Comparison of Rectus Femoris Cross-sectional Area and Rectus Femoris-Vastus Intermedius Muscle Layer Thickness as Markers of Muscle Wasting and Weakness During Early Critical Illness

Puthucheary ZA, PhD1,2,3, McNelly AS, PhD2,4, Rawal J, MRCs4, Connolly B, PhD5,6,8, Sidhu PS FRCR7, Rowlerson A PhD8, Moxham J, MD9, and Harridge SD PhD8, Hart N, PhD6,9, Montgomery HE, MD2,4.

1Division of Critical Care, University College London Hospitals NHS Foundation Trust, London, UK; 2NIHR Comprehensive Biomedical Research Centre, University College London Hospitals, London, UK; 3Division of Respiratory and Critical Care, University Medicine Cluster, National University Health System Singapore; 4Institute of Sport, Exercise and Health, UCL/University College London Hospitals, London, UK; 5NIHR Biomedical Research Centre, Guy’s & St Thomas’ NHS Foundation Trust and King’s College London, London, UK; 6Lane Fox Clinical Respiratory Physiology Research Centre, Guy’s & St Thomas’ NHS Foundation Trust, London, UK; 7Department of Radiology, King’s College Hospital NHS Foundation Trust, London, UK; 8Centre of Human and Aerospace Physiological Sciences, King’s College London, London, UK; 9Department of Asthma, Allergy and Lung Biology, King’s College London, London, UK.

Word Count 988

Corresponding author details:
Dr Zudin Puthucheary, PhD

Institute of Human Health and Performance, University College London

1st Floor, Institute for Sport, Exercise and Health, 170 Tottenham Court Road,

London, W1T 7HA.

Tel: +44 203 447 2843/ +44 7767 357983; Fax: +44 203 447 2898

zudin.puthucheary.09@ucl.ac.uk

Reprints will not be available.

Author Contributions:

Concept and design: ZP, PS, JM, SH, NH, HM. Data Collection: ZP, AM, JR, BC, AR. Analysis and Interpretation: ZP, AM, BC, PS, AR, JM, SH, NH, HM. Manuscript drafting and revision: ZP, AM, BC, PS, AR, JM, SH, NH, HM.
Conflicts of Interest and Source of Funding

The UK National Institute of Health Research (NIHR) funded ZP. AM was supported by the Batchworth Charitable Trust, the Moulton Charitable Foundation and the NIHR University College London Hospitals Biomedical Research Centre (UCLH BRC). SH received support from the Research Councils UK. NH and BC received funding from the NIHR Clinical Research Facility and BRC at Guy’s and St Thomas’ NHS Foundation Trust (GSST) and King’s College London. HM was funded by University College London and UCLH BRC. The NIHR doctorate fellowship (£479,000; 2010–2014) underpinned the core patient population study on which this follow-up was built; Batchworth Charitable Trust (£15,000; January 2013 to July 2014); Moulton Foundation (£45, 000; August 2014 to June 2017); and European Society of intensive Care Medicine (£18,000; Single donation 2010). Additional funding was received from the Whittington Hospital NHS Trust and the European Society of Intensive Care Medicine. The authors do not recognise any conflicts of interest.

Key Words: Intensive Care; Critical Illness; Ultrasound; Muscle Wasting; Outcome Assessment
Muscle wasting during critical illness has been suggested to contribute to survivor functional disability (1). Two B-mode ultrasound measures measurements have been reported that quantify wasting (2, 3): (i) combined thickness of the Rectus Femoris (RF) and Vastus Intermedius muscles (‘Muscle Layer Thickness’, henceforth referred to as ‘Thickness’) (4, 5) and (ii) RF cross-sectional area (RF\textsubscript{CSA}) which correlates with lower limb strength in other clinical circumstances (6). The degree to which either of these ultrasound measures reflect muscle weakness in the critically ill is unclear (7).

