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Detecting and representing predictable
structure during auditory scene analysis
Ediz Sohoglu*, Maria Chait*

UCL Ear Institute, University College London, London, United Kingdom

Abstract We use psychophysics and MEG to test how sensitivity to input statistics facilitates

auditory-scene-analysis (ASA). Human subjects listened to ‘scenes’ comprised of concurrent tone-

pip streams (sources). On occasional trials a new source appeared partway. Listeners were more

accurate and quicker to detect source appearance in scenes comprised of temporally-regular

(REG), rather than random (RAND), sources. MEG in passive listeners and those actively detecting

appearance events revealed increased sustained activity in auditory and parietal cortex in REG

relative to RAND scenes, emerging ~400 ms of scene-onset. Over and above this, appearance in

REG scenes was associated with increased responses relative to RAND scenes. The effect of

temporal structure on appearance-evoked responses was delayed when listeners were focused on

the scenes relative to when listening passively, consistent with the notion that attention reduces

‘surprise’. Overall, the results implicate a mechanism that tracks predictability of multiple

concurrent sources to facilitate active and passive ASA.

DOI: 10.7554/eLife.19113.001

Introduction
Natural scenes are highly structured, containing statistical regularities in both space and time and

over multiple scales (Julesz, 1981; Portilla and Simoncelli, 2000; Geisler, 2008; McDermott et al.,

2013; Theunissen and Elie, 2014). A growing body of work suggests that the human brain is sensi-

tive to this statistical structure (Rao and Ballard, 1999; Näätänen et al., 2001; Bar, 2004; Oliva and

Torralba, 2007; Costa-Faidella et al., 2011; Garrido et al., 2013; Okazawa et al., 2015;

Barascud et al., 2016) and uses it for efficient scene analysis (Winkler et al., 2009; Andreou et al.,

2011; Bendixen, 2014). Uncovering the process by which this occurs, and how sensory predictability

interacts with attention, is a key challenge in sensory neuroscience across modalities (Winkler et al.,

2009; Summerfield and de Lange, 2014; Summerfield and Egner, 2016).

The current state of understanding is limited by at least two factors: (1) most studies of sensory

predictability and its effects on behavior have used slow presentation rates thus enabling conscious

reflection of stimulus expectancy. As a consequence, relatively little is known about the neural under-

pinning of predictability processing on the rapid time scales relevant to perception of natural

objects. (2) In most cases, predictability has been studied when participants attend to a single object

(Murray et al., 2002; Arnal et al., 2011; Kok et al., 2012; Chennu et al., 2013; Bendixen, 2014) –

a far cry from the complex scenes in which we normally operate. We therefore do not understand

whether/how statistical structure is extracted from complex, crowded scenes. The present work

addresses both of these issues in the context of an auditory scene.

To understand how statistical structure facilitates perceptual analysis of acoustic scenes, we use

an ecologically relevant paradigm (change detection) that captures the challenges of natural listen-

ing in crowded environments (Cervantes Constantino et al., 2012; Sohoglu and Chait, 2016). In

this paradigm, listeners are presented with multiple concurrent acoustic sources and on occasional

trials, a new source appears partway into the ongoing scene (see Figure 1A). By varying the tempo-

ral patterning of scene sources, we can create conditions in which the scenes are characterized by

Sohoglu and Chait. eLife 2016;5:e19113. DOI: 10.7554/eLife.19113 1 of 17

RESEARCH ARTICLE

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.7554/eLife.19113.001
http://dx.doi.org/10.7554/eLife.19113
https://creativecommons.org/
https://creativecommons.org/
http://elife.elifesciences.org/
http://elife.elifesciences.org/
http://en.wikipedia.org/wiki/Open_access
http://en.wikipedia.org/wiki/Open_access


statistically regular or random structure and measure the effect of this manipulation on listeners’ abil-

ity to detect the appearance of new sources within the unfolding soundscape.

The behavioral response pattern reveals that perceptual analysis of such scenes is enhanced by

the presence of regular statistical structure, as assessed by listeners’ ability to detect source appear-

ance. One possible explanation for this effect is that neural responses to regularly repeating scene

components adapt (decrease over time) more than to random components. Indeed, perceptual influ-

ences of statistical structure have often been attributed to neural adaptation (e.g. ’stimulus specific

adaptation’; May et al., 1999; Jääskeläinen et al., 2004; Haenschel et al., 2005; Costa-

Faidella et al., 2011; ; Khouri and Nelken, 2015). Accordingly, the relative change in neural

response to a new spectral component (that is, the appearing source) will be larger and thus more

detectable in regular versus random scenes (Summerfield et al., 1987; Hartmann and Goupell,

2006; Erviti et al., 2011). By this account, statistical structure does not modulate the magnitude of

neural response to a new event per se. Rather, improved detection is attributed exclusively to

decreased neural responses occurring before the appearance of the new source. Indeed, in a mis-

match negativity paradigm, Costa-Faidella (2011) demonstrated that neural responses to repeating

(‘standard’) tones adapt more in temporally regular than random sequences without accompanying

changes in response to new (‘deviant’) tones (see also Schwartze et al., 2011, 2013; Tavano et al.,

2014).

