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We present a detailed study of compressively strained PbxSr1−xTiO3 thin films grown
by off-axis radio frequency magnetron sputtering on (001)-oriented Nb-doped SrTiO3
substrates. Film tetragonality and the ferroelectric critical temperatures are measured
for samples of different composition and thickness and compared with a phenome-
nological Landau-Devonshire model. 180◦ ferroelectric domains are observed using
both X-ray diffraction and piezoresponse force microscopy and domain sizes ob-
tained by the two techniques are compared and discussed. C 2016 Author(s). All
article content, except where otherwise noted, is licensed under a Creative
Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
[http://dx.doi.org/10.1063/1.4960621]

Over the last decade, PbTiO3 thin films have served as a model system for studies of ferro-
electricity in the ultrathin limit and the instability of the spontaneous polarization to nanoscale
domain formation. The functional properties of such films are strongly influenced by depolarizing
fields that arise from the imperfect screening of the ferroelectric polarization. These fields are
minimized by the appearance of 180◦ stripe domains. The observation of such domains for instance
in PbTiO3 films as thin as 3 unit cells1,2 has motivated numerous studies aimed at understanding
and controlling the electrostatic boundary conditions that lead to domain formation, as well as the
effect such domains have on the functional properties of ferroelectric thin films. For example, the
effects of screening on domain formation were studied for samples with different electrodes,1,3,4

dielectric spacers,5,6 and ionic adsorbates.7,8 Photochemical switching of stripe domains was re-
ported by Takahashi et al. in Ref. 9, whereas Ref. 10 investigated the possibility of polarization
switching without domain formation in ultrathin films near the ferroelectric critical temperature
TC. More complex PbTiO3-based heterostructures, such as ferroelectric-dielectric (PbTiO3-SrTiO3)
superlattices,11–14 have been particularly useful for investigating the response of nanoscale stripe
domains to applied fields and their effect on the macroscopic electrical properties.15,16 In addition,
many theoretical studies have addressed the formation and microscopic and macroscopic prop-
erties of nanoscale stripe domains, revealing complex, inhomogeneous polarization profiles,17–20

and unusual switching dynamics.21–23

The small domain sizes, which scale according to the Landau-Lifshitz-Kittel law as the square
root of the film thickness,24 make local imaging of the domain structure by piezoresponse force
microscopy (PFM) challenging for films thinner than ∼10 nm6,25 and thus information on nanoscale
domains is usually obtained using X-ray diffraction (XRD). Only within a narrow range of domain
sizes can both techniques be applied, as reported here, providing a valuable cross-check between
these real and reciprocal space methods.6,25
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In this work, we investigate the 180◦ domain structure of thin films of Sr-substituted PbTiO3 or
PbxSr1−xTiO3 (PST). Compared with other solid solutions containing PTO, most notably
Pb(ZrxTi1−x)O3 (PZT), which are technologically important because of their superior electrical and
electromechanical properties, PST has received much less attention due to its simpler phase diagram
that lacks the morphotropic phase boundary of PZT. Bulk PST exhibits a single phase transition
from a high temperature cubic (paraelectric) phase to a low-temperature tetragonal (ferroelectric)
phase26–28 with a transition temperature that increases linearly with Pb content.29 On the other hand,
in thin films, epitaxial strain can be used to induce new phases30 as well as to control the ferroelastic
domain structure.31

We study compressively strained thin films of PST grown on (001) Nb-doped SrTiO3 (Nb:STO)
substrates. We focus on a set of PST thin films with different compositions and bottom electrodes
allowing the degree of screening of the polarization to be changed. The tetragonality and TC of
PST for different compositions are studied using temperature dependent XRD and compared to
the predictions of Landau-Devonshire theory, whereas the ferroelectric domain structure is studied
using a combination of XRD and PFM allowing the domain sizes to be quantified. The results
obtained using these two techniques are compared.

