Population 
Effect of anxiety Implied effect 

A. Dispositional anxiety in normal population  

(Maner and 

Schmidt, 

2006) 

RTBS & 

Optimism Scale 

(risk appraisals) 

Trait anxiety 

Ź risky behaviours 

ŷ pessimistic risk 

estimates 

ŷ risk aversion 

(Maner et al., 

2007) studies 

1 and 2 

BART 
Trait and social 

anxiety 
Ź risk-taking ŷ risk aversion 

(Miu et al., 

2008) 
IGT Trait anxiety Ź performance unclear 

(Lorian and 

Grisham, 

2010) 

RTBS (30-item 

version) & 

BART 

Social anxiety 
Ź risky behaviours 

Ź risk-taking 
ŷ risk aversion 

(Xu et al., 

2013) 

Framing effect 

task 
Trait anxiety ŷ framing effect 

ŷ risk aversion 

for gains & 

risk-seeking for 

losses 

B. Clinical anxiety (compared with healthy controls) 

(Butler and 

Mathews, 

1983) 

Risk estimation 

questionnaire 
Adults 

ŷ pessimistic risk 

estimates 
ŷ risk aversion 

(Maner et al., 

2007) study 3 

RTBS (14-item 

version) 
Adults Ź risky behaviours ŷ risk aversion 

(Mueller et al., 

2010) 
IGT (modified) Adults 

Ź decisions leading 

small but 

consistent losses 
unclear 

(Giorgetta et 

al., 2012) 
PGT (lotteries) Adults Ź risky choices 

ŷ risk and/or 

loss aversion 

(Galván and 

Peris, 2014) 

Cups Task 

(choice of safe 

vs risky option) 

Adolescents 
Ź risk for losses 

= for gains 

ŷ risk aversion 

for losses or   ŷ 

loss aversion 

(Ernst et al., 

2014) 

Accept/Reject 

50-50 mixed 

gambles 

Adolescents No effect = loss aversion 

ŷ means increase, Ź means decrease, = means no effect. RTBS: Risk-Taking Behaviors 

Scale (Weber et al., 2002), BART: Balloon Analogue Risk Task, IGT: Iowa Gambling 

Task, PGT: Probabilistic Gambling Task. 
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Specifically, there is clear evidence that anxious individuals, relative to their non-

anxious counterparts, (i) overestimate the risk associated with negative events (Butler 

and Mathews, 1983; Maner and Schmidt, 2006), (ii) report a lower inclination to 

engage in everyday risky behaviours (Maner and Schmidt, 2006; Maner et al., 2007; 

Lorian and Grisham, 2010), and (iii) avoid risky options during decision-making tasks 

under risk  (Maner et al., 2007; Lorian and Grisham, 2010; Giorgetta et al., 2012). This 

suggests that anxiety is associated with exacerbated risk aversion (see also Hartley and 

Phelps, 2012; Paulus and Yu, 2012; Robinson et al., 2013 for reviews), which is 

consistent with a model of anxiety based on the intolerance of uncertainty. 

Interestingly, Maner et al. (2007) also collected reports of peopleôs willingness to 

engage in risky everyday behaviour in other patient groups, including patients with 

mood disorders and patients with learning disorders and/or no formal axis I diagnosis. 

They found that group differences in reported risky behaviours were driven 

specifically by a reduction in the anxious patient group. By contrast, the level of 

reported risk-taking in the other patient groups was similar to that of healthy controls, 

suggesting that increased risk avoidance may be specific to anxiety, rather than driven 

by negative affect in general. 

Another piece of evidence for the role of anxiety in decision making comes from a 

study that showed increased susceptibility to the framing effect with trait anxiety (Xu 

et al., 2013), suggesting an increased propensity to both choose the sure option when 

framed as a gain (decreased risk taking in the gain domain) and avoid the sure option 

when framed as a loss (increased risk taking in the loss domain). Interestingly, this 

was the first study to also examine the neural basis of these individual differences. 

Their results show that high trait anxious individuals exhibit increased amygdala 

activity and amygdala-vmPFC connectivity during decisions consistent with the 

frame, but decreased dorsal ACC activity and ACC-vmPFC connectivity during 

decisions counter to the frame. This is consistent with previous reports of enhanced 

amygdala responses and amygdala-prefrontal connectivity in anxiety (Etkin et al., 

2004; Stein et al., 2007; Robinson et al., 2014), suggesting a role for this amygdala-

prefrontal brain network. 
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Interestingly, this increased susceptibility to the framing effect in anxiety may be 

mediated by genetic differences in the promoter region of the serotonin transporter 

gene (5-HTTLPR). Carriers of the short allele at this locus, which results in reduced 

serotonin transporter expression and function, relative to carriers of the long allele, 

exhibit enhanced dispositional anxiety (Lesch et al., 1996; Criĸan et al., 2009), are 

more susceptible to the framing effect (Criĸan et al., 2009; Roiser et al., 2009), and 

show increased amygdala responses during decisions made in accord with the frame 

but fail to engage amygdala-PFC coupling mechanisms during decisions made counter 

to the frame (Roiser et al., 2009).  

However, these studies focusing on the framing effect did not directly examine the 

neural basis of increased risk avoidance in anxiety. A recent study in adolescents with 

or without an anxiety disorder did so (Galván and Peris, 2014), using a decision-

making task where participants had to choose between a safe and a risky option both 

matched in expected value (e.g. $2 for sure or 1/5 chance of $10). Half the trials used 

gains, and half used losses. The behavioural results showed reduced risk taking in 

anxious adolescents compared to controls, but only in the loss domain. The 

neuroimaging findings revealed that anxiety was associated with decreased ventral 

striatum response during risky choice involving gains and increased amygdala 

response during risky choice involving losses. Although these responses were not 

directly associated with the behavioural effect, they suggest that non-anxious 

individuals may make decisions mainly by processing gains in the ventral striatum, 

while anxious individuals may more heavily rely on an amygdala-mediated influence 

of losses. 

Finally, a possible link between anxiety and loss aversion has not been established. 

There is a strong hypothesis that loss aversion should increase with anxiety, given the 

associated negative biases in emotional and attentional processes, as well as the 

heightened sensitivity to large negative outcomes (Hartley and Phelps, 2012; Paulus 

and Yu, 2012). However, there has been no study to date examining loss aversion in 

relation to anxiety in adult participants. One study looked at this question in 

adolescents (Ernst et al., 2014) and found no difference in loss aversion between 

anxious and healthy adolescents. In two other studies (Giorgetta et al., 2012; Galván 

and Peris, 2014), the gambling tasks used involved potential losses as well as gains, 
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but did not allow differentiating between risk and loss aversion, such that the observed 

decreased propensity to choose the risky options in those tasks could be driven by 

increased risk aversion, increased loss aversion or a combination of both. Similarly, 

the increased susceptibility to the framing effect observed in high trait anxious 

individuals (Xu et al., 2013) could be driven by increased loss aversion, but also by 

increased risk aversion for gains and decreased risk aversion for losses. No study to 

date has examined risk and loss aversion parameters in anxiety using a Prospect 

Theory framework ï this is what I address in Chapter 5 of this thesis. 

1.5 Thesis aims and summary of chapters 

The overall aim of this thesis is to contribute a mechanistic account of the 

computational and neural processes by which emotion influence economic decisions, 

both from an integral and incidental perspective. From the evidence discussed in this 

introductory chapter it seems clear that emotion plays a key role in decision-making, 

and that decisions can be altered by manipulating emotions. However, how exactly 

these processes unfold is still largely unknown and represents the focus of this thesis 

over three main questions addressed in the three separate experimental chapters. 

1.5.1 Chapter 3: how are feelings integrated into economic decisions? 

Chapter 3 provides a computational account of the integral influence of emotion on 

economic choices. In particular, it aims to examine how self-report feelings are 

integrated during the decision-making process and to develop a computational model 

of choice that integrates both feelings and value and by doing so performs better than 

traditional models. This model may also explain how the integration of feelings during 

choice results in loss aversion. 

1.5.2 Chapter 4: how do incidental emotional cues modulate loss aversion? 

With a focus on loss aversion, the aim of the study presented in Chapter 4 was to 

examine whether and how incidental emotional cues alter loss aversion, with the 

hypothesis, given the (limited) literature detailed in section 1.3.2, that fearful cues may 

increase loss aversion while happy cues may instead reduce loss aversion. In addition, 

Chapter 4 also examined the neural mechanisms involved in this incidental influence 
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of emotions on loss aversion, with a particular focus on the amygdala and the ventral 

striatum, as well as individual differences in these processes due to trait anxiety. 

1.5.3 Chapter 5: how does anxiety affect the relative contribution of risk and 

loss aversion to economic choice? 

Finally, given the association between trait anxiety and emotion-induced changes in 

loss aversion described in Chapter 4, as well as the lack of studies to date examining 

separate contributions of risk and loss aversion to choice in anxiety disorders, the study 

presented in Chapter 5 aimed to address these two points. It details the results of a 

behavioural study comparing a group of clinically anxious patients with matched 

healthy controls on a Prospect Theory-derived gambling task that allows separating 

risk and loss aversion within the same model of choice. In addition, it aims to expand 

the results of Chapter 4 observed in high trait anxious, but non-clinical, individuals, to 

a sample of clinically anxious patients.     
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Chapter 2 Experimental methods 

This chapter will describe the common methods that were used in the experimental 

chapters of this thesis. Specifically the Prospect Theory framework under which 

economic decisions were studied and modelled is described, followed by the detail of 

two pilot studies that were run to develop a reliable emotional priming procedure 

together with a sensitive gambling task. 