However, other work has shown that statistically regular patterns can be associated with

increased neural responses (Haenschel et al., 2005; Kok et al., 2012; Chennu et al., 2013;

Hsu et al., 2014; Kouider et al., 2015; Barascud et al., 2016). These effects have been interpreted

to reflect a mechanism that tracks the level of predictability or ‘precision’ of the sensory input, a

measure inversely related to the uncertainty or entropy of a variable. This mechanism is hypothesized

eLife digest Everyday environments like a busy street bombard our ears with information. Yet

most of the time, the human brain quickly and effortlessly makes sense of this information in a

process known as auditory scene analysis. According to one popular theory, the brain is particularly

sensitive to regularly repeating features in sensory signals, and uses those regularities to guide

scene analysis. Indeed, many biological sounds contain such regularities, like the pitter-patter of

footsteps or the fluttering of bird wings.

In most previous studies that investigated whether regularity guides auditory scene analysis in

humans, listeners attended to one sound stream that repeated slowly. Thus, it was unclear how

regularity might benefit scene analysis in more realistic settings that feature many sounds that

quickly change over time.

Sohoglu and Chait presented listeners with cluttered, artificial auditory scenes comprised of

several sources of sound. If the scenes contained regularly repeating sound sources, the listeners

were better able to detect new sounds that appeared partway through the scenes. This shows that

auditory scene analysis benefits from sound regularity.

To understand the neurobiological basis of this effect, Sohoglu and Chait also recorded the brain

activity of the listeners using a non-invasive technique called magnetoencephalography. This activity

increased when the sound scenes featured regularly repeating sounds. It therefore appears that the

brain prioritized the repeating sounds, and this improved the ability of the listeners to detect new

sound sources.

When the listeners actively focused on listening to the regular sounds, their brain response to

new sounds occurred later than seen in volunteers who were not actively listening to the scene. This

was unexpected as delayed brain responses are not usually associated with active focusing.

However, this effect can be explained if active focusing increases the expectation of new sounds

appearing, because previous research has shown that expectation reduces brain responses.

The experiments performed by Sohoglu and Chait used a relatively simple form of sound

regularity (tone pips repeating at equal time intervals). Future work will investigate more complex

forms of regularity to understand the kinds of sensory patterns to which the brain is sensitive.

DOI: 10.7554/eLife.19113.002
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to enable the up-regulation of processing for information that is reliable and likely to indicate genu-

ine events in the environment (Feldman and Friston, 2010; Zhao et al., 2013; Auksztulewicz and

Friston, 2015; Barascud et al., 2016). Importantly, the up-regulation of neural processing in these

accounts is hypothesized to lead to increased neural responses for regular scenes before source

appearance, as well as an increased error (‘surprise’) response evoked by the new source.

In the current study we adjudicate between adaptation and precision accounts using magnetoen-

cephalography (MEG) recordings of brain activity. Given the ongoing debate about how the neural

influence of statistical regularity might depend on attention (Jones and Boltz, 1989;

Näätänen et al., 2001; Summerfield and Egner, 2009; Winkler et al., 2009; Feldman and Friston,

2010; Kok et al., 2012; Bendixen, 2014; Schröger et al., 2015), we do this in the context of pas-

sive listening (listeners engaged in an unrelated visual task) as well as active listening (listeners

actively detecting source appearance). Our results provide evidence in support of precision

accounts: we show that brain responses to ongoing acoustic scenes, and to new sources appearing

within those scenes, increase in the presence of regular statistical structure. Strikingly, the effect of

regularity on appearance detection is delayed when listeners are actively focused on the scenes
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Figure 1. Stimuli and behavior. (A) Examples of REG and RAND scenes. The plots represent ‘auditory’ spectrograms, equally spaced on a scale of ERB-

rate (Moore and Glasberg, 1983). Channels are smoothed to obtain a temporal resolution similar to the Equivalent Rectangular Duration (Plack and

Moore, 1990). Black arrows indicate appearing sources. In these examples, the appearing source is temporally regular. The stimulus set also included

scenes in which the appearing source was temporally random (see Materials and methods). (B) Behavioral results (d’ and detection time) as a function of

scene temporal structure (REG versus RAND). These are shown for each type of scene change (when the appearing source was temporally regular or

when random). Error bars represent within-subject standard error of the mean (SEM; Loftus and Masson, 1994).

DOI: 10.7554/eLife.19113.003
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rather than listening passively. This latter finding suggests (somewhat counter intuitively) that active

listening can counteract the influence of regularity but is consistent with attention acting to reduce

‘surprise’ (Spratling, 2008; Chennu et al., 2013).

Results

Behavioral data
Listeners’ source appearance detection performance in the Active group is shown in Figure 1B. Lis-

teners were more accurate and quicker to detect source apperance when the scene structure was

temporally regular (REG) versus random (RAND; d’ F(1,12) = 100.7, p<0.001; detection times F(1,12)

= 17.61, p<0.01). This effect occurred independently of the temporal structure of the appearing

component (d’ F(1,12) = 0.075, p=0.789; detection times F(1,12) = 4.23, p=0.062). Additionally, lis-

teners were quicker (by ~27 ms) to detect source appearance when it was temporally regular (detec-

tion times F(1,12) = 5.70, p<0.050), although this effect did not extend to d’ (F(1,12) = 2.29,

p=0.156). Thus temporally regular scenes are associated with enhanced detection performance and

in a manner independent of the temporal structure of the appearing source. Overall, the mean hit

rate was high (mean = 76.1%, ranging from 57 to 97% across listeners) and mean false alarm rate

low (mean = 6.25%, ranging from 0 to 18.8%).