We hypothesised that like change in RF\textsubscript{CSA} (\Delta RF\textsubscript{CSA}), change in Thickness (\Delta Thickness) would underestimate loss of muscle size as measured by the histological gold standard (myofibre thickness) and the biochemical gold standard of protein: DNA ratio measured in skeletal muscle biopsies. Secondly we hypothesised that \Delta RF\textsubscript{CSA} and \Delta Thickness would both be related to muscle weakness.

Subjects were patients of the Musculoskeletal Ultrasound in Critical Illness: Longitudinal Evaluation study (NCT01106300) (8), the original study having been approved by University College London Ethics Committee A. All patients were recruited within 24 hours of admission to a university hospital and a community hospital (August 2009-April 2011), and were expected to survive intensive care unit (ICU) admission after being invasively ventilated for > 48 hours and in the ICU >7 days. Excluded were those with pregnancy, lower limb amputation, primary neuromuscular pathology or disseminated cancer. Next-of-kin assent and retrospective patient consent were obtained.

Images were acquired on ICU days 1, 7 and 10. ICU RF\textsubscript{CSA} assessment and reliability have been previously described (8). Thickness was measured at the midpoint of Rectus Femoris between the two fascial lines. Images were excluded where the femur was not visible.

\Delta Thickness and \Delta RF\textsubscript{CSA} were compared with change in myofibre cross-sectional area (\Delta fibre\textsubscript{CSA}) and protein:DNA in sequential Vastus Lateralis muscle biopsies acquired on days 1 and 7 as described previously (8).

Manual Muscle Testing was performed (9) on day 10 if patients could follow \geq 3 of De Jonghe’s 5-command criteria and the knee extension component score of \leq 4/5 used to define lower limb weakness (10).
Bland-Altman comparisons were used to establish i) inter-rater reliability of Thickness measurements and ii) longitudinal bias between ΔThickness and ΔRF$_{CSA}$ over the study period. Normality was assessed using D’Agostino and Pearson omnibus normality tests, and data were analysed using two-tailed Student’s t-test or Mann Whitney U test as appropriate. Differential longitudinal change in muscle size (ΔThickness vs. ΔRF$_{CSA}$) was compared using 2-way repeated measures of variance (ANOVA). A bivariate logistical regression was performed with knee extensor weakness as the dependent variable and ultrasound measurements as the independent variable.

Of the initial cohort of 62 patients with serial muscle ultrasounds, 8 had incomplete or missing electronic scan records. Of the remaining 54, 11 had \geq1 scan where the femur was not visualized. Two assessors analysed images at 21 time-points to establish inter-rater reliability. Thickness measurements were highly correlated between observers (AM and ZP: Pearson r=0.98) with an intra-class co-efficient of 0.986 (95%CI 0.965-0.994). A Bland Altman plot demonstrated minimal bias of -0.07±0.2 cm (95%CI -0.46-0.32 cm).

Nineteen patients had Thickness, RF$_{CSA}$, fibre$_{CSA}$ and protein/DNA ratio measured on Day 1 and Day 7. ΔThickness significantly underestimated Δfibre$_{CSA}$ (-4.6% (95%CI -14.19-4.95) vs. -16.4% (95%CI -32.0—0.74); p=0.025) and change in protein/DNA ratio ((-4.6% (95%CI -14.19-4.95) vs. -30.9% (95%CI -51.2—10.6); p=0.019). We have previously shown ΔRF$_{CSA}$ to underestimate change in protein/DNA ratio (10.3% (95%CI 6.1-14.5) vs. 29.5% (95%CI 13.4-45.6%;p=0.03) but not Δfibre$_{CSA}$ (10.3% (95%CI 6.1-14.5) vs. 17.5% (95%CI 5.8-29.3);p=0.31) (8).

ΔThickness and ΔRF$_{CSA}$ correlated ($r^2=0.22$, p=0.049) but a Bland Altman comparison between ΔThickness and ΔRF$_{CSA}$ over 10 days revealed a bias of -8.3% ± 19.7% (95% CI-46.7-30.7) for Thickness resulting in significant underestimation of muscle wasting at days 7 and 10 (Figure 1A and table 1).