2.1 Participant screening: Mini International Neuropsychiatric 

Interview (MINI)  

For the studies presented in Chapter 4 and Chapter 5, as well as pilot work presented 

in section 2.5 below, participants were screened using the Mini International 

Neuropsychiatric Interview (MINI; Sheehan et al., 1998). The MINI is a short, 

structured diagnostic interview to clinically assess symptoms of neuropsychiatric 

disorders, in accordance with the Diagnostic and Statistical Manual of Mental 

Disorder-IV (DSM-IV) and the International Classification of Diseases (ICD) 10th 

revision for psychiatric disorders. The complete version of the MINI contains 16 

sections; however, for screening purposes and because some sections are redundant, I 

used a version that was reduced to 12 sections, assessing the following: major 

depressive episode, (hypo) manic episode, panic disorder (PD), agoraphobia, 

obsessive-compulsive disorder (OCD), post-traumatic stress disorder (PTSD), alcohol 

abuse and dependence, non-alcohol psychoactive substance use disorders, psychotic 

disorders (and mood disorder with psychotic features), anorexia nervosa, bulimia 

nervosa, and generalized anxiety disorder (GAD). The following four sections were 

not included: dysthymia, suicidality, social phobia, and antisocial personality disorder. 

Healthy volunteers (pilot studies, Chapter 4, and healthy controls in Chapter 5) were 

included only if they did not meet criteria for any of the aforementioned sections of 

the MINI. GAD patients (Chapter 5) had to meet criteria for GAD to be included in 

the study and were excluded if they met criteria for manic or hypomanic episodes (past 

or current), psychotic disorders, alcohol or substance abuse (in the last 6 months) or 
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dependence. Given that their comorbidity with GAD is high, the other disorders such 

as depression and other anxiety disorders did not constitute exclusion criteria. 

2.2 Self-report questionnaires and verbal IQ measure 

Both emotional processing and economic decision-making are subjective and highly 

likely to vary across individuals. In order to examine such individual differences in the 

studies presented in this thesis, participants completed self-report mood and 

personality questionnaires at the end of each study. 

The first questionnaire that was systematically administered is the State Trait Anxiety 

Inventory (STAI, Spielberger et al., 1983). The STAI contains 40 questions, divided 

into two sub-groups. The first 20 questions assess state anxiety, asking people to 

evaluate their current state of anxiety by rating the intensity of their feelings ñright 

now, at this momentò. The 20 questions are statements that people have to rate with 

one of the following four answers: ñNot at allò, ñSomewhatò, ñModerately soò, ñVery 

much soò. Ten of these statements, such as ñI am tenseò or ñI feel nervousò are directly 

coded, with a score ranging from 1 (Not at all) to 4 (Very much so). The other 10 

statements, such as ñI am relaxedò or ñI feel secureò are reverse coded, with a score 

ranging from 4 (Not at all) to 1 (Very much so). The next 20 questions assess trait 

anxiety ï the more stable proneness to anxiety ï by asking people to indicate how they 

generally feel using the following four answers: ñAlmost neverò, ñSometimesò, 

ñOftenò, ñAlmost alwaysò. Again, scores on 11 of the questions are directly coded 

from 1 to 4, such as ñI worry too much about something that doesnôt really matterò or 

ñI lack self-confidenceò; while the other 9 questions, such as ñI am a steady personò 

or ñI am satisfied with myselfò, are reverse coded. Overall state and trait anxiety scores 

are obtained by adding scores of the 20 questions for each subscale. Both scores can 

range from 20 (low anxiety) to 80 (high anxiety). With respect to trait anxiety, previous 

studies have found that most people from a healthy population will score between 20 

and 50 (mean score around 35; Knight et al., 1983; Crawford et al., 2011); while a 

score above 50 may indicate some clinical relevance for an anxiety disorder (Kvaal et 

al., 2005; Julian, 2011). In this thesis individual differences in trait anxiety were 

examined in pilot studies (see sections 2.5.1 and 2.5.2 below), as well as Chapter 4 

and Chapter 5, either by including trait anxiety scores as a covariate in the analyses, 
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running a Pearsonôs correlation between trait anxiety scores and a dependent variable 

of interest, or performing a median split on trait anxiety scores and comparing 

participants with high versus low anxiety. 

The second questionnaire that participants completed was the Beck Depression 

Inventory (BDI, Beck et al., 1961) to assess depressive symptoms. The questionnaire 

contains 21 questions corresponding to different symptoms. For each question, 

participants have to pick one of four statements best corresponding to how they have 

been feeling over the past few days. The four statements are presented in order of 

increasing severity, with the first statement corresponding to a score of 0 (e.g. ñI do 

not feel sadò), then a score of 1 (e.g. ñI feel sadò), 2 (e.g. ñI am sad all the time and 

canôt snap out of itò), or 3 (e.g. ñI am so sad or unhappy that I canôt stand itò). The 

overall BDI score is obtained by summing each individual questionôs score, and can 

range from 0 to 63, with a score above 15 typically considered clinically relevant 

(Sprinkle et al., 2002). Because the distribution of BDI scores is often positively 

skewed in the general population (Lasa et al., 2000), with a majority of people scoring 

very low (below 10 ï Beck et al., 1988), it is difficult to use BDI scores as a covariate 

in analyses, except for studies in patient populations. Therefore, I primarily used BDI 

scores for screening purposes, excluding participants who scored above 15.  

Participants in all studies except for Chapter 3 were also administered the Wechsler 

Test of Adult Reading (WTAR; Wechsler, 2001). In this test, the participant is 

presented with a list of 50 words and asked to read them out loud to the experimenter 

in the order from 1 to 50. There is no time limit, and one point is scored for each word 

read correctly. The final score out of 50 can then be converted to an IQ score according 

to standard score conversion tables and age, averaging 100 in the population. The 

WTAR was mainly used to match anxious patients and healthy controls in the study 

presented in Chapter 5, and to ensure no participant exhibited a strong IQ deficit. 

2.3 Gambling tasks 

All experimental chapters of this thesis used gambling tasks to assess decision-making 

biases such as loss and risk aversion. All versions of the task used 50/50 gambles, in 

which participants have 50% chance of winning a monetary amount and 50% chance 
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of losing a monetary amount. These gambles are referred to as mixed gambles 

throughout. Based on expected value (EV) calculation, one should accept the gamble 

whenever the win amount is higher than the loss amount. However, in reality, most 

people reject gambles when the win and loss amounts are close and only start accepting 

gambles when the win amount is about twice as big as the loss. This is thought to be 

driven by loss aversion. 

In the pilot studies (section 2.5 below) and in Chapter 4, which focused on loss 

aversion and its modulation by emotional cues, all trials of the task involved mixed 

gambles as described above and participants had to decide whether to accept or reject 

such gambles. In Chapter 5, however, in order to estimate both loss and risk aversion, 

gain-only trials were added to the task; they involved choosing between a sure win and 

a 50/50 gamble between a higher win and £0. This allowed to assess sensitivity to risk 

separately from sensitivity to losses. In order to have a consistent trial presentation, 

the mixed gamble trials in Chapter 5 were also presented as a choice between a sure 

option (always £0) and the mixed gamble between a win and a loss (instead of a choice 

to accept or reject the mixed gamble). Finally, in Chapter 3, given that the gambling 

task was run on its own and independent from priming with emotional cues, trials did 

not need to be repeated for each emotion condition and more trials could be included 

in the task, allowing the addition of loss-only trials. Those were symmetrical to the 

gain-only trials, in that they involved a choice between a sure loss and a 50/50 gamble 

between a higher loss and £0. Adding these trials was useful to be able to estimate risk 

attitudes separately in the gain and loss domains. 

A key point to take into account when designing such gambling tasks is the range of 

monetary amounts to use throughout the task. Because all the experiments were 

incentive-compatible, only relatively small amounts (lower than £30) were used, so 

that it was believable for participants that some of these amounts (or the average 

amount over several randomly-selected trials) would be paid to them for real at the end 

of the experiment. In addition, amounts needed to be paired (a win and a loss in the 

mixed gambles, a small win and a high win in the gain-only trials, a small loss and a 

high loss in the loss-only trials), such that the range of pairs would cover the range of 

indifference points (the gamble expected value at which a participant would accept or 

reject the gamble with a probability of 0.5) across subjects. For example, let us imagine 
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a set of mixed gambles consisting of all possible pairing between wins ranging from 

£5 to £10 and losses also ranging from £5 to £10. With such a set, where the highest-

value gamble is win £10/lose £5, it is likely that participants with a high degree of loss 

aversion will not accept any gamble of the set. If this happens, it will be impossible to 

estimate loss aversion reliably for these participants as their indifference point will be 

unknown. In order to reliably estimate decision-making parameters, such as risk and 

loss aversion, one needs to make sure that there are enough trials where the participant 

decides to gamble and enough trials where they decide not to. Two solutions are 

possible to ensure this.  

First, gamble EVs may encompass a large range of values, such that every participantôs 

indifference point will be included in that range. This is what was implemented in 

Chapter 3, where the gamble set was built using combinations of amounts ranging 

from £0.20 to £12. However, the drawback of this method is that it requires a lot of 

trials in order to include all possible gain/loss combinations. This was a problem for 

all the other studies presented in this thesis, which used emotional priming and 

required all gamble trials to be repeated identically for each emotion condition.  

