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SUMMARY

Conjugative pili are widespread bacterial append-
ages that play important roles in horizontal gene
transfer, in spread of antibiotic resistance genes,
and as sites of phage attachment. Among conjuga-
tive pili, the F ‘‘sex’’ pilus encoded by the F plasmid
is the best functionally characterized, and it is also
historically the most important, as the discovery of
F-plasmid-mediated conjugation ushered in the era
of molecular biology and genetics. Yet, its structure
is unknown. Here, we present atomic models of two
F family pili, the F and pED208 pili, generated from
cryoelectron microscopy reconstructions at 5.0
and 3.6 Å resolution, respectively. These structures
reveal that conjugative pili are assemblies of stoi-
chiometric protein-phospholipid units. We further
demonstrate that each pilus type binds preferentially
to particular phospholipids. These structures pro-
vide the molecular basis for F pilus assembly and
also shed light on the remarkable properties of
conjugative pili in bacterial secretion and phage
infection.

INTRODUCTION

Conjugation is the process by which genetic materials, notably

plasmid DNAs, are transferred from one bacterium to another

(Lederberg and Tatum, 1946). It is responsible for horizontal

gene transfer among bacteria and is the primary means by which

antibiotic resistance genes spread among bacterial populations

(Thomas and Nielsen, 2005). Conjugation is mediated by a type

IV secretion (T4S) system, a versatile secretion machine, oper-

ating in both Gram-negative and -positive bacteria and capable

of secreting not only nucleic acids during conjugation, but also

protein effectors and toxins during bacterial pathogenesis

(Costa et al., 2015). Conjugative T4S systems in Gram-negative

bacteria are composed of 12 components, termed VirB1-11 and

VirD4, which form (1) a multi-megaDalton assembly embedded
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in the cell’s double lipid membrane, and (2) a pilus that extends

to the cell surface. The membrane-embedded complex consists

of an outer-membrane complex made of VirB7, VirB9, and

VirB10 and a bi-partite inner-membrane complex made of

VirB3, VirB4, VirB5, VirB6, VirB8, and VirB11 (Fronzes et al.,

2009; Low et al., 2014; Rivera-Calzada et al., 2013). The pilus

is a polymer of the VirB2 protein (or pilin). Three ATPases power

the system: VirB4, VirB11, and VirD4, with VirD4 known as the

‘‘coupling protein’’ (CP) because it couples recruitment of the

substrate to its delivery to the VirB transport machinery. The sub-

strate itself is a protein-DNA complex in which the proteinaceous

component is a protein, termed ‘‘relaxase,’’ that binds specif-

ically to an ‘‘origin of transfer’’ (oriT) sequence on the plasmid

DNA, nicks it, and covalently attaches to the 50 end of the nicked

strand (the T strand) (Ilangovan et al., 2015; Larkin et al., 2003).

The covalent relaxase-DNA complex is then recruited to the

T4S system by VirD4, transported through the machinery, and

then through the pilus, which forms a tube that can deliver

DNA to a recipient cell located at some distance away (Babic

et al., 2008). The pilus is a dynamic structure that can depoly-

merize to bring donor and recipient cells closer to one another

(Clarke et al., 2008; Novotny and Fives-Taylor, 1974).

The F plasmid has a remarkable status in the history of the

fields of molecular biology and genetics. The F plasmid is not

only able to conjugate itself from a donor cell to a recipient cell

(it indeed encodes all the T4S system and relaxosome compo-

nents) (Lawley et al., 2003), but also, by virtue of it being able

to integrate within the genome of Escherichia coli, is able to con-

jugate the entire E. coli genome. This property was used to map

the entire E. coli genome in the 1950s and 1960s, leading to sem-

inal discoveries in genome organization, dynamics, and expres-

sion (Taylor and Thoman, 1964;Wollman et al., 1956). In the elec-

tron microscope, the only visible manifestation of the F system

has been its pilus (Folkhard et al., 1979). The pilus of conjugative

T4S systems is not only an essential cylindrical conduit for conju-

gating DNAs, but also is the first point of entry for many phages,

which attach to T4S systems pili before injecting their DNA or

RNA into bacterial cells (Arutyunov and Frost, 2013). In this era

of widespread antibiotic resistance and regained interest in

phage therapy to combat bacterial infections, it is essential to

understand phage-pilus interactions. A crucial step toward
Published by Elsevier Inc.
commons.org/licenses/by/4.0/).
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Figure 1. Purification of the pED208 and F

Pili and Cryoelectron Microscopy of the

pED208 Pilus

(A) SDS-PAGE of purified pED208 and F pili.

(B) Electron micrograph of the pED208 pilus. The

scale bar represents 40 nm.

(C) Details of two representative regions of the

experimentally derived density for the pED208

pilus. The electron density map contoured at a

1.5s level is shown in chicken wire representation

colored in blue. The pED208 TraA model is in stick

representation with atoms color-coded light gray,

blue, and red for carbons, nitrogens, and oxygens,

respectively. The lipid model is PG in stick repre-

sentation color-coded green, yellow, blue, and red

for carbon, phosphorus, nitrogen, and oxygen,

respectively. For clarity, two views are provided:

one in which the protein structure is clearly

apparent (left) and the other where the lipid

structure is clearly apparent (right).

(D) Sequence alignment of pED208 and F TraA.

Identical and similar amino acids are boxed in red

and yellow, respectively. Secondary structures

of pED208 and F TraA are shown above the

sequence alignment.
elucidating this interaction is the determination of its structural

basis. However, while rapid progress in the structural biology

of phages has been made, no atomic resolution details are avail-

able for T4S system pili. Previous studies have provided some

confusing insights into the helical parameters of the F pilus and

were of insufficient resolution to derive an atomic model (Folk-

hard et al., 1979; Marvin and Folkhard, 1986; Wang et al.,

2009). Here, we present structural details for two F family pilus

types, the pED208 and F pili, derived from 3.6 Å and 5.0 Å reso-

lution cryoelectron microscopy (cryo-EM) maps, respectively.

These structures provide unprecedented details of conjugative

pilus architecture and function.

RESULTS AND DISCUSSION

Pilus Production and Structure Determination
The F and the F-like pED208 plasmids are two plasmids that

encode their own T4S systems and thus produce their own pili.