MEG data
Scene-evoked response
The neural response evoked by scene onset (i.e. prior to any scene change) is characterized by a

series of deflections at around 80, 110 and 200 ms, with topographies corresponding to the com-

monly observed M50, M100 and M200 onset-response components (Eggermont and Ponton,

2002). From around 300 ms post onset, the response settles to a sustained amplitude.

We searched for differences between responses to the onset of REG and RAND scenes using

cluster-based permutation statistics (shown in Figure 2). Scene temporal structure had a significant

effect on the evoked response from 436 ms in the Passive group and from 476 ms in the Active

group, involving an increase in the sustained response for REG versus RAND conditions (temporal

clusters with FWE corrected significance are indicated as thick horizontal green bars in Figure 2;

uncorrected clusters are shown as thin light-green bars). The topographical patterns for REG and

RAND conditions (averaged over the 500–800 ms period of the sustained response) were qualita-

tively similar in both Passive and Active groups (also shown in Figure 2).

To test whether the onset latency of the scene structure effect was significantly different between

groups, we used a jackknife resampling procedure previously shown to be highly sensitive to latency

effects (Miller et al., 1998; Ulrich and Miller, 2001). This involved repeatedly resampling the grand

averaged RMS time-course and for each subsample, computing the earliest latency at which

the REG versus RAND difference was larger than variability in the baseline period (see Materials and

methods). Mean onset latencies for each group are shown as vertical purple lines in Figure 2 (289

ms for Passive; 412 ms for Active). Although the scene structure effect emerged on average, 123 ms

earlier in the Passive versus Active groups, there was no significant difference in onset latency

between groups (jackknife adjusted two-sample t(25) = �1.35, p=0.188). Neither was there a main

effect of group (p=0.48) or scene structure by group interaction (p=0.31) when conducting ANOVA

on the magnitude of the sustained response (averaged from 500–800 ms). This was also the case for

earlier time-windows during the M50, M100 and M200 components (all p’s >0.19).

In summary, when MEG responses are timelocked to scene onset, regular scene structure results

in an increased MEG response from around 400 ms post scene onset. Furthermore, the scene-

evoked response shows no evidence of attentional modulation, either in terms of an overall differ-

ence between Passive and Active groups or the interaction between scene structure and group.

Appearance-evoked response
The appearance-evoked response is shown in Figure 3. Note that these data have been baseline

corrected relative to the 200 ms period prior to the appearance event. Thus, effects reported in this

section are specific to the appearance-evoked response and not merely a reflection of the pre-exist-

ing REG versus RAND effect observed for the scene-evoked response.
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In the Active group, the appearance-evoked response is characterized by a typical pattern of

M50/M100/M200 deflections frequently observed at sound onset (as seen above) and following

changes within an ongoing sound sequence (Martin and Boothroyd, 2000; Gutschalk et al., 2004;

Chait et al., 2008; Sohoglu and Chait, 2016). Although the responses here are characterized by

later latencies (around 90, 150 and 300 ms, respectively) than those typically observed in other stud-

ies that report similar deflections. This may be due to the higher complexity of the present stimuli,

which is known to lead to delayed responses (see e.g. Chait et al., 2008; Sohoglu and Chait, 2016).

M50 and M200 deflections are also observed in the Passive group but we note with interest the

absence of a prominent M100 component, consistent with previous reports of this component being

particularly sensitive to attention and/or task-related demands (Ahveninen et al., 2011; Ding and

Simon, 2012; Königs and Gutschalk, 2012; Sohoglu and Chait, 2016).

As shown in Figure 3A, cluster-based statistics showed a significant effect of scene structure on

the appearance-evoked response from 96 ms in the Passive group and from 260 ms in the Active

group, both involving an increased neural response for REG versus RAND conditions. This effect was

apparent in the Passive group already at the earliest M50 component while in the Active group, it

was confined to later components of the evoked response (M200 at corrected significance; M100

uncorrected). As shown in Figure 3A, the topographical patterns for REG and RAND conditions

were qualitatively similar in both Passive and Active groups.

As described previously, the appearance-evoked response was derived by baseline correcting rel-

ative to the 200 ms period prior to source appearance and therefore the measured effect of REG

versus RAND is distinct to that observed for the scene-evoked response. To confirm this, we also

analyzed matched trials in which there was no change (no appearing source; shown as transparent

traces in Figure 3A). For this analysis, no effect of REG versus RAND was observed, confirming that

scene structure modulates the appearance-evoked response in addition to the scene-evoked

response.

The cluster-based permutation statistics above imply an interaction between scene structure and

group involving an earlier effect of scene structure in Passive versus Active groups. To directly test

this interaction, we estimated the onset latency of the scene structure effect using the jackknife pro-

cedure and assessed whether this latency differed significantly between groups. The scene structure

effect was estimated to occur on average, 55 ms earlier in Passive versus Active groups (mean onset

latency = 87 ms for Passive; 142 ms for Active). This difference was confirmed significant using a

jackknife adjusted independent samples test (t(25) = �3.96, p<0.001). This analysis is consistent with

the cluster-based permutation statistics above also suggesting a scene structure effect on the early

M50 component only in the Passive group. To further characterize this scene structure by group

interaction on the M50 peak, a post-hoc between-group t-test (one-tailed) was conducted on the dif-

ference in MEG response between REG and RAND conditions at the time of the appearance-evoked

M50 (72–112 ms). As shown in Figure 3B, the difference in MEG response between REG and RAND

conditions was significantly stronger in Passive versus Active groups (t(25) = 1.78, p<0.05.).