Therefore, the other option, which allowed reducing the number of trials per emotion 

condition in Chapter 4 and Chapter 5, was to build a gamble matrix centred on each 

participantôs indifference point. Therefore, participants completed a practice session 

of the gambling task, which included a staircase procedure and during which potential 

wins and losses were varied parametrically as follows. The gamble EV (EV = 0.5*win 

amount + 0.5*loss amount) was adjusted every 2 trials in order to reach the 

participantôs indifference point (the EV for which gambles were accepted half of the 

time on average). Each set of 2 trials contained one ñhighò EV gamble and one ñlowò 

EV gamble. The EV of accepted gambles was decreased by 0.5 while the EV of 

rejected gambles was increased by 0.5. Potential gains ranged between £6 and £24 and 

potential losses between £1 and £12. For each trial, the gain/loss pair was chosen 

randomly among all pairs with the same desired EV. Once the indifference point for 

mixed gambles (and for gain-only gambles in Chapter 5) were determined, gamble 

matrices could be build centred on this indifference point with a relatively low number 

of trials (49 trials for mixed gambles, 25 trials for gain-only gambles), allowing 

repetition of the gamble set across the different emotional conditions. 
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A potential risk with using such a staircase procedure during practice is that 

participants could learn to ñplayò the staircase; i.e. accept very few gambles during 

practice to make the gamble expected value increase, then accept most gambles during 

the main task to maximize their outcome. Therefore, subjects whose gamble 

acceptance rate was less than 10% during practice and more than 90% in the main task 

were excluded. However this did not occur for any of the participants in Chapters 4 

and 5. Other exclusion criteria based on participantsô data from the gambling task 

included very high (>95%) or very low (>5%) gamble acceptance rate throughout the 

entire task (practice and main task), suggestive of insensitivity to value; inconsistent 

choices as reflected by values of the µ parameter (see Eq. 2-6 below) close to 0 and 

aberrant parameter estimates (e.g. negative loss aversion values), suggestive of bad 

understanding of the task; or a high number of missed trials (>10%) throughout the 

task. 

2.4 Modelling of economic decisions 

2.4.1 Model definition and estimation 

The different models of gambling decisions used throughout this thesis were all 

derived from Prospect Theoryôs subjective value function equation.  

Utility or subjective value (u) of monetary gains (x>0) is defined as: 

όὼ  ὼⱬ▌╪░▪          (Eq. 2-1) 

where ”  represents the curvature of the function (or diminishing marginal utility) 

in the gain domain: a ”  value lower than 1 indicates diminishing sensitivity to 

changes in gain value as gain value increases and results in risk aversion in the gain 

domain, while a ”  value higher than 1 indicates risk seeking for gains.  

Utility or subjective value (u) of losses (x<0) is defined as: 

όὼ  ⱦϽ ὼⱬ■▫▼▼       (Eq. 2-2) 

where ‗ represents loss aversion: a ‗ value higher than 1 indicates overweighting of 

gains relative to losses during decision-making and a ‗ value lower than 1 the 



59 

 

converse; and ”  represents the curvature of the function (or diminishing marginal 

utility) in the loss domain: a ”  value lower than 1 indicates diminishing sensitivity 

to changes in loss value as loss value increases and results in risk seeking in the loss 

domain, while a ”  value higher than 1 indicates risk aversion for losses.  

Using the above equations the utility of each gamble can then be calculated as follows: 

όὫὥάὦὰὩ όάὭὼὩὨ πȢυϽὋⱬ▌╪░▪πȢυϽⱦϽȿὒȿⱬ■▫▼▼    (Eq. 2-3) 

for mixed gamble trials, with G the value of the gain and L the value of the loss, and: 

όὫὥάὦὰὩ όὫὥὭὲ έὲὰώ πȢυϽὋⱬ▌╪░▪ Ὓⱬ▌╪░▪     (Eq. 2-4) 

for gain-only trials, with G the value of the high, risky gain and S the value of the sure 

gain, and: 

όὫὥάὦὰὩ όὰέίί έὲὰώ  πȢυϽⱦϽȿὒȿⱬ■▫▼▼ ⱦϽȿὛȿⱬ■▫▼▼    (Eq. 2-5) 

for loss-only trials, with L the value of the high, risky loss and S the value of the sure 

loss. 

These utility values are then entered in a softmax function to estimate the probability 

of accepting or choosing each gamble (coded as 1 if the gamble was chosen and 0 if 

the gamble was rejected or the sure option chosen): 

ὖὫὥάὦὰὩ 
  Ͻ       (Eq. 2-6) 

where ‘ is the logit sensitivity or ñinverse temperatureò parameter, an index of choice 

consistency for repeated identical gambles, equivalent to the maximal slope of a 

logistic regression curve: higher ‘ values indicate more consistent choices. Best-fitting 

parameters were estimated using a maximum likelihood estimation procedure in 

Matlab. 

 

According to the literature, most people exhibit a ‗ parameter greater than 1, indicative 

of loss aversion, and ” parameters lower than 1, indicative of risk aversion in the gain 

domains and risk seeking in the loss domain (Kahneman and Tversky, 1979; Tversky 

and Kahneman, 1992; Fox and Poldrack, 2014). Whether ”  and ”  are different 

or can be estimated as a single parameter is unclear, as many studies failed to 
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demonstrate a difference (for a review see Fox and Poldrack, 2014). In Chapter 3 of 

this thesis, which is the only study where the gambling task included both gain-only 

and loss-only trials, allowing ”  and ”  to be estimated separately, there was no 

significant difference, and the model with a single ” parameter performed better. 

In summary, for Chapter 3, equations 2-3, 2-4 and 2-5 were used to calculate gamble 

utility for mixed, gain-only, and loss-only trials, respectively, except that a single ” 

parameter (”  ”  ”) was estimated. For Chapter 4, as well as pilot studies 

(section 2.5 below), given that the task contained only mixed gambles, only equation 

2-3 was used to estimate ‗, with the assumption that ”  ”  ρ (because the 

curvature of the utility function could not be estimated without the inclusion of at least 

some gain-only trials in the task). For Chapter 5, equations 2-3 and 2-4 were used 

given that the task included a combination of mixed and gain-only gambles, again with 

a single ” parameter (”  ”  ”). 

2.4.2 Model comparison: Bayesian Information Criterion (BIC)  

In order to perform model comparison, BIC scores (Schwartz, 1978) were calculated 

for each model and each participant using the following equation: 

ὄὍὅ ςϽὒὒὯϽÌÎ ὔ       (Eq. 2-7) 

where k represents the number of parameters in the model, N the number of trials used 

to estimate the parameters, and LL the loglikehood of the model calculated using the 

estimated best fit parameters. Comparing BICs is similar to a loglikelihood ratio test 

with the addition that the number of parameters in the model is taken into account and, 

therefore, models with more parameters are penalised.  

BIC scores were then summed across participants before being compared between 

models. Lower BICs represent better model fits. 
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2.5 Development of the emotional priming procedure and loss 

aversion task 

The face stimuli used as emotional primes throughout this thesis consisted of pictures 

from the NimStim Face Stimulus Set (http://www.macbrain.org/resources.htm). A set 

of 40 identities was chosen (20 male faces and 20 female faces), and each face stimulus 

was presented depicting either a neutral, happy, or fearful expression, resulting in a set 

of 120 face stimuli (primes). Surprised faces were also included in the pilot studies but 

were then discarded to reduce the task duration for the fMRI study (Chapter 4). For 

the object control condition, used in pilot study 2, Chapter 4 and Chapter 5, 20 pictures 

of light bulbs, obtained from the internet, were selected as a non-face control.  

2.5.1 Pilot study 1: subliminal priming 

In order to study the emotional modulation of loss aversion without the participant 

realising the goal of the study, the first pilot study used subliminal emotional primes 

as a procedure to manipulate emotions outside of the participantsô awareness. 

2.5.1.1 Methods 

The design of an example trial is presented in Figure 2-1. Each trial of the task started 

with the presentation of a prime for 16.7ms (unknown to the participant), 

corresponding to the duration of one refresh of the screen for a refresh rate of 60 Hz. 

This was immediately followed by the presentation of a mask (scrambled face image) 

for 283ms. Participants were then presented with a mixed gamble and had to decide 

whether to accept or reject it (no time limit). There was a 1s fixation cross presented 

before the start of the next trial. 

The primes belonged to one of the following 5 conditions: happy face, fearful face, 

surprised face, neutral face (no emotion control), scrambled image (no face control). 

For each face condition, the mask was a scrambled image of the face presented 

immediately before. When there was no prime, a scrambled image of a neutral face 

was presented for 300ms (combined duration of prime and mask). Images were all 

resized to 462 (width) x 588 (height) pixels. Scrambled images were created using 



62 

 

Matlab, dividing the original image into 33 x 42 squares of 14 x 14 pixels each, and 

then randomising the position of each square on the image. 

 

Figure 2-1. Task design ï pilot study 1. Participants completed 450 trials of this task, 

with 90 trials for each of the following 5 emotion prime conditions: happy face, fearful 

face, neutral face, surprised face, and scrambled image like the mask. On each trial, 

the prime was presented subliminally for 16.7ms, immediately followed by a mask 

consisting of a scrambled image of the prime for 283ms. The gamble was then 

presented on the screen and participants had to press the left or right arrow button to 

indicate their choice to accept or reject the gamble. 

Psychtoolbox (version 3; http://psychtoolbox.org/; Brainard, 1997; Kleiner et al., 

2007) was used for visual presentation of stimuli. The reliability of timings was tested 

using a photodiode, which detected the presence of a white square shown at the top-

left corner of the screen at the same time as the prime (the white square was only 

present during preliminary tests and was removed when participants performed the 

task). The current produced by the photodiode could then be recorded and analysed 

with precise temporal resolution, confirming that the stimuli were indeed on the screen 

for the duration of one refresh (16.7 ms). 