The F and pED208 pili were produced in vivo and were purified

as described in STAR Methods (Figure 1A). The pili were applied
Cell
to grids and were vitrified for cryo-EM

analysis (Figure 1B). Data collection

and structure determination proceeded

as described in STAR Methods. For

pED208, a 3.6 Å resolution map was

generated (Figures 1C, S1A, and S1B) in

which a-helical secondary structures, as

well as most side chains, were clearly

visible (Figure 1C) and in which a model

for the pED208 pilin, TraA, could be

readily built and refinedwith excellent ste-

reochemistry (Figure S1C). During the

process of helical reconstruction, as the
resolutionwas increased, an additional separate density became

clearly visible and readily interpretable as a phospholipid (Fig-

ure 1C). For the F pilus, it became apparent during the process

of helical reconstruction that two populations of filaments were

present, differing slightly in the risebetweensubunits (seebelow).

Near-atomic resolution for the F pilus was not achieved, presum-

ably because the F pilus might not be as ordered as the pED208

pilus. Instead, two 5.0 Å resolution electron density maps were

generated for the two F pilus populations. These maps clearly

showed helical secondary structures in which models of the F

pilin, TraA, could be built and refined (Figures S2A–S2D).

General Architecture of the pED208 and F Pili
The structures of the pED208 and F pilus are very similar, with

overall dimensions of 87 Å in diameter and an internal lumen of

28 Å in diameter (Figures 2A and 2B). They can be described in

two equivalent ways, as illustrated in Figure 2: (1) as five-start he-

lical filaments (Figures 2A and 2B where the five helical strands

are color-coded differently), or (2) as pentamer layers stacked

on top of each other, each layer related to the one below or
166, 1436–1444, September 8, 2016 1437



Figure 2. Overall Architecture of the pED208 Pilus

(A) Side view of the pED208 pilus structure. The structure is in surface representation. It consists of a five-start helical assembly. Each of the five helical strands is

shown in a different color and is labeled 1–5. Each helical strand consists of 12.8 subunits per helical turn. Thirteen subunits are shown and named A–M from

bottom to top. Although the overall orientation of the pilus relative to the membrane is not known, we hypothesize that the membrane-proximal end of the pilus is

at the bottom. This is based on the fact that the a2-a3 loop is known to be cytoplasmic when the pilus subunit is inserted in the membrane (Paiva et al., 1992).

Since, in the structure of TraA determined here, the loop is orientated down within the pilus, this would also position the membrane-proximal end of the pilus

down.

(B) Bottom view of the pED208 pilus structure. Representation is as in (A), except that the lipid head group atoms (represented as spheres color-coded white,

yellow, and red for carbon, phosphorus, and oxygen atoms, respectively) are visible inside the lumen of the pilus. The external and internal dimensions of the pilus

are reported.

(C) The pentamer unit of the pED208 pilus. Each subunit and lipid is in surface and sphere representation, respectively. This figure was generated using the TraA

molecule labeled I in each helical strand. Color-coding is as in (A) and (B). Top, top view. Bottom, side view.

(D) Two adjacent pentamer units of the pED208 pilus structure. The pentamer unit at the base is as in (C) (made from the TraA molecules named I, i.e., the ninth

subunit in each helical strand) while the pentamer unit above (made from the TraA molecules named J, i.e., the tenth subunit in each helical strand) is shown in

similar but stronger colors. The lipids are as in (A). The angle and rise between equivalent subunits in consecutive pentamer stacks are reported. Top, top view.

Bottom, side view.

(E) The PG array in the context of the pilus strand. Pilus strand 2 of (A) is shown together with bound PG. Representation of the strand is as in (A), while

representation of the PG is as in (C). This image clearly shows the continuous PG array along the pilus strand.
above by a rotation angle and rise (Figures 2C and 2D). For

pED208, the angle between adjacent subunits is 28.2� and the

rise is 12.1 Å (Figure 2D), while for the two F pilus structures,

the helical parameters were 27.9� with a rise of 13.2 Å and

28.1� with a rise of 12.5 Å, respectively. Thus, the general

pED208 and F pilus architectures can be considered virtually

identical. Previous published work has reported different helical

parameters for the F pilus (Wang et al., 2009), but those were

incorrect due to the low resolution achieved. At the near-atomic

resolution reported here, there can be no ambiguities as to the

assessment of the symmetry and, therefore, the parameters re-

ported here are definitive (Egelman, 2014).
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The amino acid sequences of both the orthologous pED208

and F pilus TraA pilin are similar, except for the F pilin N terminus,

which is 4 amino acids (aa) longer (Figure 1D). This longer N ter-

minus could not be traced in the F pilus density maps and thus

must be disordered. When seen as a five-start helical filament,

the pilus displays five helical strands (labeled 1–5 in Figure 2A),

each made of �12.8 TraA pilins per turn. Since the structures

of the pED208 and F pili are very similar but much higher resolu-

tion was achieved for the pED208 system, we will focus all sub-

sequent description of pilus architecture and pilin structure on

this pilus type, pointing to notable differences with the F system

when required.



Figure 3. Structure of pED208 TraA

(A) Location of the subunit shown in (B) within the

pilus. For clarity, and in order to maintain the same

orientation throughout, a subunit (subunit I in he-

lical strand 3) was chosen arbitrarily as the refer-

ence subunit.

(B) Structure of the TraA-phospholipid complex.

TraA is in ribbon representation with the N, C ter-

minus, and secondary structures labeled. The lipid

is in sphere representation color-coded as in Fig-

ure 2C. Left, orientation of TraA is as in (A). Right,

orientation of TraA is 90 degrees away from

orientation at left.
Structure of the TraA Pilin
The pED208 TraA pilin is a 64-residue protein, 63 of which (resi-

dues 2–64)were clearly defined in the electron density. TraA folds

into an all-a-helical structure, containing three a helices (a1–3)

(Figures 3A and 3B). A 9-residue N terminus extending out is fol-

lowed by a1, a short helix, which forms a two-helix bundle with

the C-terminal end of a3. A 5-residue loop between a1 and a2

(the a1-a2 loop) protrudes and folds back into the core of the pilin

structure to be followed by a2, a longer helix that forms an

extended two-helix bundle with the N-terminal part of a3. Thus,

a3 itself interacts with both a1 and a2. TraA orientation within

the pilus is such that the loop between a2 and a3 is locatedwithin

the lumen of the pilus, while the N- and C-terminal ends are

located on the outside of the filament. This is consistent with pre-

vious results suggesting that the N- andC-terminal regions of the

F TraA pilin are accessible for phage attachment and thus must

be located on the outside (Frost and Paranchych, 1988). It is

also consistent with prior suggestions that the a2-a3 loop might

be involved in contacting the DNA as it passes through the

pilus (Paiva et al., 1992; Silverman, 1997). Superposition of the

structures of pED208 and F TraA (Figure S3A) reveals very similar

overall structures (root-mean-squared deviation in Ca positions

between pED208 and F [13.2 Å rise] of 1.4 Å and between

pED208 and F [12.5 Å rise] of 1.5 Å) with slightly different bound-

aries for secondary structures (Figure 1D). However, the F TraA

structure was solved at a lower resolution, and thus, whether

these minor differences are significant remains unclear. Also,

the TraA pilin structures in the two F pilus forms are virtually iden-

tical (root-mean-squareddeviation inCapositions of 0.7 Å). Thus,

with the structures andhelical parameters of the twoFpilus forms

being so similar, functional differences between themare unlikely

to arise but cannot be excluded.