The samples were grown by radio-frequency off-axis magnetron sputtering on (001)-oriented
Nb-doped (0.5 wt. %) STO substrates with and without an ex situ sputtered 15-unit-cell-thick
LaNiO3 (LNO) buffer layer. Optimal growth conditions can be found in Refs. 32 and 56. Sub-
monolayer fractions of each material (STO and PTO) were grown alternately to achieve the target
composition of PbxSr1−xTiO3 with x varying from 0 to 1. We note that this deposition method
may not result in a true random alloy as there may be some clustering of PTO and STO within
any particular monolayer. Any clusters, however, are likely to be randomly arranged along the
out-of-plane direction from one monolayer to the next and no evidence of cation ordering along
the growth direction is observed from the XRD data. Thus, electrostatically, such films should
be a good approximation to a true solid solution.12 In order to control the composition, the STO
and PTO deposition rates were carefully pre-calibrated. Rutherford backscattering measurements
were performed on two representative samples to confirm the Pb/Sr ratio. Samples with intended
compositions x = 0.6 and x = 0.4 were found to have x = 0.605 ± 0.006 and x = 0.455 ± 0.005,
respectively. This deviation from the intended composition is indicated by the error bar in Fig. 1(b)
for x = 0.4. Fig. 1(a) shows the XRD intensity around the (001) reflections for 60-nm-thick sam-
ples of different compositions. The measurements were performed with a PANalytical X’Pert Pro
diffractometer equipped with a monochromator and a triple axis detector. The finite size oscillations
attest to the high crystalline quality of the thin films and maps of the reciprocal space around the
(1̄03) reflections confirmed that all the layers were fully strained to the substrate (not shown here).

In order to obtain accurate values for the out-of-plane lattice parameter c, the XRD data were
simulated with a model described in Ref. 33. The diffraction measurements were then performed

FIG. 1. (a) XRD θ-2θ diffractograms for ∼60 nm thick samples with different compositions grown on Nb:STO showing the
(001) PST reflections. The increase in intensity for the layer peak is due to the larger content of the heavier Pb atoms. (b) TC

for different x: the blue points are the experimental data, whereas the red line is the result of the LD calculation. The inset
represents the c-axis evolution of the substrate and of the film as a function of temperature; the TC is defined by the kink
(data for a 63 nm thick film with x = 0.8).
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as a function of temperature in order to follow the evolution of the lattice parameters across the
ferroelectric-paraelectric phase transition. A typical result is shown in the inset of Fig. 1(b). In
the ferroelectric phase, the c-axis lattice parameter decreases upon heating as the polarization de-
creases. By contrast, in the paraelectric phase, at high temperature, the c lattice parameter increases
as the film undergoes thermal expansion. The point at which this change in behavior is observed
is taken as TC, as is common practice.11,34,35 The Curie temperatures obtained by analyzing the
temperature evolution of the most intense (002) diffraction peak are plotted as a function of x in
Fig. 1(b).

To model the behavior of the alloy we have used Landau-Devonshire (LD) theory assuming the
PST film to have a homogeneous polarization (i.e., neglecting domains and depolarization fields)
and an in-plane lattice constant equal to that of the Nb:STO substrate (3.905 Å).36–38 The misfit
strain Sx =

asub−a0
a0

is defined in terms of the in-plane lattice constant of the film, equal to that of the
substrate asub, and the equivalent cubic lattice constant of the free standing film a0. The model is
essentially the same as that previously developed for PTO-STO superlattices in Ref. 11. The energy
functional is given by

F = α∗1P2
z + α∗11P4

z + α111P6
z + S2

x

c2
11 + c12c11 − 2c2

12

c11
, (1)

where α∗1 and α∗11 are the strain-renormalized parameters defined as

α∗1 ≡ α1 + (2g11c12

c11
− 2g12)Sx and α∗11 ≡ α11 −

g2
11

2c11
. (2)

In the above, the α’s are the dielectric stiffness coefficients, whereas ci j and gi j are the elastic
stiffnesses and the electrostrictive constants, respectively. The coefficients in the Landau expansion
of the free energy for PST are taken to be weighted averages of the known coefficients for bulk PTO
and STO obtained from Ref. 11 and referenced therein and listed in Ref. 39. The exception is the
temperature dependent α1 = α10(T − T0) coefficient of the P2 term for which α10 and T0 were aver-
aged separately giving α1(x) = (xα10,P + (1 − x)α10,S)(T − xT0,P − (1 − x)T0,S); here the subscripts
P and S refer to the corresponding coefficients for PTO and STO, respectively. This form was previ-
ously shown to correctly reproduce the variation of the transition temperature with composition for
bulk PST and was successfully applied to PST thin films on DyScO3 substrates.30,40 Rotations of
the oxygen octahedra which are expected to be important only for the STO-rich compositions at
cryogenic temperatures have not been considered in this work.