Participants completed 90 trials per condition, randomly interspersed, leading to a total 

of 450 trials, presented in 3 blocks of 150 trials each with short breaks in between. 

Each set of 90 trials was constructed as follows: 81 gambles from all possible gain/loss 

pairs with gains ranging from £8 to £24 in £2 increments and losses ranging from -£6 

to -Ã14 in Ã1 increments, as well as 9 catch trials with all possible gains and a ñlossò 

of zero. Those catch trials were added to ensure participants paid attention to the task, 

as the obvious choice on these trials should be to accept the gamble.  

http://psychtoolbox.org/
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Participants were not instructed about the presence of faces in the task. They were 

simply told that the aim of the task was to study their gambling behaviour. The 

presence of the scrambled image was explained as follows: ñA scrambled image, made 

of squares filled with different colours (see below, left picture), will appear quickly at 

the beginning of each trial. This is to indicate you that the trial is about to start and 

that you should get ready to evaluate the upcoming gamble and decide to accept or 

reject it as quickly as possible.ò 

After the task participants completed a short debriefing questionnaire designed to 

assess whether they noticed the presence of the primes and asking them to guess the 

purpose of the study. After that they completed a follow-up task. They were explained 

that on some trials of the first task, a face was flashed very quickly before the 

presentation of the scrambled image and had to complete a recognition task. 

Specifically, two faces were presented on each trial, one that was used as a prime in 

the first task and one that was novel, and they had to indicate which one they thought 

they saw during the first task. In addition, valence and arousal ratings were collected 

for all the faces. At the end of the study, participants completed mood questionnaires 

(BDI, STAI ï see section 2.2 above). 

2.5.1.2 Participants and payment 

Thirty-five participants were recruited from the University College London subject 

pool to participate in the study. Two subjects had to be excluded because they made 

random choices and only accepted the gamble at chance level on catch trials; three 

additional subjects were excluded because they accepted the gamble on less than 3% 

of the trials, making their loss aversion impossible to estimate by the model. The final 

sample had 30 participants (13 males, 17 females, mean age = 26 years ± 7.40, age 

range: 19 to 52). The study was approved by the UCL departmental ethics committee 

and all subjects were paid for their participation in an incentive compatible manner. 

Specifically, they started the task with £20 and the average outcome of 10 randomly 

selected trials was added or removed to this initial endowment. 
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2.5.1.3 Results 

Loss aversion (‗) was estimated using the Prospect Theory model described in section 

2.4.1 above. Specifically, equation 2-3 was used to estimate ‗, with the assumption 

that ”  ”  ρ. When estimated across all trials independent of emotion 

condition, average loss aversion was 2.099 ± SD 0.60, significantly greater than 1 

(t(29)=10.03, P<0.001). When estimated separately for each of the 5 emotion 

conditions and analysed in a repeated-measures ANOVA, there was no main effect of 

emotion condition on loss aversion (F(4,116)=1.172, P=0.327, for details see Table 

2-1 below). However, when trait anxiety scores were added in the ANOVA as a 

covariate, a significant emotion*trait anxiety interaction emerged (F(4,112)=3.188, 

P=0.016). To investigate which effects were driving the interaction, all pairwise 

differences in loss aversion between two emotion conditions were calculated and 

correlated with trait anxiety. This revealed that the interaction was primarily driven by 

a negative correlation between trait anxiety and the change in loss aversion from 

neutral to surprised faces (r(30)=-0.544, P=0.002) and a trend for a negative correlation 

between trait anxiety and the change in loss aversion from neutral to fearful faces 

(r(30)=-0.310, P=0.095), but no association between trait anxiety and the change in 

loss aversion from neutral to happy faces (r(30)=-0.091, P=0.634).  

2.5.1.4 Limitations and changes for subsequent studies 

Examining the recognition task data revealed that participants were not able to perform 

above chance in recognizing the faces that were used in the main task (mean 

performance = 50.09% ± SD 7.01), suggesting that primes were not consciously 

remembered. However, based on the debriefing questionnaires, six participants (20%) 

were able to correctly guess the purpose of the experiment; 14 participants (46.67%) 

spontaneously noticed the presence of faces flashed before the prime without being 

prompted for it, and an additional seven participants (21 participants total ï 70%) 

reported the presence of a face when prompted about the content of something 

appearing before the scrambled image. Although the results were promising and 

participants were not able to identify the specific emotions associated with the faces, 

these answers from the debriefing questionnaires indicated that the priming procedure 

was not completely subliminal. For this reason, I decided to next pilot a version of the 
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task where the primes were presented supraliminally, but with a cover story to avoid 

participants deducing the true goal of the experiment (demand characteristics; Orne, 

2009). 

Table 2-1. Emotional modulation of task variables and interaction with trait 

anxiety ï pilot study 1. 

 Happy Fearful Surpr. Neutral Scrbl. 

One-way 

repeated-

measures 

ANOVA  

Interaction 

with trait 

anxiety 

Paccept 
0.361 

(0.189) 

0.350 

(0.180) 

0.356 

(0.180) 

0.357 

(0.176) 

0.350 

(0.189) 

F(4,116)=0.86 

P=0.49 

F(4,112)=2.50 

P=0.047* 

Loss 

aversion 

2.077 

(0.644) 

2.121 

(0.596) 

2.087 

(0.566) 

2.091 

(0.593) 

2.125 

(0.641) 

F(4,116)=1.17 

P=0.33 

F(4,112)=3.19 

P=0.016* 

RTgamble 

(s) 

1.422 

(0.613) 

1.387 

(0.543) 

1.398 

(0.553) 

1.370 

(0.560) 

1.370 

(0.532) 

F(4,116)=0.79 

P=0.53 

F(4,112)=0.58 

P=0.68 

For each condition, means and standard deviations across participants are reported, for 

the following variables: probability to accept the gamble (Paccept), loss aversion 

parameter (ɚ), and reaction time to decide whether to accept or reject the gamble in 

seconds (RTgamble). The main effect of condition and its interaction with trait anxiety 

were assessed and the corresponding statistics are reported in the last two columns. 

None of these variables were modulated by emotional condition. The emotional 

modulation of gamble acceptance and loss aversion (ɚ), but not of reaction times, 

varied according to trait anxiety. Surpr. stands for Surprise and Scrbl. for Scrambled.  

2.5.2 Pilot study 2: supraliminal priming with cover story  

In the next pilot study, the gambling task was embedded in a working memory task 

and participants were told that the aim of the study was to investigate how memory 

was affected by emotions.  

2.5.2.1 Methods 

All stimuli  used in this pilot study, as well as in Chapter 4 and Chapter 5, were 

resized to a resolution of 200 (width) x 300 (height) pixels and were displayed on a 

black background using Cogent 2000 (www.vislab.ucl.ac.uk/cogent.php) running 

under Matlab. 
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Participants started the study with a practice memory task (20 trials) where an array of 

2, 4, or 6 faces or objects were presented on the screen for 3 seconds. All stimuli from 

a given array always pertained to the same condition: happy faces, fearful faces, 

surprised faces, neutral faces, or objects. The objects were pictures of light bulbs added 

as a non-face control instead of the scrambled images in pilot study 1. After a 1.5s 

fixation cross, one of the stimuli was shown in the centre of the screen surrounded by 

empty boxes at the 2, 4, or 6 locations from the original array, and participants had to 

click on the box where that stimuli was previously located in the array. Participants 

were then told that in order to make the memory task more challenging, they would 

have to perform a distracting gambling task while holding the stimuli in memory. They 

were then given a practice gambling task to complete. This practice gambling task 

contained 20 trials and corresponded to the start of a double staircase procedure. 

Specifically, the first 10 trials included 5 gambles with an EV of 10 (which are usually 

always accepted), and 5 gambles with an EV of -2 (which are usually always rejected). 

Gain and loss values were chosen at random within combinations of values that gave 

the desired expected value, with gains not exceeding £30 and losses not exceeding 

£15. If at least 3 gambles of a given EV (e.g. 10) were accepted, the EV for the 

following 5 trials was decreased by 1; while if at least 3 gambles out of 5 were rejected 

(e.g. in the case of an expected value of -2) then the EV was increased by 1. 

During the main task, participants completed 180 trials with a similar double staircase 

procedure. The 180 trials were divided into 18 mini-blocks of 10 trials each; 5 trials 

with a ñlowò (subjective) expected value and 5 trials with a ñhighò (subjective) 

expected value, both determined by increasing or decreasing expected value depending 

on the choices from the previous mini-block. This time, the adjustments in EV were 

±0.5 (instead of ±1 during the practice), which allowed more sensitivity in determining 

the indifference point. In addition, each of the 5 trials belonged to one of the 5 emotion 

conditions, and the adjustment in EV from one mini-block to the next was done 

separately for each emotion condition (rather than based on the average choice of the 

5 trials as in the practice). In summary, participants completed 36 trials of each 

condition. 

Each trial of the main task (Figure 2-2) started with the presentation of an array of 2, 

4, or 6 stimuli for 3s (the size of the array was randomly determined at the beginning 
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of each trial) that participants had to memorise. They were then presented with the 

mixed gamble and had to decide (with no time limit) whether to accept or reject it by 

clicking on the ñAccept?ò or ñReject?ò box. Finally one stimulus from the array was 

shown on the centre of the screen and participants had to click on the box where the 

stimuli was originally located. 

After the end of the task participants completed a rating task to rate all the face stimuli 

on valence and arousal, mood questionnaires (BDI, STAI) and a debriefing that 

assessed their perception of the goal of the study, their strategy on both the memory 

and the gambling parts of the task, and a final question asking whether they thought 

the emotional content of the faces may have impacted their gambling decisions.  