The F and F-like Pili Are Helical Assemblies of
Stoichiometric Protein-Phospholipid Units
Early on during the process of helical reconstruction of the

pED208 pilus, additional unconnected density in the vicinity of

the base of helix a3 became visible (see Figure S3B showing

densitymap at 5Å resolution). As resolution increased, clear den-

sity resolved the head group and acyl chains of a phospholipid

stoichiometrically interacting with the pilin (Figures 1C and 2E).

This finding was confirmed in experiments (Figure 4) in which

the purified pED208 pili were first treated with phospholipase 2

(PLA2) and the remaining bound lipids subsequently extracted
and analyzed by mass spectrometry (MS). Two main species

bound to the pilin were identified by daughter ion fragmentation

as phosphatidylglycerol (PG) species, PG 32:1(16:0, 16:1) and

PG 34:1 (16:0, 18:1) (Figure 4). These are also major PG species

in the whole-cell membrane (Figure 4A). However, selectivity is

observed, as there is no presence of the other two major phos-

pholipid classes, phosphatidylethanolamine (PE) (compare Fig-

ure 4B with Figure 4A) and cardiolipin (data not shown), in the

PLA2-treated pili extracts. Moreover, while the total PG pool

only accounts for �19% of the total phospholipid content of

the E. coli membrane, the two major PG species identified in

the pilus account for 72% of the lipid content of the pilus

(Figure 4A).

For the F pilus, additional density was also observed at the

same location, and its shape was similar to the electron density

observed for the pED208 at 5Å resolution (Figures S2B and S3B

show the same region in the 5Å maps of F and pED208, respec-

tively), suggesting that a phospholipid molecule is also bound

stoichiometrically to the F TraA protein. Indeed, the presence

of phospholipid in the F pilus was also confirmed by MS (Fig-

ure S4); however, this time a PG species, PG 33:1 (16:0,

DC17:0), was themajor phospholipid observed in the F pilus after

PLA2 treatment (Figure S4B). This PG species is only a minor PG

species of the total cell lipid extract (Figure S4A). Thus, selective

binding of PG to pilins occurs in both F and pED208 pili, and thus,

the F family of pili are polymers of a selective and stoichiometric

protein-PG complex unit.

The Pilin-Lipid Interaction Network in the pED208 Pilus
The pilus is held together by interactions not only between pilin

subunits, but also between lipids and subunits (Figures 5

and 6). Each lipid molecule makes extensive contacts with five

surrounding TraA subunits (Figure 5A), while each TraA subunit

interacts with five lipid molecules (Figure 5B). Overall, 70.3% of

the lipid’s surface is buried (769 Å2 against 1094 Å2 total), while

16.7% of each subunit is involved in contact with phospholipids

(912 Å2 against 5449 Å2 total). In the lipid, only the head groups

are solvent exposed and directed to the lumen of the pilus (Fig-

ure 5C). The acyl chains are entirely buried between subunits.

Details of residue-specific pilin-lipid interactions are described

in Figure S5. These involve primarily hydrophobic residues inter-

acting with the acyl chains. Only very few but significant contacts

with the phospholipid head group are observed (between the

phosphate and K41 and Y37, for example).
Cell 166, 1436–1444, September 8, 2016 1439



A

B

Figure 4. MS Analysis of the Lipids Extracted from pED208 Pili

(A) Negative ion mode survey scan (600–780 mass/charge ratio [m/z]) of lipid extracts from whole-cell membranes.

(B) Negative ion mode survey scan (600–780 m/z) of lipid extracts from purified pili pre-treated with PLA2.

In all cases, phospholipids’ identity was confirmed by daughter fragmentation and reported here.
The composition of the lumen is unique in being lined not only

with residues from the a2-a3 loop, but also with the lipid head

groups. In the F pilus, this loop, referred to as the ‘‘KNVK’’

loop, was hypothesized to form a contact with ssDNA during

conjugative transfer (Paiva et al., 1992). The structures pre-

sented here locate this loop to the lumen of the pilus, suggest-

ing that indeed the pilus serves as a conduit for ssDNA transfer.

Remarkably, integral to the lining of the lumen is the stoichio-

metric inclusion of phospholipid head groups. To gain further

insight into the potential impact that inclusion of PG head

groups within the lumen lining might have, the electrostatic

potential of the lumen was calculated with or without PG

(Figure 5C). Inclusion of PG has a profound impact on the elec-

trostatic potential of the pilus lumen: without PG, it is over-

whelmingly positive, while with PG, it is moderately electroneg-

ative. By generating a conduit with a moderately negative inner
1440 Cell 166, 1436–1444, September 8, 2016
surface, phospholipids may facilitate transport of the negatively

charged ssDNA substrate.

Mutational Studies of Lipid-Interacting Residues
Confirm the Importance of Lipid Binding in Preserving
the Integrity of the Pilus
The F TraA pilus subunit has been subjected to extensive muta-

genesis (Frost and Paranchych, 1988; Manchak et al., 2002). All

mutations observed to affect pilus biogenesis locate to protein-

protein interfaces, while mutations affecting conjugation and

phage attachment locate to either the lumen or the periphery

of the pilus. Thus, the structure presented here provides the

structural basis for all published F pilus mutations. However,

the PG-binding site was never targeted for mutation, as it was

unknown. Three residues in the interface between PG and

pED208 TraA were thus chosen for mutational analysis (the



Figure 5. Overview of Lipid-Protein Interactions

(A) Each lipid interacts with five adjacent TraA subunits. TraA subunits and phospholipids are shown in ribbon and sphere representation, respectively. Orientation

of the reference magenta subunit (labeled I) is as in the left panel in Figure 3B. The lipid molecule is at the interface between subunits in strands 2 and 3.

(B) Each TraA subunit interacts with five phospholipid molecules. Representation and color-coding are as in Figure 3B.