The calculated TC as a function of composition is shown together with the experimental values
in Fig. 1(b). Overall, good agreement is observed between the LD theory prediction and the experi-
mental data despite the simplicity of the model that neglects the presence of domains which we turn
to next.

To investigate the polarization distribution in our films, we resort to direct and reciprocal space
measurements using ambient PFM and XRD, respectively. Direct imaging of ferroelectric domains
was performed using PFM in DART mode41 with a Cypher AFM from Asylum Research. The
piezoresponse amplitude and phase images are shown in Figs. 2(a) and 2(b) for a 42-nm-thick
sample with x = 0.8 grown directly on Nb:STO. 180◦ phase changes, accompanied by a drop in
amplitude at the boundaries, are classic signatures of ferroelectric domains with opposite polari-
zation orientations. As the lattice parameter of Nb:STO (3.905 Å) is smaller than the paraelectric
lattice constant of the films for all compositions, the films are effectively under compressive strain36

and we expect the polarization direction to be out-of-plane and hence only 180◦ domains (if any)
to be present. For all PST compositions and film thicknesses investigated, the domain structure
consists of bubble-like up domains embedded in a down-polarized matrix indicating the presence of
an intrinsic built-in field. Such asymmetry was also reported in PTO heterostructures in a previous
work.6

Ferroelectric 180◦ domains are also known to give rise to additional features in X-ray scattering
measurements. For regular, periodic domain structures, distinct domain satellites are observed,1,2

whereas less regular domain arrangements lead to broad shoulders around the Bragg peaks of
the film.4,42,43 The positions of these features in reciprocal space define a characteristic in-plane
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FIG. 2. Observation and analysis of intrinsic domains. (a) Amplitude and (b) phase ambient room temperature PFM images
using DART mode for a 42-nm-thick sample with x = 0.8 grown on Nb:STO. Regions of reduced amplitude in (a) mark
domain walls that separate domains of opposite polarization appearing as regions with 180◦ difference in PFM phase in (b).
From the fast Fourier transform (inset in (b)) of the phase data, Λ is estimated to be 38 nm following the analysis in Ref. 6.
(c) Incident angle omega scan (rocking curve) around the (001) film peak of the same sample. The broad satellite peaks are
signatures of 180◦ domains with a characteristic separation Λ= 34 nm estimated from the positions of the fitted Lorentzian
curves (blue). (d) Λ values obtained from rocking curve measurements for films of different thickness t and with different
bottom electrodes. Data for PTO/STO superlattices (crossed orange circles) are also included.12 For comparison, the dashed
line represents the square root behavior of Kittel law. The encircled data point corresponds to the sample presented in panels
(a)–(c).