 

Figure 2-2. Task design ï pilot study 2. Participants completed 180 trials of this task, 

with 36 trials for each of the following 5 emotion prime conditions: happy face, fearful 

face, neutral face, surprised face, and object (light bulb). On each trial, an array of 2, 

4, or 6 primes, all pertaining to the same condition, was presented for 3s and subjects 

were instructed to memorise the location of each stimulus on the screen. The gamble 

was then presented and participants had to decide whether to accept or reject it. After 

making their choice, one of the stimuli presented in the initial array was shown at the 

centre of the screen and participants had to remember where it was located in the initial 

array. For both gambling and memory responses, participants used the mouse to click 

on the corresponding box (accept or reject for the gamble, location on the screen for 

the memory probe), and had no time limit to make those responses. 
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2.5.2.2 Participants and payment 

Thirty-seven participants were recruited from the University College London subject 

pool to participate in the study. One subject was excluded because of past alcohol 

dependence and psychotic symptoms; one because of high BDI score of 31 and 

borderline past depressive episode. One subjectôs data was lost because of a Matlab 

error. Two additional subjects had to be excluded because of very inconsistent choices 

in the gambling task, making their loss aversion parameter impossible to reliably 

estimate (and reflected in low values for the consistency parameter ɛ: 0.084 and 

0.00012). The final sample consisted of 32 participants (14 males, 18 females, mean 

age = 25.41 years ±9.19, age range: 18 to 57). The study was approved by the UCL 

departmental ethics committee and all subjects were paid for their participation in an 

incentive compatible manner. Specifically, they started the task with £15 and the 

average outcome of 10 randomly selected trials was added or removed to this initial 

endowment. 

2.5.2.3 Results 

Analyses were conducted similarly to pilot study 1 (see section 2.5.1 above). Average 

loss aversion, estimated across all trials, was 2.024 ± SD 1.11, significantly greater 

than 1 (t(31)=5.218, P<0.001), and very close to the mean loss aversion estimate from 

pilot study 1. There was also no difference in loss aversion between the five emotion 

conditions (one-way repeated-measures ANOVA: F(4,124)=0.796, P=0.530; for 

details see Table 2-2 below). However, when trait anxiety scores were added in the 

ANOVA as a covariate, a significant emotion*trait anxiety interaction emerged 

(F(4,120)=2.945, P=0.023), consistent with pilot study 1. Examining correlations 

between trait anxiety scores and pairwise differences in loss aversion, the interaction 

was primarily driven by a negative correlation between trait anxiety and the change in 

loss aversion from neutral to fearful faces (r(32)=-0.381, P=0.031), which did not 

achieve significance in pilot study 1. The correlation between trait anxiety and the 

change in loss aversion from neutral to surprised faces was also negative, but not 

significant (r(32)=-0.277, P=0.12). Similar to pilot study 1, trait anxiety was not 

associated with differences in loss aversion between neutral and happy faces (r(32)=-

0.100, P=0.587).   
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Table 2-2. Emotional modulation of task variables and interaction with trait 

anxiety ï pilot study 2. 

 Happy Fearful Surprise Neutral Object 

One-way 

repeated-

measures 

ANOVA  

Interaction 

with trait 

anxiety 

Paccept 
0.547 

(0.176) 

0.556 

(0.157) 

0.545 

(0.169) 

0.545 

(0.171) 

0.556 

(0.159) 

F(4,124)=0.24 

P=0.91 

F(4,120)=2.88  

P=0.026* 

ɚ (loss 

aversion) 

1.992 

(1.092) 

2.020 

(1.107) 

2.053 

(1.117) 

2.048 

(1.224) 

1.994 

(1.074) 

F(4,124)=0.80 

P=0.53 

F(4,120)=2.95 

P=0.023* 

RTgamble 

(s) 

1.987 

(0.736) 

1.983 

(0.820) 

1.998 

(0.706) 

1.954 

(0.685) 

1.958 

(0.630) 

F(4,124)=0.18 

P=0.95 

F(4,120)=0.07  

P=0.99 

WM 

accuracy 

0.642 

(0.130) 

0.624 

(0.126) 

0.610 

(0.139) 

0.642 

(0.133) 

0.608 

(0.136) 

F(4,124)=1.39 

P=0.24 

F(4,120)=0.14  

P=0.97 

For each condition, means and standard deviations across participants are reported, for 

the following variables: probability to accept the gamble (Paccept), loss aversion 

parameter (ɚ), reaction time to decide whether to accept or reject the gamble in seconds 

(RTgamble), and working memory (WM) accuracy collapsed across the 3 difficulty 

levels. The main effect of condition and its interaction with trait anxiety were assessed 

and the corresponding statistics are reported in the last two columns. None of these 

variables were modulated by emotional condition. The emotional modulation of 

gamble acceptance and loss aversion (ɚ), but not of reaction times or working memory 

accuracy, varied according to trait anxiety. 

2.5.2.4 Conclusions, limitations, and changes for subsequent studies 

No participant guessed the actual goal of the study when asked in the debriefing, 

suggesting that this new design was better adapted to account for demand 

characteristics than the subliminal priming procedure. In addition, the memory task 

has the advantage to ensure that participants are paying attention and actually encoding 

the prime stimuli. 

However, this second design still suffered from a few limitations that needed to be 

addressed. First, the fact that the staircase procedure was implemented throughout the 

entire task meant that participants could potentially learn to ñplayò the staircase and 

make the gamble EV increase over time, thus maximising their outcome and moving 

away from their real indifference point. Moreover, because the adjustment in EV from 

one mini-block to the next was allowed to vary separately for each emotion condition, 

the final set of gambles on which analyses were run may have been different for each 

emotion condition, making them harder to compare. To address this issue, I decided 
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for studies presented in Chapters 4 and 5 to have a longer practice gambling task 

running through the entire staircase, allowing to estimate the participantôs indifference 

point right after the practice session. I was then able to build a gamble set for the main 

task centred on this indifference point and repeated identically for each emotion 

condition. 

Second, people did not perform very well in the 6-stimulus memory task. Even though 

most participants performed above chance (average memory accuracy for 6 stimuli: 

0.381 ±0.123; 4 stimuli: 0.605 ±0.155, 2 stimuli: 0.919 ±0.0897), they reported in the 

debriefing finding it difficult to encode 6 stimuli in such a short time, especially with 

the interference of the gambling task. In addition, when adapting this task for the fMRI 

(Chapter 4), the inclusion of jitters between the different onsets increased the duration 

of the period between encoding and retrieval from 1.5s to 10s, thus making the memory 

task more challenging because of this extra delay. Therefore, the 6-stimulus condition 

was dropped for subsequent versions of this task.   

Finally, because of timing considerations in the scanner, and because fearful and 

surprised face seemed to have a very similar effect in both pilot studies, the surprise 

condition was also dropped for subsequent versions of the task in order to focus on the 

comparison between the effects of a positive emotion (happy faces), a negative 

emotion (fearful faces), no emotion control (neutral faces) and no emotion-no face 

control (objects). 

In conclusion, these pilot studies allowed the development of an emotional priming 

procedure that was (i) not subject to the technical limitations of subliminal priming, 

and (ii) embedded in a cover story to effectively conceal the real goal of the experiment 

and prevent demand characteristics. In addition, they helped to optimise the 

determination of gain/loss matrices for the gambling task: using a staircase to target 

each participantsô indifference point then building a matrix centred on that indifference 

point. Such a design improved sensitivity whilst minimizing the total number of trials 

and duration of the task to use in the scanner (Chapter 4) and with a patient population 

(Chapter 5). 
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Chapter 3 How feelings predict economic choice: models 

of affective decision-making 

3.1 Abstract 

Intuitively, how we feel about potential outcomes will determine our decisions. 

Indeed, one of the most influential theories in psychology, Prospect Theory, implicitly 

assumes that feelings govern choice. Surprisingly, however, very little is known about 

the rules by which feelings are transformed into decisions. Here, we characterize a 

computational model that uses feelings to predict choice, and reveal that this model 

predicts choice better than existing value-based models, showing a unique contribution 

of feelings to decisions, over and above value. Similar to Prospect Theory value 

function, feelings showed diminished sensitivity to outcomes as value increased. 

However, loss aversion in choice was explained by an asymmetry in how feelings 

about losses and gains were weighted when making a decision, not by an asymmetry 

in the feelings themselves. The results provide new insights into how feelings are 

utilized to reach a decision. 

3.2 Introduction  

How would you feel if you won an award for outstanding professional achievement? 

How would you feel if your marriage broke apart? Intuitively, answers to these 

questions are important, as they should predict your actions. If the prospect of losing 

your spouse does not fill you with negative feelings you may not attempt to keep the 

unit intact. But how exactly do feelings associated with possible outcomes relate to 

actual choices? What are the computational rules by which feelings are transformed 

into decisions? While an expanding body of literature has been dedicated to answering 

the reverse question, namely how decision outcomes affect feelings (Mellers et al., 

1997; Kermer et al., 2006; McGraw et al., 2010; Kassam et al., 2011; Carter and 

McBride, 2013; Rutledge et al., 2014; Yechiam et al., 2014), little is known of how 

feelings drive decisions about potential outcomes.  