An alternative explanation of the interaction between group and scene structure is possible if the

M50 and M100 peaks reflect independent but temporally and spatially overlapping components. By

this account, the increased response for REG versus RAND scenes at the M50 does not differ

between Passive and Active groups. Rather, REG scenes result in an increased M100 in Active listen-

ers that causes a reduction in the M50 (due to their opposite polarities; see topographic plots in

Figure 3A). To explore this possibility, we selected the twenty most positive and twenty most nega-

tive channels at the time of the M50 deflection (72–112 ms; pooling over REG and RAND condi-

tions). The MEG signal was then averaged across channels within these two (positive and negative)

groupings and the resulting time-courses analyzed (shown in Figure 3—figure supplement 1). As

this analysis is based on the mean (rather than RMS) neural response across channels, the polarity of

the signal is preserved and thus potentially provides a more accurate representation of the underly-

ing dynamics. Furthermore, the selection of channels based on the M50 deflection would be

expected to attenuate interfering responses from the M100 component. As shown in Figure 3—fig-

ure supplement 1, consistent with the earlier RMS analysis, the M50 showed a larger response for

REG versus RAND scenes in Passive but not in Active listeners. This is despite the M100 showing no

evidence of modulation by scene structure in Active listeners (even at an uncorrected threshold of

p<0.05), making it unlikely the pattern of results reflect a suppression of the M50 by the M100.
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The appearance-evoked response as a function of the temporal structure of the appearing source

was also analyzed and is shown in Figure 3C. Despite listeners’ detection times being somewhat

quicker when the appearing source was temporally regular versus random (by ~27 ms on average

across the group; shown earlier in Figure 1B), no significant differences in MEG response were

observed in Passive or Active groups. Neither was there a significant interaction between scene and

appearing source structure. However, we cannot rule out modulation of more temporally variable

neural processes not captured by the evoked analysis employed here. Since the behavioral effects

were only observed in detection times, it is also possible that the relevant brain activity is masked by

motor response-related processes.

Source reconstruction
Finally, we localized the neural generators of the scene structure effect. As shown in Figure 4A, the

scene-evoked response (averaged from 500 to 800 ms) showed greater source power for REG versus

RAND scenes in both hemispheres of the superior temporal lobe, including primary auditory cortex,

planum temporale and the superior temporal gyrus (peak voxel locations are reported in Table 1).

An additional distinct cluster of activation is observed in left post central gyrus of the superior parie-

tal lobe.

For the appearance-evoked response, we focused on the scene structure by group interaction

([REG>RAND] > [Passive>Active]) that emerged during the early M50 component. As shown in

Figure 4B, this effect localized to similar regions as for the scene-evoked response: superior/middle

temporal lobe (albeit in the right hemisphere only) and post central gyrus. Additional activation is

observed more anteriorly in the pre central gyrus, extending into the middle frontal gyrus.
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Figure 2. RMS time-course of the scene-evoked response showing the main effect of scene temporal structure (REG versus RAND). Thick horizontal

green lines indicate time points for which there were significant differences between REG and RAND conditions (p<0.05 FWE corrected at the cluster

level; Thin light-green lines show uncorrected clusters). Purple lines indicate (jackknife-estimated) latencies of the onset of the REG versus RAND effect

(horizontal and vertical portions indicate mean and jackknife-corrected standard error, respectively). Also shown are topographical patterns at the time

of the sustained response (500–800 ms post scene onset), which are characterized by a dipole-like pattern over the temporal region in each hemisphere

indicating downward flowing current in auditory cortex (red = source; blue = sink).
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([REG>RAND]>[Passive>Active]). Error bars represent within-subject standard error of the mean (computed separately for Passive and Active groups.

(C) Same as panel A but showing main effect of appearing source structure (temporally regular versus random). See also Figure 3—figure supplement

1 for the MEG time-course averaged over selected sensors responsive to the appearance-evoked M50 component.

DOI: 10.7554/eLife.19113.005

Figure 3 continued on next page
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Discussion
The present study used psychophysics and MEG recordings of brain activity to understand how reg-

ular temporal structure facilitates auditory scene analysis. We demonstrate that listeners’ ability to

detect the appearance of a new source was enhanced in temporally regular scenes. These behavioral

benefits of statistical structure on scene analysis are associated with increased neural responses

occurring before as well as after source appearance.