(C) Electrostatic potential of the pilus lumen calculated without (left) or with (right) the phospholipids. The lipids were included in the model as described in STAR

Methods. Electrostatic potential and surfaces were calculated using CHIMERA.
location of these mutants is shown in Figure S5): A28 makes

hydrophobic interactions with the acyl chain of PG and was

mutated to F or N (TraAA28F and TraAA28N); Y37 makes an

H-bond to the carbonyl oxygen of the sn-2 fatty acid and was

mutated to F or V (TraAY37F and TraAY37V); finally, R39, an impor-

tant residue whose amide nitrogen also contacts the carbonyl

oxygen of the sn-2 fatty acid and whose side chain not only

makes up some of the lumen lining, but also contacts other adja-

cent TraA molecules, was mutated to E or A (TraAR39E and

TraAR39A). Pilus biogenesis and function were assessed using

negative-stain EM for observation of pilus production at the bac-

terial cell surface or using conjugation and filamentous phage f1

infection for observation of pilus function (Figure 7; see details in

STARMethods). Mutating A28 to the bulky residue F is expected

to create severe steric clashes and to be disruptive of pilus

biogenesis, and this is precisely what is observed. Substitution

to N at this position is less drastic and results in minimal disrup-

tion of pilus function. Mutation of Y37 to F is ineffective, demon-

strating that the hydrogen bond between Y37 and the lipid is a

minor element in PG-TraA interaction but the aromatic side chain

is critical, as mutation to V impairs pilus formation and function.

As expected, mutation of R39 to A preserves the structural integ-

rity of the pilus, since the main interaction of R39 with the lipid is

through its main-chain amide nitrogen. However, inverting the

charge at this position appears to decouple conjugation from

phage infection: indeed, R39E does not affect pilus biogenesis

and has only a small impact on conjugation but completely abro-

gates phage infection. During conjugation, the pilus is known to

serve as an export conduit for a mixed nucleo-protein complex

consisting of the relaxase protein covalently bound to ssDNA, it-

self possibly coated with single-strand DNA-binding proteins

(Ilangovan et al., 2015); in contrast, during phage DNA import,

a naked electro-negative nucleic acid passes through the pilus

lumen (Caro and Schnös, 1966; Crawford and Gesteland,

1964). An R39E mutation would strongly increase the electro-

negative potential within the lumen of the pilus, thereby giving

rise to a strong repulsive force that would prevent the negatively
charged DNA of the phage from entering the pilus conduit.

This would not be the case with the more electrostatically

neutral protein-DNA complex that serves as a substrate during

conjugation.

The Pilin-Pilin Interaction Network in the pED208 Pilus
Each TraA molecule makes contact with eight adjacent subunits

(Figure 6A). The subunit-subunit interaction networks involved

adjacent subunits in the same helical strand (for example, in Fig-

ure 6A, subunit labeled I in helical strand 3 makes contacts with

the previous and subsequent subunit within the strand, labeled

H and J, respectively), but also with three subunits in the strand

above (helical strand 4, subunits labeled J, K, and L) and below

(helical strand 2, subunits labeled F, G, H; see notation of pilus

subunits in legend to Figure 6). One consequence of this

arrangement is that the entire length of each subunit is involved

in contact with other subunits either in the same helical strand or

in the strands above and below. The surface area buried in pro-

tein-protein interactions between a reference subunit (subunit I

in strand 3) is reported in Figure 6B: overall 3,043 Å2 of subunit

surface is buried in protein-protein contacts. Once contacts

with the lipid molecules are taken into account, 72% of the

subunit surface is buried (Figure 6C). The only solvent-acces-

sible surfaces are at the periphery, either facing outward for

phage attachment or facing inward toward the lumen for DNA

transport. Details of subunit-subunit interactions are shown in

Figure S6.

Conclusions
The structure of the F pilus reveals a protein-phospholipid com-

plex as the primary unit from which the pilus is assembled. Prior

to assembly, each TraAmolecule is embedded in the inner mem-

brane and then extracted from the membrane during pilus

biogenesis (Paiva et al., 1992). The stoichiometric presence of

phospholipid within the pilus demonstrates that, as pilins are ex-

tracted from the membrane, each remains associated with one

phospholipid molecule. Lipids have been observed bound to
Cell 166, 1436–1444, September 8, 2016 1441



Figure 6. Protein-Protein Interaction Net-

works in the pED208 Pilus

(A) Each subunit interacts with eight others within

the pilus. All subunits interacting with the refer-

ence subunit in magenta (subunit I in strand 3) are

shown, as well as their associated phospholipid.

All subunits and lipids are in ribbon representation

color-coded various shades of green, red, and

cyan for subunits in helical strands 4, 3, and 2 (as

defined in Figure 2A), respectively. Subunits are

labeled J, K, and L in strand 4; H, I, and J in strand

3; and F, G, andH in strand 2. In this nomenclature,

each of the 13 subunits in each helical array was

labeled A–M, with subunit A at the bottom of the

pilus structure model.

(B) Surface area buried in subunit-subunit in-

teractions. The reference subunit used in these

calculations is inmagenta in (A). Color-coding is as

in (A): for example, number in cyan indicates sur-

face area buried between subunits inmagenta and

cyan in (A).

(C) Mapping of subunit-subunit interactions onto

the reference subunit. The reference subunit is in

magenta in (A). Interactions made between the

reference subunit and the subunit in red in (A) are

mapped onto the reference subunit surface by

color-coding its surface in red. The same is carried

out for all other subunits shown in (A). The result is

the mapping of interactions that each subunit

makes with the reference subunit. Interactions

with lipids are mapped in white.
proteins but often as a result of unspecific binding. Only lipid

metabolizing enzymes form stoichiometric complexes with their

substrates. Thus, to our knowledge, our observation of a lipid

bound stoichiometrically to a protein polymer is unprecedented.

Moreover, the lipid composition of the pilus is different from that

of the membrane, suggesting preferential binding of TraA to a

subset of phospholipids. These observations thus have impor-

tant biological implications: (1) the presence of lipid within the

pilus structure might facilitate pilus insertion into host mem-

branes so as to be able to deliver substrates to recipient host

cells; (2) the presence of lipid might also facilitate re-insertion

of pilus subunits within the inner membrane during pilus retrac-

tion/depolymerization; and (3) differential selectivity among con-

jugative pili for specific lipid species might increase the range of

substrate selectivity. An essential aspect of pilus function is

indeed its ability to enter successive cycles of growth and retrac-

tion (Clarke et al., 2008), a function that is likely essential for

conjugation but also that has been shown to be necessary during

infection to bring phages closer to the membrane (Riechmann

and Holliger, 1997). One can reasonably hypothesize that strip-

ping off all bound lipids from TraA would have an energetic

cost, as would the requirement of partitioning a lipid-free TraA
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back into the lipidic phase of the mem-

brane during pilus retraction. Thus, the

primary function of stoichiometrically

bound lipids might be to lower that cost

and thus lower the energetic barrier for

assembly/disassembly in order to facili-
tate pilus dynamics. Testing such a hypothesis is clearly the

next step in research in conjugative pilus biogenesis. Moreover,

since there are other bacterial filaments that are assembled from

subunits that exist at some point as integral membrane proteins

(e.g., filamentous bacteriophage or type IV pili [not to be

confused with T4S secretion pili]), it remains to be seen whether

any of these are also lipoprotein filaments.