72 

 

Here, we examine whether feelings predict choice and build a computational model 

that characterizes this relationship. We turn to Prospect Theory (Kahneman and 

Tversky, 1979; Tversky and Kahneman, 1992) as a starting point in this research. The 

assumptions of Prospect Theory (see section 1.2.4 in general introduction for details) 

suggest that if we measure a personôs feelings associated with different outcomes, we 

should be able to generate that personôs utility function and use it to predict their 

choices. While Prospect Theory is one of the most influential theories in economics 

and psychology, this implicit assumption has never been empirically tested. Thus, if 

and how feelings guide choice is still unknown. 

To address this question, in three separate studies, participants reported how they felt, 

or expected to feel, after winning or losing different amounts of money. Those self-

reported feelings were used to form a ñfeeling functionò; a function that best relates 

feelings (expected and/or experienced) to objective value.  Next, this function was 

used to predict participantsô choices in a different decision-making task. The findings 

were replicated in all three studies. 

An intriguing question is what such a ñfeeling functionò would look like. One 

possibility is that it resembles Prospect Theoryôs value function, which relates the 

subjective value estimated from choice data to objective value. First, for most people, 

the value function is steeper for losses in comparison to gains, resulting in loss aversion 

(Kahneman and Tversky, 1979; Kahneman et al., 1991; Tversky and Kahneman, 

1991). Yet whether the impact of a loss on feelings is greater than the impact of an 

equivalent gain is still unknown. Alternatively, it is possible that the impact of gains 

and losses on feelings is similar, but that the weight given to those feelings differs 

when making a choice. Second, we examined whether, similar to Prospect Theoryôs 

value function, the ñfeeling functionò was also concave for gains and convex for 

losses, implying that feelings associated with gains and losses would become less 

sensitive to outcome value as gains and losses increase. That is, the impact of winning 

(or losing) ten dollars on feelings is less than twice the impact of winning (or losing) 

five dollars. 

Once feelings were modelled using this ñfeeling functionò the next aim was to examine 

whether they can predict choice. There were two main complementary hypotheses 
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about the shape of the ñfeeling functionò and its relation to choice behaviour. The first 

hypothesis was that feelings would be related to value with the same properties as 

Prospect Theoryôs value function: stronger impact of losses than gains on feelings, and 

diminishing impact of value on feelings as value increases. In turn such ñfeeling 

functionò would predict choice at least as well as Prospect Theoryôs value function, if 

not better. The second hypothesis was that if feelings do not relate to value with the 

properties described above, by being symmetrical for gains and losses and/or by 

varying linearly with value, then choice behaviour may be best explained by how these 

feelings are weighted and combined during the choice process, rather than by how 

potential outcome value influences feelings in the first place. 

3.3 Materials and methods 

3.3.1 Participants 

Fifty-nine healthy volunteers (24 males, mean age 23.94y, age range 19-35y) were 

recruited to take part in the experiment via the UCL Subject Pool. Sample size was 

determined using a power analysis (G*power version 3.1.9.2; Faul et al., 2007), based 

on previous studies that have investigated the link between decision outcomes and self-

report feelings using within-subjects designs. Effect sizes (Cohenôs d) in those studies 

ranged from .245 to .798, with a mean at .401 (Kermer et al., 2006; Harinck et al., 

2007; Yechiam et al., 2014). A sample size of 59 subjects would achieve 85% power 

of detecting an effect size of .401 with an alpha of 0.05. Three subjects were excluded: 

one who showed no variation at all in their feelings ratings, one whose data from the 

gambling task were lost, and one who missed more than 50% of the trials in the 

gambling task. Final analyses were run on 56 subjects (22 males, mean age 23.91y, 

age range 19-35y). All participants gave written informed consent and were paid for 

their participation. The study was approved by the departmental ethics committee at 

UCL. 

3.3.2 Behavioural tasks 

Participants completed two tasks, the order of which was counterbalanced. 
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1. Feelings Task. In the feelings task, subjects completed 4 blocks of 40 to 48 trials 

each, in which they reported either expected (Figure 3-1A) or experienced (Figure 

3-1B) feelings associated with a range of wins and losses (between £0.2 and £12), or 

no change in monetary amount (£0). At the beginning of each trial participants were 

told how much was at stake and whether it was a win trial (e.g., if you choose the 

ñgoodò picture, you will win Ã10) or a loss trial (e.g., if you choose the ñbadò picture, 

you will lose £10). Their task was then to make a simple arbitrary choice between two 

geometrical shapes, associated with a 50% chance of winning versus not winning (on 

win trials) or of losing versus not losing (on loss trials). On each trial participants were 

told that one novel stimulus was randomly associated with a gain or loss (between £0.2 

and £12) and the other novel stimulus with no gain and no loss (£0). Each stimulus 

was presented once so learning was not possible. There was no way for the participants 

to know which abstract stimulus was associated with a better outcome. The probability 

of sampling each amount was controlled to ensure that each gain and each loss from 

the range was sampled twice in each block: on one instance the outcome was the 

amount at stake (win/loss) and on the other one the outcome was £0 (no win/no loss). 

Participants reported their feelings by answering the questions ñHow do you feel 

now?ò (experienced feelings, after a choice) or ñHow will you feel if you 

win/lose/donôt win/donôt lose?ò (expected feelings, before a choice), using a subjective 

rating scale ranging from ñExtremely unhappyò to ñExtremely happyò. In two of the 

four blocks (counterbalanced order) they reported their expected feelings (Figure 

3-1A), and in the other two blocks, they reported their experienced feelings (Figure 

3-1B). Expected and experienced feelings were collected in different blocks to avoid 

subjects simply remembering and repeating the same rating. The choice between the 

two geometrical shapes was simply instrumental and implemented in order to have 

subjects actively involved with the outcomes. This instrumental choice also allowed 

manipulating agency: on two of the blocks (one with expected feelings and one with 

experienced feelings) the participant made the choice between the two stimuli, and in 

the other two blocks the computer made the choice for the participant who had to 

indicate the computer choice with a button press after it was made. There were no 

differences in the data between own choice and computer choice blocks, therefore data 

was collapsed. Even when making their own choices subjects had no control over the 

outcome, thus it may not be surprising that feelings did not differ between own choice 
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and computer choice. Note, that the above relates only to the task eliciting feelings 

associated with outcomes and not, obviously, to the gambling task. 

 

Figure 3-1. Experimental design. Participants completed two tasks in a 

counterbalanced order (A,B): a feelings task where they reported (in different blocks) 

expected (A) or experienced (B) feelings associated with winning, losing, not winning 

or not losing a range of monetary amounts; and (C) a gambling task where they 

selected between a sure option and a gamble involving the same amounts as those used 

in the feelings task. Feelings were modeled as a function of value and this resulting 

feelings function F was used to predict choice in the gambling task. For each trial, 

feelings associated with the sure option, the risky gain, and the risky loss were 

extracted and entered in a cross-trials within-subject logistic regression model. 

2. Gambling Task. Participants completed a probabilistic choice task (Figure 3-1C) in 

which they made 288-322 choices between a risky 50/50 gamble and a sure option. 

Importantly, all the amounts used in the gambling task were the same as those used in 

the feelings task (between £0.2 and £12), such that feelings associated with these 

outcomes could be combined to predict gamble choice. There were 3 gamble types: 

mixed (subjects had to choose between a gamble with 50% chance of a gain and 50% 

of a loss, or sure option of £0), gain-only (subjects had to choose between a gamble 

with 50% chance of a high gain and 50% chance of £0, or a sure, smaller, gain) and 

loss-only (subjects had to choose between a gamble with 50% chance of a high loss 

and 50% chance of £0, or a sure, smaller, loss). In Prospect Theory, these 3 types of 
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choices are essential to estimate loss aversion, risk preference for gains, and risk 

preference for losses, respectively. 

3.3.3 Study groups 

Participants were recruited in two different groups that were then collapsed in the 

analyses. A group of 29 participants (20 females, mean age=23.2y) was tested on a 

first version of the task, where each of the four blocks had 48 trials with 12 different 

amounts (£0.2, £0.4, £0.6, £0.8, £1, £1.2, £2, £4, £6, £8, £10, £12) that could be won, 

lost, not won or not lost. For expected feelings participants were asked ñhow will you 

feel if you win/lose?ò; and for experienced feelings ñhow do you feel now?ò. The 

rating scale ranged from 1 (extremely unhappy) to 10 (extremely happy) and 

participants had to press a key (1 to 9 for ratings 1 to 9 and 0 for rating 10) to indicate 

their feelings. A second group of 30 participants (15 females, mean age=24.5y) 

completed a slightly shorter version of the feelings task that had 40 trials per block (10 

amounts instead of 12: £0.2, £0.5, £0.7, £1, £1.2, £2, £5, £7, £10, £12) and indicated 

their ratings by moving a cursor on a symmetrical rating scale, in which 0 was used as 

a reference point. Specifically, for expected feelings they were asked ñif 0 is how you 

feel now, how will you feel if you win/lose?ò; and for experienced feelings ñif 0 is 

how you felt just before the choice, how do you feel now?ò. Ratings ranged from -5 

(extremely less happy) to +5 (extremely more happy). The first group of participants 

completed the feelings task first, while the second group completed the gambling task 

first. The results (parameters and model fits from the feelings function models, and 

from the regression models to predict choice) did not differ between the two study 

groups, indicating that those features of the design that varied between the two groups 

were not a significant factor. Data were therefore collapsed for all the analyses reported 

in the main text, and study group was controlled for by adding a dummy variable as a 

between-subject factor in all the analyses.  