Adaptation versus precision
Around 400 ms following scene onset, we observed an increase in the sustained MEG response for

scenes consisting of regularly structured, relative to randomly fluctuating sources. This finding is

opposite to what would be expected based on adaptation i.e. decreased neural responses for tem-

porally regular events, which has previously been observed for isolated tone sequences (Costa-

Faidella et al., 2011; Schwartze et al., 2013; Tavano et al., 2014). It is however consistent with a

mechanism that infers the precision (predictability) of sensory input and uses this information to up-

regulate neural processing towards more reliable sensory signals (Feldman and Friston, 2010;

Zhao et al., 2013; Auksztulewicz and Friston, 2015; Barascud et al., 2016). Indeed, it has recently

been demonstrated that the magnitude of sustained MEG activity (from naı̈ve distracted listeners)

tracks the predictability of rapid tone sequences (Barascud et al., 2016). In that study, regularity

was characterized by a spectral pattern repeating over time within a single ongoing tone sequence.

Although distinct to the temporal regularity studied here, the ensuing effect on MEG response is

strikingly similar to the sustained effect we observe. Importantly, the current findings demonstrate

mechanisms that automatically (irrespective of directed attention) and rapidly (within 400 ms of

scene onset) encode regularities distributed over many concurrent sources, typical of natural listen-

ing environments.

If the auditory system can form precise models about the content of ongoing scenes, novel events

that violate those models would evoke greater neural responses and be perceived as more salient.

Indeed, listeners were better and faster at detecting an appearing source in regular versus random

scenes. The MEG response in naı̈ve, passively listening subjects revealed a large (22%) increase in

the evoked response starting from the very first response deflection (M50 component) following

source appearance. Importantly, this effect occurred over and above that observed prior to the

appearance event, demonstrating bottom-up driven ‘surprise’ responses tightly linked to the

predictability of the ongoing scene context. Interestingly, the REG>RAND effect emerged

substantially later when participants were actively attending to the appearance events. More discus-

sion of that is below.

Overall, the results demonstrate that the enhanced detection performance observed in behavior

is not solely the result of changes in neural responses occurring prior to source appearance (cf. adap-

tation accounts; May et al., 1999; Jääskeläinen et al., 2004) but also due to enhanced neural

responses to novel events themselves. This is again what would be expected based on precision

accounts and is also consistent with animal physiology work showing that the magnitude of

responses in single neurons of auditory cortex to new (‘deviant’) tones is larger than expected based

on simple adaptation to previously repeated (‘standard’) tones alone (Khouri and Nelken, 2015).

Neural sources
Source reconstruction suggests that neural responses in a network of brain regions are modulated

by scene temporal structure, including early auditory regions in the superior temporal lobe but also

left parietal cortex (post central gyrus). This is consistent with evidence from neuroimaging

(Rao et al., 2001; Coull and Nobre, 2008; Andreou et al., 2015), electrophysiology (Leon et al.,

2003; Janssen and Shadlen, 2005) and lesion studies (Harrington et al., 1998; Battelli et al.,

2008) implicating a specific role for left parietal cortex in temporal processing. Parietal cortex has

Figure 3 continued

The following figure supplement is available for figure 3:

Figure supplement 1. MEG time-course averaged over selected sensors responsive to the appearance-evoked M50 component.

DOI: 10.7554/eLife.19113.006
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also been associated with figure-ground processing when the figure is defined by temporally repeat-

able spectral components in an otherwise randomly structured background (Teki et al., 2011;

Teki et al., 2016). Thus, together the current study and previous findings suggest parietal cortex

may be part of a wider network (along with auditory cortical regions) that codes the temporal struc-

ture of acoustic scenes. Alternatively, the parietal activity changes we observe may reflect a more

domain-general increase in bottom-up saliency attributable to regularity (Corbetta and Shulman,

2002; Zhao et al., 2013).

We note however that although Barascud et al. (2016) report effects of statistical structure in

early auditory regions (like the current findings), they did not observe changes in MEG and fMRI

responses in parietal cortex. Instead, spectral regularity modulated activity in the inferior frontal

gyrus. This is may suggest a degree of neural specialization for the particular type of regularity

encoded e.g. temporal-based involving parietal cortex versus spectral-based involving inferior fron-

tal regions. Future work is required however to determine whether temporal and spectral regularities

are encoded by distinct neural substrates (e.g. by contrasting neural effects of temporal and spectral

regularities in the same experiment).

Role of attention
Following scene onset (prior to new source appearance), the neural influence of regularity showed

no evidence of attentional modulation (the strength of the scene-evoked response to regularly and

randomly structured scenes was statistically indistinguishable in passive compared with active listen-

ing subjects). This suggests that the brain automatically encodes scene regularities, irrespective of

directed attention. After the appearance of a new source, however, regularity and attention had an

interactive influence on the evoked response; whereas the first cortical deflection of the appearance-

A Scene-evoked (500-800 ms post scene onset)

[REG>RAND] > [Passive>Active]

B Appearance-evoked (72-112 ms post appearance)

REG>RAND

Left

Left

p<.001

p<.0001

p<.01

p<.001

Figure 4. Source reconstruction. (A) Main effect of scene temporal structure at the time of the sustained portion of

the scene-evoked response (500–800 ms post scene onset). Statistical map is overlaid onto an MNI space template

brain, viewed over the left and right hemispheres. Color-bar indicates statistical threshold. (B) [REG>RAND]>

[Passive>Active] interaction at the time of the appearance-evoked M50 component (72–112 ms post appearance).

DOI: 10.7554/eLife.19113.007
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evoked response (M50) increased in regular scenes during passive listening, this effect was confined

to later deflections (M100 and M200) when listeners actively detected source appearance.