Bacteriophages have been used in the past and are still used

widely in eastern Europe, notably Russia, to combat bacterial

infections. In western Europe, their use declined rapidly when

effective, cheap, and broad-range antibiotics became available.

However, with antibiotics becoming increasingly ineffective, it

has become urgent to explore all possible avenues in the search

for novel therapeutic agents: phage therapy is poised to undergo

a major revival as one potential weapon in the arsenal of antimi-

crobials. Effective treatment by bacteriophages will be greatly

facilitated by a detailed characterization of the phage-pilus inter-

action at a molecular level. The structure presented here pro-

vides unprecedented atomic details of one interacting partner,

the pilus, and we show that these can be exploited productively

to switch the sensitivity to phage infection conferred by conjuga-

tive pili, providing a proof of concept that this knowledge can



A

B

Figure 7. Effect of pED208 TraA Mutations

on Pilus Formation and Function

(A) NS-EM micrographs of JE2571 cells harboring

a traA deletion (pED208_DTraA) in the pED208

plasmid and complemented in transwith wild-type

(WT) or point mutated TraA pilins. See main text

for mutant description. The scale bar represents

500 nm.

(B) Summary of the effect of TraA single point

mutations in pili formation, f1 phage sensitivity,

and conjugation efficiency. Minus sign (�), no pili

or conjugation reduced by 10�4-fold; plus sign (+),

pili or conjugation observed at WT level; (�/+),

intermediate (10-fold decrease compared to WT)

level of conjugation; (R) resistance or (S) sensitivity

to phage f1.
indeed be used to derive effective bacteriophage therapies to

combat bacterial infectious diseases.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, Peptides, and Recombinant Proteins

Common lab reagents N/A N/A

Critical Commercial Assays

Quick & Easy E.coli gene deletion Gene Bridges Cat#K006

Deposited Data

F-pilus pED208 Cryo-EM map This study EMD-4042

F-pilus pED208 structure This study 5LEG

F-pilus (12.5Å axial rise) Cryo-EM map This study EMD-4046

F-pilus (12.5Å axial rise) structure This study 5LFB

F-pilus (13.2Å axial rise) Cryo-EM map This study EMD-4044

F-pilus (13.2Å axial rise) structure This study 5LER

Experimental Models: Organisms/Strains

E.coli: JE2571 (leu thr fla pil str) harboring

the pED208 plasmid

Lab of Prof. Ellen Zechner N/A

E. coli: DH5a (F– F80lacZDM15 D(lacZYA-argF)

U169 recA1 endA1 hsdR17 (rK–, mK+) phoA

supE44 l– thi-1 gyrA96 relA1) harboring the

pOX38-Cm plasmid

Lab of Prof. Fernando de la Cruz N/A

f1 phage: ssDNA, filamentous Lab of Dr. Neville Firth N/A

HB101: auxotroph, F-, recA13, Res-, Mod-, Strr, Rifr This study N/A

Recombinant DNA

Plasmid: pBAD-M11 (modified) This study N/A

Sequence-Based Reagents

Primers for Kanamycin cassette generation, traA allele

cloning and mutagenesis, see Table S1

This study N/A

Software and Algorithms

Spider package Frank et al., 1996 http://spider.wadsworth.org/spider_doc/

spider/docs/spider.html

CTFFIND3 Mindell and Grigorieff, 2003 http://grigoriefflab.janelia.org/ctf

EMAN2 Tang et al., 2007 http://blake.bcm.tmc.edu/emanwiki/EMAN2

IHRSR Egelman, 2000 N/A

COOT Emsley et al., 2010 http://www2.mrc-lmb.cam.ac.uk/personal/

pemsley/coot/

PHENIX Adams et al., 2010 https://www.phenix-online.org/documentation/

index.html

CHIMERA Pettersen et al., 2004 http://www.rbvi.ucsf.edu/chimera/

Molprobity Chen et al., 2010 http://molprobity.biochem.duke.edu/

LSQKAB Kabsch, 1976 http://www.ccp4.ac.uk/

PDBSET Winn et al., 2011 http://www.ccp4.ac.uk/

PYMOL Molecular Graphics System,

Version 1.8 Schrödinger, LLC

https://www.pymol.org/
CONTACT FOR REAGENT AND RESOURCE SHARING

Contact should be directed to Gabriel Waksman at g.waksman@ucl.ac.uk or g.waksman@mail.cryst.bbk.ac.uk.
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METHOD DETAILS

Pilus Production and Purification
The F pilus encoded by the pOX38 plasmid (a gift from Prof. Fernando de la Cruz) and the F-like pilus encoded by the pED208

plasmid (a gift from Prof. Ellen Zechner) were purified using the same protocol, from the surface of the DH5a and JE2571 cells,

respectively. Cells were grown on six Luria-Bertani (LB) medium plates (25325 cm) with no antibiotics for the production of

pED208 pili but supplemented with 34 mg/mL Chloramphenicol (Cm) for production of F pili (pOX38) for 16 hr. Cells were scraped

from each plate surface with 20 mL of SSC buffer (15 mM sodium citrate, 150 mM NaCl, pH 7.2) following incubation at 4�C for 2 hr

with 1 L of the same buffer with gentle stirring. The suspension was centrifuged two times at 10,800 g for 20 min, and the supernatant

was precipitated by adding 5% PEG6,000 and 500 mM of NaCl. After 2 hr of incubation at 4�C, the precipitate was collected by

centrifugation of the suspension at 15,000 g for 30 min. The precipitate was resuspended in 120 mL of sterile water and centrifuged

for 10 min at 5,000 g. The supernatant was precipitated again using the same conditions used previously, followed by centrifugation

at 15,000 g for 20min. At this stage, the purified pili were resuspended in 1mL of 50 mM Tris-HCl, 200mMNaCl, pH 8.0 (F pilus), and

in PBS, pH 7.4 (pED208 pilus). Each suspension was layered on pre-formed CsCl step gradients (1.0–1.3 g/cm3) and centrifuged at

192,000 g for 17 hr at 4�C. The pili band was carefully removed and extensively dialysed against Tris-HCl, 200 mM NaCl, pH 8.0

(F pilus), or PBS, pH 7.4 (pED208 pilus). Pili purity was analyzed by SDS-PAGE, and the identification of TraA from both pili was

verified by LC-ESI MS/MS.