3.3.4 Feelings function models 

3.3.4.1 Description of models 

The impact of outcome on feelings was calculated relative to three different baselines: 

difference from the mid-point of the rating scale, difference from rating reported on 
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the previous trial (for experienced feelings only), difference from corresponding zero 

outcome. These were calculated for each win and loss amount, for expected and 

experienced feelings separately. For each subject, for each of the above methods, 

feelings function models were then fit (ten for expected feelings and ten for 

experienced feelings) to explain how feelings best relate to value outcomes: 

Feeling Model 1:   Ὂὼ  ♫ὼ 

Feeling Model 2:   Ὂὼ
♫▌╪░▪ὼȟ   ὼ π

♫■▫▼▼ὼȟ      ὼ π
 

Feeling Model 3:   Ὂὼ
♫ȿὼȿ♬ȟ     ὼ π

♫ȿὼȿ♬ȟ     ὼ π
 

Feeling Model 4:   Ὂὼ
♫▌╪░▪ȿὼȿ

♬ȟ     ὼ π

♫■▫▼▼ȿὼȿ
♬ȟ     ὼ π

 

Feeling Model 5:   Ὂὼ
♫ȿὼȿ♬▌╪░▪ȟ     ὼ π

♫ȿὼȿ♬■▫▼▼ȟ     ὼ π
 

Feeling Model 6:   Ὂὼ
♫▌╪░▪ȿὼȿ

♬▌╪░▪ȟ     ὼ π

♫■▫▼▼ȿὼȿ
♬■▫▼▼ȟ     ὼ π

 

Feeling Model 7:   Ὂὼ
♫ὼ  Ⱡȟ   ὼ π
♫ὼ Ⱡȟ      ὼ π

 

Feeling Model 8:   Ὂὼ
♫▌╪░▪ὼ Ⱡȟ   ὼ π

♫■▫▼▼ὼ Ⱡȟ      ὼ π
 

Feeling Model 9:   Ὂὼ
♫ὼ  Ⱡ▌╪░▪ȟ   ὼ π

♫ὼ Ⱡ■▫▼▼ȟ      ὼ π
 

Feeling Model 10:   Ὂὼ
♫▌╪░▪ὼ  Ⱡ▌╪░▪ȟ   ὼ π

♫■▫▼▼ὼ Ⱡ■▫▼▼ȟ      ὼ π
 

In all these models, ὼ represents the value (from -12 to -0.2 for losses and from 0.2 to 

12 for gains) and Ὂ the associated feeling. The slope between feelings and values is 
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represented by the parameter ♫ estimated as a single parameter in all odd-numbered 

models, or separately for losses and gains in all even-numbered models. If loss 

aversion is reflected in feelings, ♫■▫▼▼ should be significantly greater than ♫▌╪░▪ and 

even-numbered models should perform better overall. Similar to the curvature 

parameter of Prospect Theory value function, ♬ reflects the curvature of the feeling 

function, i.e. the fact that feelings become more or less sensitive to changes in value 

as absolute value increases (Feeling Models 3 to 6). In Feeling Models 5 and 6, the 

curvature is estimated separately in the gain and loss domains. If the ñfeeling functionò 

is S-shaped (function concave for gains and convex for losses) ♬ values should be 

significantly smaller than 1. To ensure that a function with curvature fit the feelings 

data better than a simple linear function with an intercept, Feeling Models 7 to 10 were 

defined (as respective comparisons for Feeling Models 3 to 6), where Ů represents the 

intercept, or the offset (positive for gains, negative for losses) where feelings start for 

values close to £0.  

3.3.4.2 Model estimation 

All these models were estimated in Matlab (www.mathworks.com) using a maximum-

likelihood estimation procedure (Myung, 2003). Given a Feeling Model Ὢὼȟ— with 

— the set of parameters, ὼ the range of outcome values, and ώ the feelings data to be 

modelled, the residuals from the model can be written as: 

꜡ ώ Ὢὼȟ—         (Eq. 3-1) 

Assuming an appropriate normal distribution for the residuals, the likelihood of a given 

residual ꜡  is: 

fl꜡ȿ—ȟ„

꜡

Ѝ
        (Eq. 3-2) 

where „ represents the standard deviation of the residuals (an additional parameter to 

be estimated). Then the fmincon function was used to find the optimal set of parameters 

(—, „) that minimizes the negative log likelihood (thereby maximizing the likelihood): 



79 

 

ÌÏÇ fl ÌÏÇfl ȿ꜡—ȟ„ В
꜡

πȢυÌÏÇς“„    (Eq. 3-3) 

BIC scores were then calculated for each subject using the following equation that 

penalizes additional parameters in the model: 

ὄὍὅ ςÌÏÇfl ὯÌÏÇὲ       (Eq. 3-4) 

where ÌÏÇfl represents the maximum of loglikelihood fl (estimated using equation 3-

3 above), Ὧ the number of parameters in the model (including ů as an extra parameter), 

and ὲ the number of data points (trials) that were fitted. BIC scores were calculated 

for each subject and model, and then summed across subjects. Lower sum of BICs for 

a given model compared to another indicates better model fit.   

3.3.5 Prediction of gambling choice 

3.3.5.1 Estimation of logistic regression models 

Feeling values from Feeling Model 3 (found to be the most parsimonious model 

overall) were then used to predict choices in the gambling task. Specifically, for each 

participant, the feeling associated with each amount was calculated using Feeling 

Model 3 with that participantôs estimated parameters (♫ and ♬). Thus, for each trial of 

the gambling task, a feelings value was obtained for the sure option, the gain and the 

loss presented on that trial. A feelings value of 0 was used when the amount in the 

gamble trial was £0. The probability of choosing the gamble on each trial, coded as 1 

if the gamble was chosen and 0 if the sure option was chosen, was then entered as the 

dependent variable of a logistic regression (Choice Model), with feelings associated 

with the sure option (Ὓ, coded negatively in order to obtain a positive weight), the gain 

(Ὃ, multiplied by its probability 0.5), and the loss (ὒ, multiplied by its probability 0.5) 

entered as the 3 predictor variables: 

ὖὫὥάὦὰὩ
ρ

ρ Ὡ ⱷ╢ ⱷ╖ ⱷ╛
 

Logistic regressions were run on Matlab using the glmfit function, using either 

expected feelings (Choice Model 1) or experienced feelings (Choice Model 2). To 
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determine whether those modelled feelings predicted choice better than value-based 

models, 5 other comparisons models were used to predict choice from values (Choice 

Models 3 to 7; see section 3.3.5.3 below for details). 

In order to be compared across conditions and subjects, weight values ɤ were 

standardized using the following equation (Menard, 2004; Schielzeth, 2010): 

‫ ‫
ί

ί
 

where ‫  is the standardized weight value, ‫  the original weight for predictor 

variable ὼ obtained from the regression, ί the standard deviation of variable ὼ, and 

ί the standard deviation of the dependent variable ώ, here the binary choice values. 

Standardized weight values were extracted from each regression and compared using 

repeated-measures ANOVA and paired t-tests. 

3.3.5.2 Loss and risk aversion modelling 

Loss and risk aversion were estimated for each subject using choice data from the 

gambling task and based on Prospect Theory equations (Kahneman and Tversky, 

1979; Tversky and Kahneman, 1992; Sokol-Hessner et al., 2009; Fox and Poldrack, 

2014). The model was estimated as explained in Chapter 2 (section 2.4.1) using 

equations 2-3 to 2-6, resulting in a loss aversion parameter ‗ for each subject, as well 

as estimates of risk preference ” and logit sensitivity ‘.  

In particular, the model was used to estimate risk and loss aversion on half the choice 

data, and to predict choice from subjective utility on the other half of choice data (see 

section 3.3.5.3 below). 

To predict individual differences in loss aversion from feelings, ‗ values were 

extracted for each subject on the entire set of gambling choices. They were then log-

transformed [ln(‗+1)] to ensure positive values and normal distributions, and 

correlated across subjects with the difference in how feelings about losses and feelings 

about gains are weighted during choice (Figure 3-8).  
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3.3.5.3 Comparison models 

Choices were predicted from feelings using the previously built feelings function 

(Choice Models 1 and 2). In order to examine whether this feelings function does a 

better job at predicting choice than objective value, or choice-derived subjective 

utility, five other models were tested (Choice Models 3 to 7). 

First a simple ñValueò model (Choice Model 3) tried to predict choice simply by 

entering the amounts available multiplied by probability, regardless of associated 

feelings parameters ‍ and ‎ or subjective utility parameters such as loss and risk 

aversion. For example, if the choice is a mixed gamble between winning £10 and 

losing £6, the three predictors will be £0*1 (sure option), £10*0.5 (gain), and -£6*0.5 

(loss). 

The second comparison model included log(Value) as predictors (Choice Model 4). 

Most standard economic models account for the curvature of the utility function by 

taking the logarithm of linear values. In this model and with the example above, the 

three predictors would be computed as: 0 (sure option), log(10)*0.5 (gain), and -

log(6)*0.5 (loss). 

The three additional models predicted choice from Prospect Theory-derived subjective 

utility. To do so, risk and loss aversion parameters were estimated on half the choice 

data using the model described above (section 2.4.1 and equations 2-3 to 2-6) for each 

subject. One model included value weighted with the loss aversion parameter ⱦ (Ζπ

ρ, ΖρππȢυ, ⱦ ΖφπȢυ; Choice Model 5); one included value parameterized 

with the risk attitude parameter ⱬ (Ζπρ, Ζρπⱬ πȢυ, Ζφⱬ πȢυ; Choice 

Model 6); and the last model included both parameters to compute subjective values 

(Ζπρ, Ζρπⱬ πȢυ, ⱦ Ζφⱬ πȢυ; Choice Model 7). 

All seven logistic regression choice models were run on the other half of the choice 

data, in order to be comparable and to avoid circularity for the utility-based models. 