length scale Λ. For a periodic system, Λ is the domain periodicity, whereas for less regular domain
structures it is related to the separation between domains of the same polarization. Fig. 2(c) shows
a rocking curve for the same 42-nm-thick sample with x = 0.8 around the (001) diffraction peak
of the PST film. The main film peak and the satellites were fitted with three Lorentzian curves
(green and blue lines in Fig. 2(c)) and the peak positions were used to determine Λ, which is
plotted as a function of film thickness in Fig. 2(d). Λ increases with film thickness as expected
for domains that form to minimize the electrostatic energy. On the same graph, the domain peri-
odicities for PTO/STO superlattices from Ref. 12 are also shown for comparison. For SL samples
with sufficiently thick STO layers, the PTO layers are electrostatically decoupled and the domain
sizes are comparable to those of individual ferroelectric films of corresponding thicknesses. Within
the sizable experimental scatter, all data are consistent with a square-root (Landau-Lifshitz-Kittel)
dependence of the domain size on film thickness.44,45 Using the sample tetragonality as a proxy
for the magnitude of the polarization46 reveals that domain sizes do not show any obvious depen-
dence on the polarization, which changes by more than a factor of two from x = 0.3 to x = 0.8.
Fig. 2(d) also includes data for PST films with a different bottom electrode, LNO, allowing the
effects of different electrostatic boundary conditions to be probed. No significant difference in
domain size is observed between films with LNO and Nb:STO bottom electrodes. By contrast, sam-
ples with (in situ-grown) SrRuO3 bottom electrodes were observed to be monodomain, implying
either that the screening at the SrRuO3 interface is more efficient or that a stronger built-in field is
present.47
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TABLE I. Comparing the characteristic Λ and domain sizes d obtained by different techniques based on PFM and XRD
measurements for two samples with x = 0.8. The error bars for the XRD and FFT are obtained from the standard error of the
fits of the intensity distribution. For the real space analysis, the errors are obtained statistically. For the RAC method, they are
estimated from the uncertainty in determining the positions of minima and maxima.

Characteristic Λ Characteristic d

Film
thickness (nm) XRD (nm)

PFM
FFT (nm)

PFM
RAC (nm)

Real space analysis
of PFM (nm)

PFM
RAC (nm)

63 54±6 56±3 43±4 21±6 24±3
42 34±4 38±3 31±4 14±7 17±4

We now compare the values of Λ obtained by XRD with those obtained from real-space
analysis of the PFM images and their fast Fourier transforms (FFT) (see Table I and Fig. 3). The
2D-FFTs of the PFM phase images were obtained using Gwyddion software and are displayed as
insets in Fig. 3. The FFT power spectra show a ring of intensity corresponding to a real-space
domain separation. Reciprocal space radial (Q) profiles were obtained by integrating the FFT data
with respect to the azimuthal angle and symmetrizing the resulting profiles as described in Ref. 6.
In Fig. 3(a), the obtained spectra are superimposed onto the XRD data for two samples (63 nm and
42 nm thick) with x = 0.8. Good agreement is observed between the two methods. The PFM phase
images were also used to obtain the radial autocorrelation (RAC) function, shown in Fig. 3(c) using
the method in Ref. 48. The first minimum and maximum in the normalized autocorrelation provide
information on the average domain size d and spacing between like domains Λ, respectively.

Finally, we extracted the domain sizes directly by binarizing the phase images and count-
ing the number of pixels in connected regions corresponding to individual up-polarized domains.
These values were used to obtain the average effective domain diameters, which are summarized in
Table I.

Despite the rather different domain configurations of both samples (as shown in Fig. 3(b), the
up and down domain fractions are roughly the same for the 42-nm-thick film, while the 63-nm-thick

FIG. 3. Comparison of the different methods used to characterise the characteristic length scales for the domain structure.
(a) XRD data superimposed on the FFT spectra calculated from the PFM data for two x = 0.8 samples (63 nm and 42 nm
thick). (b) PFM phase images and (c) their radial autocorrelation functions.
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film shows a stronger preference for one polarization and a less homogeneous distribution of oppo-
sitely polarized domains) similar conclusions can be drawn for both. In both cases reasonably good
agreement is observed between the Λ values obtained by FFT and the XRD, validating XRD as
a useful alternative to PFM even in cases where domains are not periodic. Although the values
obtained using the two techniques are within each other’s error bars, some difference may be ex-
pected due to PFM resolution being limited to ∼5 nm (Ref. 49) and due to possible anisotropy in
the domain structure (unlike the PFM FFT data, the XRD data are not averaged over the azimuthal
angle). On the other hand, length scales obtained from the autocorrelation analysis are found to be
substantially smaller. Such a discrepancy has previously been noted for ferroelectric stripe domains4

and structural domains in manganite thin films42 and attributed to variations in domain size or
periodicity. For large variations in domain size or periodicity, the peaks in reciprocal space shift to
lower Q values, leading to overestimates of the corresponding length scales calculated directly from
the peak positions.