Cryo-EM Sample Preparation and Data Collection
Each pilus sample (4ml) was applied to a glow-discharged Lacey 400 mesh copper grid (Agar Scientific). A Vitrobot plunge-freezing

device (FEI) operating at 25�C and 100% humidity was used to incubate the sample with the grid for 1 min and blotting for 3.5 s prior

to vitrification in liquid ethane. The data were collected on a FEI Tecnai G2 Polara operating at 300kV and equipped with a Gatan

K2 Summit direct electron detector positioned at the end of a Quantum energy filter and an energy selecting slit width of 20 eV.

The images were taken with a total dose of�100 e�/Å2 fractionated over 60 frames with a calibrated pixel size of 1.1Å/pixel. Images

were taken within a defocus range of �0.5 to �3.5 mm.

Cryo-EM Image Processing and Reconstruction
The Spider software package (Frank et al., 1996) was used for most operations, unless otherwise noted. The program CTFFIND3

(Mindell and Grigorieff, 2003) was used for determining defocus values. For the pED208 filaments, 362 images were used after

removing those with drift, a poor contrast transfer function (CTF), or a defocus greater than 3.0 mm. The images were corrected

for phase reversals by multiplying them by the calculated CTF, which is a Wiener filter in the limit of a very poor SNR. The program

e2helixboxer from the EMAN2 suite (Tang et al., 2007) was used for extracting images of long filaments, and 3,841 long boxes were

selected. From these, 43,952 overlapping boxes (each 384 px long, and each shifted 18 px, or �1.5 times the axial rise per subunit)

were cut. The boxing of filaments and CTF estimation was done using the total dose, while the subsequent processing was done

with the boxes cut from the frames with a dose of 20 electrons/Å2. The Iterative Helical Real Space Reconstruction (IHRSR) method

(Egelman, 2000) was used for the reconstruction. Several possible helical symmetries were investigated, but only the one with a C5

rotational point group symmetry yielded recognizable a helices. Once the structure was stable and further iterations introduced no

changes, the parameters (Euler angles, x- and y-shifts) found for the 20 electrons/Å2 boxes were applied to the 10 electrons/Å2

boxes to reduce radiation damage in the final reconstruction. The CTF was corrected by dividing the volume by the sum of the

squared CTFs, since the images had been multiplied by the CTF twice: once by the microscope, and once when phases were

corrected.

The same approach was used for the F pilus filaments, with 297 images being selected for further processing. From these, 1,259

long boxes were extracted, from which 28,395 overlapping boxes (each 384 px long) were cut. In contrast to the pED208 filaments,

power spectra from the F pili showed two symmetries present, which discretely differed in terms of the axial rise per subunit. Several

cycles of sorting were used to separate the segments into two classes. Initially, a reconstruction from the unsorted set was used to

generate two reference volumes, one with an axial rise of �12.5 Å and the other with �13.2 Å. Two separate reconstructions were

generated from each of these two sets, and thesewere then used as new references to once again sort the entire dataset. The dataset

used for the 12.5 Å reconstruction contained 16,426 segments, while the 13.2 Å set contained 11,969 segments. Due to the limited

resolution in the F pili reconstructions, the 20 electrons/Å2 images were used for the final reconstruction, as nothing would be gained

using a lower dose.

Model Building and Refinement
The initial model for a single pilin chain was built using COOT (Emsley et al., 2010) followed by iterative rounds of real space

refinement and building using PHENIX (Adams et al., 2010) and COOT, respectively. During initial model building of the

pED208 pilin, an extra density was noticed which was clearly not part of the pilin TraA. Investigation of this extra density sug-

gested it could be a single phospholipid. MS analysis indicated the presence of two PG species, PG 32:1(16:0, 16:1) and PG

34:1 (16:0, 18:1), and thus PG 32:1 was modeled in the density using COOT and refined with PHENIX. In the case of the F pilus,

only the PG head group was modeled as density for the aliphatic chains was not visible. In all cases, the initial coordinates
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required for modeling the phospholipid were generated using COOT’s ‘‘Ligand builder’’ tool, and the dictionary file required

for refinement were generated using the CCP4 ‘‘Make ligand’’ tool (Debreczeni and Emsley, 2012). Progress in refinement was

tracked through Ramachandran plot and Molprobity (Chen et al., 2010). Once a single unit (pilin TraA and phospholipid PG)

was successfully refined, a pdb coordinate file with two TraA chains was generated by fitting two individual TraA chains within

a pilus strand using CHIMERA (Pettersen et al., 2004). The rotation and translation parameters by which these two chains

were related were then calculated using the program LSQKAB (Kabsch, 1976). These parameters were used to generate a strand

of the pilus, each containing 16 single-TraA-PG units using the CCP4 program PDBSET (Winn et al., 2011). In order to build a

pilus from a single strand set of coordinates, a pdb coordinate file with two TraA chains was generated by fitting two individual

TraA chains in adjacent strands using CHIMERA. This file was used to calculate the rotation and translation parameters again

using the program LSQKAB. These values representing the relation between two adjacent strands were used to build the entire

five-stranded pilus using the program PDBSET.

Mass Spectrometry Analysis of Lipids
Lipid extractions from purified pili were achieved by three successive vigorous extractions with ethanol (90% v/v) (Fyffe et al., 2006).

The pooled extracts were dried by nitrogen gas in a glass vial and re-extracted using a modified Bligh and Dyer method (Richmond

et al., 2010). For whole-cell control, membranes were washed with PBS and lipids were extracted following the same procedure. Pili

were treated with Phospholipase A2 (0.1 units) in PBS for 16 hr at 37�C followed by heat inactivation and extraction as described

above.

Extracts were dissolved in 15 mL of chloroform:methanol (1:2) and 15 mL of acetonitrile:propan-2-ol:water (6:7:2) and analyzed with

a Absceix 4000 QTrap, a triple quadrupole mass spectrometer equipped with a nano-electrospray source. Samples were delivered

using a Nanomate interface in direct infusion mode (�125 nL/min). Lipid extracts were analyzed in both positive and negative

ion modes using a capillary voltage of 1.25 kV. MS/MS scanning (daughter, precursor, and neutral loss scans) was performed using

nitrogen as the collision gas with collision energies between 35–90 V.