The gambling task was designed such that each gamble was repeated twice; therefore, 

one occurrence of each gamble was present in each half of the data. In addition, in 

order to ensure the reliability of this split-half analysis, 100 iterations were run with a 

different data splitting on every iteration. The loglikelihood of each model was 

extracted from the logistic regression and BIC scores were calculated for each subject 

(see Model comparison section 2.4.2). The sum of BIC scores across subjects was then 

calculated for each model and each iteration, in order to report the number of 
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simulations where the two feelings model performed better than the five comparison 

models. 

3.3.6 Replication and extension studies 

Two separate studies were conducted to replicate the findings and extend them to cases 

where the impact of a loss and a gain on feelings is evaluated (i) within the same trial 

(see Replication and extension study 1, section 3.4.7) and (ii) on the same unipolar 

rating scale (see Replication and extension study 2, section 3.4.8).  

3.4 Results 

The analysis followed two main steps. First participantsô reported feelings associated 

with different monetary outcomes were used to build a ñfeeling functionò. Specifically, 

we found the best fitting computational model to characterize how feelings associated 

with different amounts of gains and losses relate to the objective value of these 

amounts. Second, we tested whether that model of feelings predicted participantsô 

choices on a separate task.  

3.4.1 Characterizing a ñfeeling functionò 

The first aim was to characterize a model that best fit feelings to outcome value. To 

that end, for each subject ten models (see section 3.3.4 above for equations and details) 

were run to fit data of expected feelings to outcome value and ten equivalent models 

to fit experienced feelings to outcome value. The models differed from each other in 

two ways: with respects to their slope parameter (‍) and to their curvature parameter 

(‎). If models with one ‍ parameter fit better than models with two (one for gains 

(‍ ) and one for losses (‍ )) that would indicate that gains and losses do not affect 

feelings to different extents. If two ‍ fit better that would indicate a difference in the 

magnitude of influence. If models with a curvature (‎) fit better than linear models 

with an intercept (‐) that would suggest that the sensitivity of feelings varies as 

outcomes increase, such that the feeling of winning/losing £10 is more or less intense 

than twice the feeling of winning/losing £5. BIC values, which penalise for additional 

parameters, showed that the best fitting model (i.e. the lowest BIC value) for both 



83 

 

expected (Figure 3-2A) and experienced (Figure 3-2B) feelings was Feeling Model 3 

(see Table 3-1 for BIC and R2 values), which has one ɔ and one ɓ:  

Ὂὼ
♫ȿὼȿ♬ȟὼ π

♫ȿὼȿ♬ȟὼ π
         

where ὼ is the gain/loss amount (positive for gains and negative for losses) and Ὂ the 

corresponding feeling.  

This suggests that: 

(i) feelingsô sensitivity to outcomes gradually decreased as outcomes increased. 

Similar to Prospect Theoryôs value function, ɔ was significantly smaller than 1 

(expected feelings: ɔ=0.512 ± SD 0.26, t(55)=-14.05, P<0.001, Cohenôs d=1.88, 95% 

CI=[0.418;0.558]; experienced feelings: ɔ=0.425 ± SD 0.23, t(55)=-18.52, P<0.001, 

Cohenôs d=2.5, 95% CI=[0.513;0.637]), indicating that the ñfeeling functionò was 

concave in the gain domain and convex in the loss domain. Graphically, Figure 3-3 

shows that the magnitude of feelings associated with £10 for example was less than 

twice the magnitude of feelings associated with £5.  

(ii) neither sensitivity (ɓ) nor curvature (ɔ) differed between gains and losses. Equal 

sensitivity suggests that when feelings associated with losses and gains are evaluated 

separately their impact is symmetrical, such that losses are not experienced more 

intensely than gains. On the surface, these findings contradict the notion of ñloss 

aversionò as proposed by Prospect Theory (Kahneman and Tversky, 1979; Kahneman 

et al., 1991; Tversky and Kahneman, 1991, 1992). However, what will be showed later 

is that while here losses do not necessarily impact feelings more than gains they are 

weighted to a greater extent when making a choice (see section 3.4.6 below). With 

regards to curvature, a single ɔ was more parsimonious than two separate ones for 

gains and losses, suggesting that the extent of concavity for gains was equivalent to 

the extent of convexity for losses. 

Further support for point (i) came from the fact that all models with a curvature 

parameter ɔ (Feeling Models 3-6) were better fits, as indicated by lower BIC values, 

than corresponding linear models with an intercept (Feeling Models 7-10). This was 

true both when comparing BICs for models fitting expected feelings (BIC difference 

< -112) and experienced feelings (BIC difference < -37) (Table 3-1). Further support 

for point (ii) came from the fact that Feeling Model 3 had lower BICs than other curved 

functions with additional parameters that fit gains and losses with separate parameters 



84 

 

(Feeling Models 4-6, see Table 3-2) for both expected and experienced feelings. In 

addition, the absolute impact of losses and gains on ratings of feelings relative to a 

zero outcome revealed no difference (F(1,55)=0.01, P=0.92, ɖp
2=0.00018). 

 

Figure 3-2. Feeling Models. BIC values, summed across all subjects, are plotted for 

the ten models fitting feelings to outcome value (see section 3.3.4.1 above for 

equations), separately for (A) Expected feelings ratings and (B) Experienced feelings 

ratings. Feeling Model 3 was the most parsimonious model, as indicated by lower BIC 

values for both expected and experienced feelings. 
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Table 3-1. Feeling Models 

Model 

# 

Number of 

parameters 

Name of 

parameters 

Expected feelings Experienced feelings 

Sum of 

BICs 
Mean R2 

Sum of 

BICs 
Mean R2 

1 1 ɓ 6625.7 0.720 6561.1 0.637 

2 2 ɓgain, ɓloss 6731.5 0.731 6695.0 0.648 

3 2 ɓ, ɔ 5716.1 0.804 5594.0 0.744 

4 3 ɓgain, ɓloss, ɔ 5792.2 0.814 5628.4 0.758 

5 3 ɓ, ɔgain, ɔloss 5793.4 0.814 5685.6 0.753 

6 4 ɓgain, ɓloss, ɔgain, ɔloss 5938.8 0.819 5758.4 0.764 

7 2 ɓ, Ů 5833.3 0.800 5674.7 0.742 

8 3 ɓgain, ɓloss, Ů 5905.1 0.811 5757.2 0.752 

9 3 ɓ, Ůgain, Ůloss 5947.7 0.808 5723.9 0.755 

10 4 ɓgain, ɓloss, Ůgain, Ůloss 6069.4 0.814 5851.3 0.761 

Ten different models were fit to the feelings data in order to best explain its 

relationship to amount lost and gained (see section 3.3.4.1 above for exact equations). 

All models were run separately on expected and experienced feelings. BIC scores were 

summed across subjects and R2 values averaged across subjects. Smaller BIC values 

and higher R2 values are indicative of better model fit. Note that BIC values cannot be 

directly compared between expected and experienced feelings models because the 

numerical values of the dependent variables are different. R2 alone cannot be used to 

determine the best fitting model as it does not account for the number of parameters. 

Table 3-2. Comparison between Feeling Model 3 and Feelings Models 4 to 6 

 Expected feelings Experienced feelings 

 Number of 

subjects (/56) 

BIC 

difference 

Number of 

subjects (/56) 

BIC 

difference 

Model 3 > Model 4 46 -76.1 42 -34.4 

Model 3 > Model 5 46 -77.3 44 -92.2 

Model 3 > Model 6 50 -222.6 47 -163.1 

Feeling Model 3 performed better than Feeling Models 4, 5, and 6 with additional 

parameters. The table shows the number of subjects for which Model 3 performed 

better than the compared model, as well as the statistics for the BIC difference between 

the two models (BICmodel3 ï BICcomparison model). Negative values indicate that Feeling 

Model 3 was more parsimonious (had a lower BIC). 
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Figure 3-3. ñFeeling functionò. Plotted are expected and experienced feelings ratings 

averaged across participants for each outcome value, as well as best fitting Feeling 

Model 3. Average slope (ɓ) across participants was 0.857 Ñ SD 0.36 for expected 

feelings and 0.819 ± SD 0.37 for experienced feelings (paired t-test revealed no 

significant difference between them: t(55)=0.65, P=0.52, Cohenôs d=0.087, 95% CI=[-

0.079;0.155]). Average curvature (ɔ) was 0.512 ± SD 0.26 for expected feelings and 

0.425 ± SD 0.23 for experienced feelings. Both ɔ values were significantly smaller 

than 1 (t(55)>14, P<0.001, Cohenôs d>1.87), consistent with an S-shaped function and 

indicating diminishing sensitivity of feelings to increasing outcome values. ɔ was also 

significantly smaller for experienced relative to expected feelings (paired t-test: 

t(55)=3.31, P=0.002, Cohenôs d=0.442, 95% CI=[0.034;0.138]), suggesting that the 

ñimpact biasò grows with increasing outcomes. Error bars represent SEM. 

3.4.2 Controlling for different methods of calculating feelings 

Feelings associated with losses and gains were elicited using one of two different 

scales and the impact of losses and gains on feelings were computed using three 

different methods: as the change from the mid-point of the rating scale, as the change 

from the previous rating, and as the change from the rating associated with zero 

outcome (i.e., the rating associated with not winning or not losing the equivalent 

amount). For all the Feeling Models the latter baseline resulted in the best fit (Table 

3-3). Thus only results using this baseline are reported; however, the results were the 

same when using the other two methods of calculating feelings, suggesting that the 

findings do not depend on the method of calculating feelings. 

  
























































































































































