How the neural influence of regularity might depend on attention is the subject of ongoing

debate (Jones and Boltz, 1989; Näätänen et al., 2001; Summerfield and Egner, 2009,

2016; Winkler et al., 2009; Feldman and Friston, 2010; Kok et al., 2012; Bendixen, 2014;

Summerfield and de Lange, 2014; Schröger et al., 2015). One proposal is that attention (like regu-

larity) acts to determine the inferred precision of sensory input (Friston, 2009; Barascud et al.,

2016). In this view, attention increases precision (and neural responses) when sensory signals are

task-relevant. In this case inferred precision is changed not by the intrinsic structure of the stimulus

(e.g. whether temporally regular or random) but by the behavioral goals of the listener. As precision

is hypothesized to have a multiplicative (gain) influence on neural activity, this account would have

predicted attentional enhancement of the regularity effect. Indeed, Hsu et al. (2014) demonstrated

greater EEG responses for predictable (ascending) pitch patterns, which was most apparent when

those patterns were embedded in an attended stream. In contrast to this pattern, attention in our

study delayed the influence of regularity on appearance-related responses.

How then might the current attentional effect be explained? We suggest that attention in our

study acted as a form of expectation. That is, when listeners actively detected source appearance,

scene changes were relatively more expected. If change-related responses reflect the amount of

‘surprise’ given the preceding stimulus context, then they should diminish when change is expected

and counteract the precision-mediated increase from regularity. Thus, although counterintuitive, the

later benefit from regularity when listeners are actively seeking source appearance is consistent with

attention acting to reduce surprise.

Table 1. Peak voxel locations (in MNI space) and summary statistics from source reconstruction. Activations for the scene-evoked

analysis are for the REG>RAND contrast (500–800 ms post scene onset) while those for the appearance-evoked analysis are for the

[REG>RAND]>[Passive>Active] interaction contrast (72–112 ms post appearance). Activations have been thresholded using the same

parameters as for Figure 4 (p<0.001 for scene-evoked; p<0.01 for appearance-evoked) but with an additional cluster extent threshold

of n > 15 voxels (for display purposes).

MNI Coordinates

Analysis Region Side Extent t-value x y z

Scene-evoked Planum Temporale/Parietal Operculum Left 1418 5.2779 �48 �28 16

(500-800 ms post scene onset) 4.364 �62 �50 14

3.9777 �52 �30 -4

Postcentral Gyrus Left 204 4.8082 �32 �36 64

Supramarginal Gyrus Right 704 4.2469 64 �24 24

3.7176 44 �6 16

Planum Temporale Right 582 3.9459 64 �16 6

3.9252 46 �26 6

Precentral Gyrus Right 19 3.6051 60 6 18

Appearance-evoked Precentral Gyrus Left 190 3.2219 �50 �6 44

(72-112 ms post appearance) 2.9902 �34 6 38

Precentral Gyrus/Central Operculum Right 711 3.1966 56 0 10

3.0153 56 4 �10

2.9101 36 �8 16

Middle Temporal Gyrus Right 157 2.9859 58 �2 �24

Middle Temporal Gyrus Right 55 2.6951 52 �54 8

Precentral Gyrus Right 21 2.6444 54 �4 40

Postcentral Gyrus Left 16 2.5982 -30 �34 68

DOI: 10.7554/eLife.19113.008
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In the auditory modality, the mismatch negativity (MMN) response is often interpreted as reflect-

ing ‘surprise’ (Näätänen et al., 2007; Garrido et al., 2009). The M50 effect we observe occurs ear-

lier and with a distinct topography to the MMN, but may relate to novelty effects on the so-called

‘middle-latency’ responses (~40 ms) revealed in other work (Chait et al., 2007, 2008; Grimm et al.,

2011; Recasens et al., 2014).

While the proposal that attention acts to reduce surprise may appear at odds with the wide-

spread view of attention playing a distinct functional role to expectation (Summerfield and Egner,

2009, 2016), one associated with enhanced neural processing of attended signals (Desimone and

Duncan, 1995; Fritz et al., 2003), it is consistent with previous observations. In Chennu et al.

(2013), listeners were presented with tone sequences containing regularities unfolding over multiple

(local and global) timescales. When listeners were instructed to detect deviant tones on a local time-

scale, the mismatch negativity component indexing that local regularity was attenuated compared

with when listeners detected global deviants. The authors interpreted this suppression effect as

reflecting reduced surprise from ’top-down expectation (or bias) and consequent attentional

focus’. Similarly, Spratling (2008) argues that attention and expectation are part of the same gen-

eral class of top-down signal that act in a similar fashion to modulate perceptual processing. Thus, in

this view, the distinction between attention and expectation is blurred and whether these phenom-

ena result in increased or decreased neural processes will depend on the precise details of the stim-

uli and behavioral demands (Schröger et al., 2015; Henson, 2016). In this respect, we note that

previous investigations of regularity and attention employed static or relatively slow-evolving stimuli

(1–5 Hz) and often containing a single perceptual object (image of a face or tone sequence). This

may have enabled conscious awareness of stimulus content, involving distinct processes to those rel-

evant to the rapidly evolving and complex scenes employed here and, arguably, to the perceptual

challenges faced in natural environments.