Construction of Mutants
The traA gene in pED208 was disrupted from the native pED208 (in the JE2571 strain) using the Quick & Easy E. coli gene deletion kit

(Gene Bridges) protocol. This protocol resulted in amutant (termed ‘‘pED208_DTraA’’) where the traA gene was disrupted by a Kana-

mycin (Km)-resistance cassette. Positive recombinants were selected on LB plates supplemented with 15 mg/mLKm, and the correct

location of the recombination event was confirmed by sequencing with suitable primers. The WT and mutated traA genes were

cloned into a modified pBADM-11 vector (which confers Carbenicillin [Cb] resistance and is inducible using L-arabinose) where

the His-tag was removed using conventional molecular cloning and site directed mutagenesis protocols. All primers used for traA

gene disruption, cloning, and mutants generation are described in Table S1.

Negative Stain Electron Microscopy
To assay for pilus expression, pED208_DTraA complemented with the WT traA or mutants were grown in LB medium supplemented

with 15 mg/mL Km and 50 mg/mL Cb to an OD600 of 0.5 and were induced using 0.05% L-arabinose until an OD600 of 1.5. 10 mL of

bacterial cultures were then deposited for 2 min on a glow-discharged 400 mesh carbon-coated cooper grid (Agar Scientific). The

grid was then washed with two drops of water and stained for 10 s with 0.2%w/v of phosphotungstic acid (PTA). Images were taken

with a Gatan CCD camera on a Tecnai electron microscope (FEI) operating at 120 kV.

Phage Sensitivity Assay
Sensitivity (S) or resistance (R) of bacteria to filamentous phage f1 (a gift from Dr. Neville Firth) was determined qualitatively using a

spot phage test. Cells containing pED208_DTraA complemented with either the WT traA or each of the pilin mutant constructs were

induced at an OD600 of 0.5 using 0.05% L-arabinose and grown to a final OD600 of 1.5 before being plated onto LB plates containing

50 mg/ml Cb, 15 mg/mL Km, and 0.05% L-arabinose and onto which a 20 mL aliquot of phage (1x108 pfu) was spotted. After the agar

surface had dried, the plates were incubated overnight to allow plaque lytic development.

Conjugation Assay
Mid-exponential phase cultures (OD600 of one, which was equivalent to 5.5 3 108 cells per mL) were used for conjugation ex-

periments by the quantitative filter-mating method. In brief, aliquots (0.5 mL) of donor (JE2571 containing pED208_DTraA com-

plemented with WT and mutant TraA induced as above) and recipient (Rifampicin (Rif)-resistant HB101) cultures were mixed and

filtered through a nitrocellulose membrane filter (Sartorius; 0.45 mm pore size), which was then placed onto the surface of a LB

plate and incubated at 37�C for 2 hr. After incubation, the bacteria on the filter were suspended in 2 mL of LB, serially diluted

(10-fold) in saline and 0.1 mL aliquots of the dilutions plated onto LB medium with 100 mg/mL Rif and 15 mg/mL Km and incubated

overnight. Conjugative transfer efficiencies reported as ratios of trans-conjugants per donor were then derived. Experiments were

performed three times.
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QUANTIFICATION AND STATISTICAL ANALYSIS

Quantification and statistical analyses employed in this publication pertain to the analysis on electronmicroscopy data and the deter-

mination of structures by electron microscopy, which are integral parts of existing algorithms and software used.

DATA AND SOFTWARE AVAILABILITY

Data Resources
All data were deposited in EMDB and PDB with the following entry codes: EMDB: EMD-4042 and PDB: 5LEG (F-pilus pED208);

EMDB: EMD-4046 and PDB: 5LFB (F-pilus 12.5 Å axial rise); EMDB: EMD-4044 and PDB: 5LER (F-pilus 13.2 Å axial rise).
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Supplemental Figures

Figure S1. Resolution and Model Statistics for the pED208 Pilus Structure, Related to Figure 1

(A and B) (A) Resolution of pED208, as derived from Fourier Shell Correlation (FCS) calculation between the stereochemically refined atomic model and the map.

This yields an FSC = 0.4 at a resolution of 3.6 Å. Since the traditional FSC between two half-maps is not a measure of resolution, but rather of self-consistency

(Egelman, 2014), the model:map FSC provides a better measure of actual resolution. We show, however, in (B) an FSC between two independent half-maps,

which yields a resolution of 3.6 Å at FSC = 0.143, consistent with themodel:map FSC in (A). In addition, andmore importantly, the visual appearance of the map is

also consistent with a resolution of 3.6 Å.

(C) Model statistics from MolProbity.



Figure S2. Structure of the F Pilus, Related to Figure 1

(A) Electron micrograph of the F pilus. The scale bar represents 40 nm.

(B) The 5Å resolution electron density map of the 12.5Å rise F pilus filament. The region shown is the same as the one presented in Figure 1C. The map is

contoured at the same level.

(C) Resolution estimated for the two F pilus models, using a map:model FSC. Both show a resolution of 5 Å at FSC = 0.4.

(D) Refinement statistics for the two F pilus models.



Figure S3. Structural Comparison of F and pED208 Pilus Subunit and Lipid Structures, Related to Figures 2 and 3

(A) Superposition of the F and pED208 TraA structures. The proteins and lipids are in ribbon and sphere representations, respectively. Color-coding for the protein

is magenta and yellow for pED208 and F TraA (rise 13.2 Å), respectively. For the lipid, color-coding is by atom type with oxygen, nitrogen, and phosphorus atoms

in red, blue, and pink, respectively, and carbon in magenta and yellow for the lipid bound to pED208 or F TraA, respectively.

(B) Representative region of the pED208 pili densitymap at 5 Å resolution around the lipid-binding site. This panel needs to be compared to the 5 Å resolutionmap

for the F pili structure shown in Figure S2B. As can be inferred from such comparison, at the resolution of 5 Å, the densities for the lipid and protein are very similar.

For the pED208 pili structure, the resolution could be extended to 3.6 Å and the density for this region resolves unambiguously the structure of a phospholipid.

Map representation and models are as in Figure 1C.



Figure S4. MS Analysis of the Lipids Extracted from F Pili, Related to Figure 4

(A) Negative ion mode survey scan (600–780 m/z) of lipid extracts from whole cell membranes.

(B) Negative ion mode survey scan (600–780 m/z) of lipid extracts from purified pili treated with PLA2.

In all cases, phospholipids identity was confirmed by daughter fragmentation.