Of the 63 patients, 40 were able to obey commands and underwent volitional strength testing on Day 10, amongst whom Thickness was available in 27. ΔRF$_{CSA}$ was greater in those with knee extensor weakness than those without (20.7% (95CI% 13.7-27.7) vs. 8.4% (95%CI 2.5-14.3) respectively p=0.012). ΔThickness did not differ between these groups (12.6% (95%CI 0.94-24.2) vs. 12.1 (95%CI 2.7-21.5)
respectively, p=0.95) (Figure 1B). In a bivariable logistical regression, ΔRF_{CSA} was associated with knee extensor weakness (OR 1.101 (95%CI 1.011-1.199); p=0.027), but ΔThickness was not (OR 1.001 (95%CI 0.960-1.044); p=0.947). All other things being equal, muscle strength and size are proportional - the latter acting as a proxy for the former in ICU, where non-volitional objective measures of strength are logistically challenging. Our results suggest that ΔRF_{CSA} reflects knee extensor weakness and muscle loss better than ΔThickness. ΔThickness also underestimated ΔRF_{CSA} (a -8% bias on Bland Altman plot being relevant, given that a 10% change in RF_{CSA} is considered sufficient to affect function(11))- in part, perhaps, because it is a unidimensional measure when compared to (2D) muscle area or (3D) volume. The specific relationship of tissue edema to ultrasound measures remains unclear (3, 8), though edema may also affect Fibre_{CSA} (12).

Although these data are derived from the largest cohort available for longitudinal radiopathological correlation, our study is limited by its size. The cohort size was further limited by a third of patients not being able to perform volitional strength testing, albeit this being in keeping with published rates (13). Finally, measurement of Thickness was not an original primary goal of image analysis, a fact which might account for the lack of femoral image availability in one third. Although considered unlikely to have impacted on the observations made, non-random bias cannot be excluded.

We have previously shown RF_{CSA} studies to indicate muscle quality (3) and not to underestimate muscle fibre_{CSA}. We now show that Thickness measurements significantly underestimate ICU muscle wasting compared to RF_{CSA}. In addition RF_{CSA} is a more reliable proxy for muscle strength in a setting where volitional and non-volitional muscle strength measurements are challenging. We suggest measurement of ΔRF_{CSA} as a biomarker for proximal lower limb muscle loss and knee extensor weakness during early critical illness.

REFERENCES

1. Herridge MS, Cheung AM, Tansey CM, Matte-Martyn A, Diaz-Granados N, Al-Saidi F, Cooper AB, Guest CB, Mazer CD, Mehta S, Stewart TE, Barr A, Cook D,
Figure 1AB: (A) Change in Rectus Femoris Cross Section Area (RF_{CSA}) and Muscle Layer Thickness (Thickness) over 10 days of critical illness. * Represents p<0.05 and ** p<0.01 using Two-way repeated measures Analysis of Variance (ANOVA). (B) Knee Extensor Medical Research Council (MRC) Strength Score and loss of muscle size as measured by Rectus Femoris Cross Sectional Area (RF_{CSA}) and Muscle Layer Thickness (Thickness) (n=27). *Represents p<0.05 using 2-tailed unpaired Student’s T-test.

<table>
<thead>
<tr>
<th></th>
<th>ΔTHICKNESS</th>
<th>ΔRF_{CSA}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day 7</td>
<td>-5.88% (-11.69—0.06%)</td>
<td>-13.0%(-16.52—9.48%)</td>
</tr>
<tr>
<td>Day 10</td>
<td>-9.36% (-15.43—3.84%)</td>
<td>-17.72 (-21.15—14.29)</td>
</tr>
</tbody>
</table>

Table 1: Comparison of change in Muscle Limb Thickness (ΔTHICKNESS) and Rectus Femoris Cross Sectional Area (ΔRF_{CSA}) at days 7 and 10 of critical illness. *Represents p<0.05 using 2-way repeated measures Analysis of Variance (ANOVA).