Materials and methods

Participants
Two groups of participants were tested after being informed of the study’s procedure, which was

approved by the research ethics committee of University College London. The two groups differed

in whether participants’ attention was directed away (‘Passive’ group) or towards (‘Active’ group)

auditory stimulation (see Procedure section below). The Passive group comprised 14 (6 female) par-

ticipants aged between 19 and 34 years (mean = 23.6, SD = 4.68). All but one of these participants

was right-handed. The Active group comprised 13 (7 female), different, right-handed participants

aged between 18 and 33 years (mean = 24.3, SD = 4.91). All reported normal hearing, normal or

corrected-to-normal vision, and had no history of neurological disorders. There were no significant

differences between groups in terms of gender (two-tailed c(1) =. 326, p=0.568) or age (two-tailed t

(25) = 0.35, p= 0.73).

Stimuli
Stimuli were 2500–3500 ms duration artificial acoustic ‘scenes’ populated by seven to eight streams

of pure-tones designed to model auditory sources (shown in Figure 1A). Each of these sources had

a unique carrier frequency (drawn from a pool of fixed values spaced at 2*ERB between 200 and

2800 Hz; Moore and Glasberg, 1983) and temporal structure (see below). Previous experiments

have demonstrated that these scenes are perceived as composite ‘sound-scapes’ in which individual

sources can be perceptually segregated and selectively attended to, and are therefore good models

for listening in natural acoustic scenes (Cervantes Constantino et al., 2012). The large spectral sep-

aration between neighboring sources (at least two ERBs) was chosen to minimize energetic masking

at the peripheral stages of auditory processing (Moore, 1987). Signals were synthesized with a sam-

pling rate of 44,100 Hz and shaped with a 30 ms raised cosine onset and offset ramp. They were

delivered diotically to the subjects’ ears with tubephones (EARTONE 3A 10 W, Etymotic Research,

Inc) and adjusted to a comfortable listening level.

As shown in Figure 1A, a scene change involving the appearance of a new source, could occur

partway through the stimulus. The timing of source appearance varied randomly (uniformly distrib-

uted between 1000 ms and 2000 ms post scene onset). To facilitate evoked response analysis, the
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interval between the time of source appearance and scene offset was fixed at 1500 ms. In the other

half of scenes presented, no change occurred (‘No Change’). The specific configuration of carrier fre-

quencies and temporal modulation patterns varied randomly across scenes. To enable a controlled

comparison between conditions, scenes with and without appearing sources were derived from the

same configurations of carrier frequencies and modulation patterns, and then presented in random

order during the experiment.

The duration of the tone-pips comprising each source (varying uniformly between 22 and 167 ms)

and the silent interval between tone-pips (varying uniformly between 1 and 167 ms) were chosen

independently. In ‘Regular’ (REG) scenes, these tone/silence intervals were fixed so that the tempo-

ral structure was regular. This pattern mimics the regularly modulated temporal properties of many

natural sounds. In ‘Random’ (RAND) scenes, tone duration was also fixed but the silent intervals

between successive tones varied randomly (with the same distribution as REG scenes i.e. 1–167 ms)

resulting in an irregular pattern. Importantly, the above manipulation of scene temporal structure

was applied independently of the regularity of the appearing source: Appearing sources could be

regular or random (equal proportion), independently of the regularity of the rest of the scene (REG

or RAND; equal proportion). Stimuli were randomly ordered during each of eight presentation

blocks of 96 trials. The inter-stimulus interval varied randomly between 900 and 1100 ms.

Procedure
Stimulus delivery was controlled with Cogent software (http://www.vislab.ucl.ac.uk/cogent.php). In

the Passive group, participants were naı̈ve to the sounds and engaged in an incidental visual task

while looking at a central fixation cross. Participants in this group were instructed to press a button

(with their right hand) each time a brief (100 ms duration) image of a pre-defined (target) object

appeared on the display at fixation. The target was different on each block and was presented rarely

(20%) amongst a stream of non-target images. The inter-image interval ranged from around 500 to

4000 ms and was randomly timed with respect to auditory stimulation. Hit rates ranged from 81 to

95% with false alarm rates below 1%, confirming engagement with the task. In the Active group, par-

ticipants were instructed to listen carefully to the sounds while looking at a central fixation cross and

press a button (with their right hand) as soon as they detected a change in each acoustic scene.

Before the experiment, participants in both groups completed a brief (~2.5 min) practice session to

familiarize themselves with the task.

Behavioral statistical analysis
d’ scores were obtained for the Active group by first computing for each subject and condition, the

hit rate (proportion of source appearances correctly detected) and false alarm rate (proportion of

‘No Change’ trials for which responses were made). Following this, each d’ score was computed as

the difference in the z-transformed hit rate and false alarm rate. Detection time was measured

between the time of new source appearance and the subject’s key press.

MEG data acquisition and pre-processing
Magnetic fields were recorded with a CTF-275 MEG system, with 274 functioning axial gradiometers

arranged in a helmet shaped array. Electrical coils were attached to three anatomical fiducial points

(nasion and left and right pre-auricular), in order to continuously monitor the position of each partici-

pant’s head with respect to the MEG sensors.