Figure S5. Details of pED208 TraA-phospholipid Interactions, Related to Figure 5

(A) Interaction diagram between one phospholipid and five adjacent TraA subunits. The interactions are between the phospholipid and the subunits shown in

Figure 5A, using the same color-coding and naming for TraA subunits. This diagram was created using LIGPLOT (Laskowski and Swindells, 2011).

(B–F) Detailed side-chain interactions with each subunit. TraA subunits are shown in ribbon color-coded and labeled as in Figure 5A. Interacting residues are

shown in stick representation color-coded with blue and red indicating nitrogen and oxygen atoms, while the carbon atoms are color-coded as in the ribbon. PG

lipid is in stick representation with atoms color-coded white, blue, red, and orange for carbon, nitrogen, oxygen, and phosphorus, respectively. (B) Side chains

involved in the interaction of the PG bound to chain I of strand 3 with TraA chain H in strand 3. The hydrophobic chain of PG interacts with side chains of hy-

drophobic residues Val58, Phe55, Val54, Val51, Leu47, and Ile45. The head group of the phospholipid interacts with Leu44 and Asn42 through hydrophobic and

hydrogen bond interaction, respectively. (C) Side chains involved in the interaction of the PG bound to chain I of strand 3 with TraA chain I in strand 3. The

hydrophobic chain of PG interacts with Val50, Leu49, Leu47, Leu46, and Leu43. Two hydrogen bond interactions were observed between the head group of PG

and the main chain carbonyl group of Lys41 and between PG sn-2 oxygen with the hydroxyl group of the Tyr37 side chain. (D) Side chains involved in the

interaction of the PG bound to chain I of strand 3 with TraA chain F in strand 2. The hydrophobic chain of PG interacts with the side chains of Val11 and Phe15. (E)

Side chains involved in the interaction of the PG bound to chain I of strand 3with TraA chain G in strand 2. The hydrophobic tail of PG interacts with Phe20, Cys24,

Ile25, Ala28, Ile31, and Val32 with the PG head group closer in proximity to Met36. (F) Side chains involved in the interaction of the PG bound to chain I of strand 3

with TraA chain H in strand 2. The hydrophobic tail of PG interacts with Ala35 and Ile38, while the Arg39main chain carbonyl oxygenmakes a hydrogen bond with

the PG head group.



Figure S6. Details of TraA-TraA Interactions, Related to Figure 6

(A) Same as Figure 6A, repeated here for clarity.

(B) Interactions between chain I and chain H of strand 3 represent the largest set of interactions between two TraA monomers within the pED208 pilus. These two

TraA pilin subunits share a large hydrophobic interaction surface involving numerous residues in a2 and a3. From the bottom of the panel, closer to the lumen, the

side chains of Met36, Val32, and Ile45 in chain H make contact with Ile38 of chain I. Also, the side chains of residues Lys41 in chain I and Glu29 in chain H make

contact through a salt bridge interaction. Further, a central-core-buried hydrophobic surface constituted by the side chains of Val52, Phe55, Phe62, Ile63, Ile25,

Met22, Phe15, and Val11 in chain H and Tyr37, Leu46, Val34, Leu49, Ile53, Ile26, Ile27, Leu30, Ile31, Met23, and Phe20 in chain I stabilizes the interaction core

between the two TraA monomers. Residues Asp9, Lys12, and Ile63 of chain H are in close proximity to Met23 of chain I. Lys64 at the C-terminal end of chain H

interacts with the side chain of Asp18 in chain I through a hydrogen bond. At the N-terminal end of the chains, Leu4 of chain Hmakes contact with Thr14 of chain I.

Asp2 of chain H and Asp10 of chain I form a stabilizing hydrogen bond through their main chain groups.

(C) Interactions between chain I in strand 3 and chains J, K, and L in strand 4. Starting from the top of the panel, residue Leu4 in chain I of strand 3 interacts with

Thr57 and Val54 of chain L in strand 4. Residues Gly7, Lys8, Asp10, Val11, Thr14, Phe15, and Val21 of chain I in strand 3 interact with chain K of strand 4 through

residues Phe62, Val58, Val54, Val50, and Leu47. Finally, Ile31, Val32, and Ala35 in chain I of strand 3 are in proximity to Leu47 and Leu44 of chain J in strand 4,

stabilizing the two chains through hydrophobic interactions.

(D) Interactionbetweenchain I of strand3withchainsF, J, andHof strand2.Starting fromtopof thepanel, residuePhe62 inchain I of strand3 is inproximity toGly7of

chainG in strand 2. Val58 of chain I in strand 3 is in proximity to Val11 and Asp10 of chain G in strand 2, Phe20 of chain H in strand 2, and Leu4 of chain F in strand 2.

Val54 of chain I in strand 3 is surroundedby hydrophobic residues Val11, Phe15 of chainG in strand 2, and Leu4 andAla5 of chain F in strand 2. The residue Val50 of

chain I in strand3 interactswithPhe15andVal21of chainG in strand2andalsowithAla5of chain F in strand2. Leu47 in chain I of strand3 interactswith Ile31of chain

H in strand 2 and Val21 of chain G in strand 2. Finally, Leu44 of chain I in strand 3 is in proximity to Val32 and Ala35 of chain H in strand 2.

All figures and supplementary figures showing structural data were generated using PYMOL (Molecular Graphics System, Version 1.8 Schrödinger, LLC).


	Structure of the Bacterial Sex F Pilus Reveals an Assembly of a Stoichiometric Protein-Phospholipid Complex
	Introduction
	Results and Discussion
	Pilus Production and Structure Determination
	General Architecture of the pED208 and F Pili
	Structure of the TraA Pilin
	The F and F-like Pili Are Helical Assemblies of Stoichiometric Protein-Phospholipid Units
	The Pilin-Lipid Interaction Network in the pED208 Pilus
	Mutational Studies of Lipid-Interacting Residues Confirm the Importance of Lipid Binding in Preserving the Integrity of the ...
	The Pilin-Pilin Interaction Network in the pED208 Pilus
	Conclusions

	Supplemental Information
	Author Contributions
	Acknowledgments
	References
	STAR★Methods
	Key Resources Table
	Contact for Reagent and Resource Sharing
	Method Details
	Pilus Production and Purification
	Cryo-EM Sample Preparation and Data Collection
	Cryo-EM Image Processing and Reconstruction
	Model Building and Refinement
	Mass Spectrometry Analysis of Lipids
	Construction of Mutants
	Negative Stain Electron Microscopy
	Phage Sensitivity Assay
	Conjugation Assay

	Quantification and Statistical Analysis
	Data and Software Availability
	Data Resources