Having established how the domain sizes depend on PST composition and thickness, we next
investigate the effect of the domains on the lattice parameters. The evolution of the tetragonality ra-
tio c/a extracted from the XRD measurements is plotted in Fig. 4(a) for different compositions and
film thicknesses. As the films are fully strained to the Nb:STO substrate, the in-plane lattice param-
eter a is taken to be the same as the cubic lattice constant of the substrate. For a fixed thickness,
c/a decreases with decreasing PTO fraction, as expected from combining PTO (a = b = 3.904 Å,
c = 4.157 Å in bulk) with STO (a = b = c = 3.905 Å in bulk).

A comparison of the composition dependence of the room temperature tetragonality with the
prediction of the LD model (under the assumption of a homogeneous polarization) is shown in
Fig. 4(b). The non-linear scaling of c/a with x reflects the expected strong evolution of the spon-
taneous polarization with composition (orange curve) as the tetragonality and polarisation P are
related via c

a
−
�
c
a

�
para ∝ P2, where

�
c
a

�
para is the tetragonality of the strained film in the paraelec-

tric phase. Comparing the experimental c/a data to the LD prediction (Fig. 4(b)) reveals better
agreement for thicker samples (triangles), whereas thinner samples (circles) tend to have lower
tetragonalities.

In the absence of domains, the reduced tetragonality has previously been interpreted as be-
ing due to the progressive increase in the strength of the depolarizing field for thinner films with
imperfect screening of the polarization by the metallic electrodes.46,50–52 In our case, the reduced
tetragonality is likely related to the presence of the domain structure itself that can affect the lattice
parameters in several ways.10,18,19,53,54 Although the domains form to reduce the depolarizing field
generated by unscreened polarization, they nevertheless do not completely eliminate it. Instead,
inhomogeneous depolarizing fields are confined within a surface layer, decaying exponentially over
a length scale comparable to the domain size.10,13,14,18,19,53–55 As the domain size in our films is
comparable to the film thickness, these stray fields may be expected to lead to a significant reduction
of the average c-axis lattice parameter. Additionally, domain walls are regions where the polariza-
tion goes to zero and therefore favor a reduced tetragonality. Because the lattice parameter must

FIG. 4. (a) c/a as a function of thickness. The error bars represent the uncertainty in parameters used to simulate the data.
(b) c/a for different compositions and thicknesses compared with the LD prediction (black curve), showing good agreement
for the thicker samples. The orange curve shows the LD prediction for the polarization at room temperature.
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be continuous across the structure laterally, the domain wall regions will compete elastically with
the domains and one may expect that thinner samples with higher domain wall density will have a
stronger tendency towards an overall reduction of the tetragonality. On the other hand, if a built-in
field is present in our films, this should lead to an overall increase of tetragonality; its dependence
on film thickness, however, is yet to be investigated. For the samples which are paraelectric at room
temperature (x = 0.17) no thickness dependence is observed for the lattice parameter, consistent
with the absence of polarization (and domains).

In summary, we have shown that by varying the composition of PST thin films, the transition
temperature and lattice parameters can be tuned over a wide range of values and for thick films the
behavior is well described by a simple LD model. The lower tetragonality observed in thinner films
is interpreted as being due to the 180◦ domains that form in response to the poor screening of the
ferroelectric polarization. The domain sizes in these films (few tens of nm) enable their observation
by both XRD and PFM techniques, offering the possibility to compare their characteristics length
scales obtained with both methods. Due to the non-periodic arrangement of the domains, the length
scales obtained from reciprocal space methods were found to be larger than those found from a
direct space analysis, in agreement with previous reports.4,42

We acknowledge Dr. Döbeli from ETH Zurich for the RBS measurements. We thank
M. Lopes and S. Muller for technical support. We also thank Dr. E. Bousquet, Professor P. Paruch,
I. Gaponenko, and A. Fête for valuable discussions. This work was supported by the Swiss National
Science Foundation. The research leading to these results has received funding from the European
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