The MEG data were analyzed in SPM12 (Wellcome Trust Centre for Neuroimaging, London, UK)

and FieldTrip (Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen,

the Netherlands) software implemented in Matlab. The data were downsampled to 250 Hz, low-pass

filtered at 30 Hz and epoched �200 to 800 ms relative to scene onset (to obtain the scene-evoked

response) or �200 to 400 ms relative to the time of the appearance event (to obtain the appear-

ance-evoked response). This epoch encompassed detection-related brain processes leading up to

the initiation of the behavioral response in the Active group, which ranged from 465 to 911 ms

across participants and conditions. After epoching, the data were baseline-corrected relative to the

200 ms period prior to scene onset (for the scene-evoked data) or prior to the time of source

appearance (for the appearance-evoked data).
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Subsequent preprocessing differed depending on whether the analysis was conducted in sensor-

or source-space. For sensor-space analysis, any trials in which the data deviated by more than three

standard deviations from the mean were discarded. Following outlier removal, Denoising Source

Separation (DSS) was applied to maximize reproducibility of the evoked response across trials

(de Cheveigné and Simon, 2008; de Cheveigné and Parra, 2014). For each subject, the first two

DSS components (i.e., the two ‘most reproducible’ components; determined �200 to 800 ms rela-

tive to scene onset) were retained and used to project both the scene-evoked and appearance-

evoked data back into sensor-space, which were then averaged across trials. For source-space analy-

sis, DSS was not performed. Instead, the data were robust averaged across trials to downweight out-

lying samples (Wager et al., 2005; Litvak et al., 2011). To remove any high-frequency components

that were introduced to the data by the robust averaging procedure, low-pass filtering was repeated

after averaging.

Note that although images were presented only in the Passive group, auditory and visual events

were temporally uncorrelated. Thus, in both Passive and Active groups, our MEG measures are

expected to reflect primarily auditory (and not visual) evoked activity.

MEG statistical analysis
MEG data across the sensor array were summarized as the root mean square (RMS) across sensors

for each time sample within the epoch period, reflecting the instantaneous magnitude of neuronal

responses. Group-level paired t-tests were performed for each time sample while controlling the

family-wise error (FWE) rate using a non-parametric (cluster-based) permutation procedure based on

5000 iterations (Maris and Oostenveld, 2007). Reported effects were obtained by using a cluster

defining height threshold of p<0.05 with a cluster size threshold of p<0.05 (FWE corrected), unless

otherwise stated.

Statistical tests of evoked response latency differences were conducted on subsamples of the

grand averaged RMS time-course using the jackknife procedure (Efron, 1981). In the jackknife pro-

cedure, the grand averaged data are resampled n times (with n being the number of participants)

while omitting one participant from each subsample. Statistical reliability of an effect can then be

assessed using standard tests (e.g. t-test), not across individual participants, but across subsamples

of the grand average. This technique has been shown to be superior to computing latency differen-

ces from individual participant data because of the higher signal-to-noise ratio associated with grand

averages (Miller et al., 1998; Ulrich and Miller, 2001). Jackknife-estimated latencies of the scene

structure effect were determined by first computing the difference waveform between REG and

RAND scenes and then for each jackknife subsample, computing the first latency at which the magni-

tude of the difference waveform deviated by more than three standard deviations from the mean

RMS across time in the baseline period (�200 to 0 ms). When using the jackknife procedure, t-statis-

tics were corrected following the procedure in Miller et al. (1998) (multiplication of the subsample

standard error by a factor of n-1).

To determine the underlying brain sources of the sensor-space effects, we used a distributed

method of source reconstruction, implemented within the parametric empirical Bayes framework of

SPM12 (Phillips et al., 2005; Litvak and Friston, 2008; Henson et al., 2011). Participant-specific

forward models were computed using a Single Shell model and sensor positions projected onto an

MNI space template brain by minimizing the sum of squared differences between the digitized fidu-

cials and the MNI template. For inversion of the forward model, we used the ‘LOR’ routine in

SPM12, which assumes that all sources are activated with equal apriori probability and with weak

correlation to neighboring sources. This was applied to the entire epoch (�200 to 800 ms for scene-

evoked data; �200 to 400 ms for appearance-evoked data).

Source solutions were constrained to be consistent across subjects (pooled over Passive and

Active groups), which has been shown to improve group-level statistical power (Litvak and Friston,

2008; Henson et al., 2011). In brief, this procedure involves 1) realigning and concatenating sensor-

level data across subjects 2) estimating a single source solution for all subjects 3) using the resulting

group solution as a Bayesian prior on individual subject inversions. Thus, this method exploits the

availability of repeated measurements (from different subjects) to constrain source reconstruction.

Importantly, however, this procedure does not bias activation differences between conditions in a

given source.
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Significant effects from sensor-space were localized within the brain (in MNI space, constrained to

gray matter) after summarizing source power in the 0–30 Hz range for each participant and time-win-

dow of interest using a Morlet wavelet projector (Friston et al., 2006). Given that the goal of source

reconstruction was to localize the neural generators of sensor-space effects previously identified as

significant, statistical maps of source activity are displayed with uncorrected voxelwise thresholds

(Gross et al., 2012).
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Näätänen R, Paavilainen P, Rinne T, Alho K. 2007. The mismatch negativity (MMN) in basic research of central
auditory processing: a review. Clinical Neurophysiology 118:2544–2590. doi: 10.1016/j.clinph.2007.04.026
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