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Abstract. We propose a minimal solution for the similarity registration
(rigid pose and scale) between two sets of 3D lines, and also between a
set of co-planar points and a set of 3D lines. The first problem is solved
up to 8 discrete solutions with a minimum of 2 line-line correspondences,
while the second is solved up to 4 discrete solutions using 4 point-line
correspondences. We use these algorithms to perform the extrinsic cal-
ibration between a pose tracking sensor and a 2D/3D ultrasound (US)
curvilinear probe using a tracked needle as calibration target. The nee-
dle is tracked as a 3D line, and is scanned by the ultrasound as either a
3D line (3D US) or as a 2D point (2D US). Since the scale factor that
converts US scan units to metric coordinates is unknown, the calibration
is formulated as a similarity registration problem. We present results
with both synthetic and real data and show that the minimum solutions
outperform the correspondent non-minimal linear formulations.

Keywords: Calibration, Similarity Registration, Ultrasound, Medical
Imaging

1 Introduction

Ultrasound (US) is a low-cost and real-time medical imaging technique in mini-
mally invasive surgery and in percutaneous procedures. It observes information
under the surface, so it is used to locate invisible details about vessels, nerves, or
tumours. By tracking the pose of a 2D ultrasound probe (2D US) we can render
3D reconstructions from a collection of 2D slices [1], while a tracked 3D probe
(3D US) is able to build large and detailed 3D models from a set of 3D scans [2].
Both 2D US and 3D US can also be used to guide other tracked medical instru-
ments, such as biopsy needles [3], and fuse data with other imaging modalities
such as endoscopes.

Freehand 3D ultrasound generally refers to the extrinsic calibration between
a hand-held US probe and a pose tracking device. This calibration aims at de-
termining the rigid transformation between the US scan and the tracked marker
as well as the scale factor that converts the US scan to metric coordinates, i.
e. a similarity transformation. This is usually achieved by scanning a known
calibration object (phantom) immersed in either water or a tissue mimicking
gel. Since the speed of sound in water is different than in tissue, sometimes an
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(a) (b) (c)

Fig. 1. (a) Scanning a tracked needle with a US probe; (b) a 2D US probe detects a
cross section of the needle; (c) a 3D US detects a line segment.

alcoholic solution is used to obtain a more realistic US scale. A multitude of
calibration phantoms with different shapes have been proposed in the literature
[4], including intersecting wires [5], a single plane [6, 7], a stylus [8, 1, 9], and 3D
printed objects [10]. Although these methods focus on 2D US calibration, some
extensions to 3D US using similar phantoms have been proposed as well [11, 12].

In this paper we focus on using a tracked needle as the calibration phantom.
Our main motivation is towards assisted guidance and motion analysis in fetal
interventions that require the extraction of in utero samples with a biopsy needle.
It thus becomes a practical solution to use the same needle as a calibration
object, avoiding the need to introduce new objects in the operating room and
the additional burden of their sterilization. The tracked needle is detected by the
pose tracking system as a 3D line, and it is scanned either as a line (3D US) or
as a point (2D US). By scanning the needle under different poses, we formulate
the 3D US calibration as the similarity registration between two sets of 3D lines
and the 2D US calibration as the similarity registration between co-planar 3D
points and 3D lines.

In this paper we propose a minimal solver to the similarity registration be-
tween two sets of 3D lines. We will also show that the registration between
co-planar 3D points and 3D lines is a sub-problem of the same formulation and
therefore the same minimal solver can be applied. Additionally, we show that
this minimal solution can be easily generalised to the registration of any combi-
nation of plane, line, and point correspondences. We also present an alternative
simplified minimal solver to the similarity registration between a set of co-planar
points and a set of 3D lines. We apply the minimal solutions to the calibration
of a 2D US and a 3D US with a pose tracking sensor and perform validation
with both synthetic and real data.

2 Related Work

Freehand US calibration using a tracked linear target was proposed in [1]. How-
ever, this method is initialized with a non-minimal linear solution and is only
meant for calibration of 2D US probes. Furthermore, it assumes that the US
probe produces an anisotropic image, i. e. it has different scaling factors along



Similarity Registration Problems for 2D/3D US Calibration 3

the x and y axes of the image. An alternative method [13] extends this calibra-
tion procedure to 3D US and shows that assuming an isotropic model (single
scale factor) produces better calibration results for curvilinear shaped probes.
In this paper we assume that the US scans are isotropic. In some contexts, it
is possible to assume that the scale factor is known, and the calibration prob-
lem becomes the Euclidean registration between the US probe and the phantom
target. In the 2D US case this problem becomes equivalent to the extrinsic cali-
bration between a camera and a laser rangefinder [14]. In the 3D US case, with
the appropriate phantom (e. g. 3 known 3D points) the absolute pose of the
probe can be recovered in each calibration scan, and thus it can be formulated
as the standard hand-eye problem [15, 16]. In this paper, however, we consider
that the scale is always unknown.

Estimating the similarity transformation (rigid pose and scale) between two
coordinate frames gained recent attention due to its application in the registra-
tion of different Structure-from-Motion (SfM) sequences. If the same scene is
recovered in two different monocular SfM runs, the scale of each reconstruction
can be arbitrarily different. Therefore, to produce extended and more detailed
3D maps from independent SfM runs both the rigid pose and the scale must
be recovered. If correspondences between SfM sequences are not available, one
can use an extension of the ICP algorithm [17] to handle unkown scale [18]. If
2D-3D point correspondences are available, this is called the generalised pose
and scale problem [19, 20], and is solved by extending the PnP formulation [21–
23] to handle the alignment of image rays from multiple view points. A closely
related contribution estimates a similarity transformation from pairwise point
correspondences between two generalised cameras [24].

In the case of 3D US calibration, we are interested in the similarity registra-
tion between two sets of 3D lines. Different algorithms have been proposed to
the euclidean registration between sets of lines [25, 26]. One possible approach
to solve the similarity registration problem would be to first estimate the un-
known scale factor independently, e. g. by computing the ratio of orthogonal
distances between all pairs of lines in both sets, and then use any of the previ-
ously mentioned euclidean registration algorithms. We found that this approach
is extremely unstable with noisy measurements and thus we focus on the joint
estimation of all similarity parameters. Non-minimal linear algorithms and non-
linear refinement methods have been proposed to solve the registration of two
sets of 3D lines for different non-rigid configurations, including the similarity
transformation [27, ?]. However, and to the best of our knowledge, a minimal
closed-form solution for the similarity registration of two sets of lines have not
been proposed in the literature.

The 2D US calibration problem is the similarity registration between a set
of 3D lines and a set of co-planar points. This is a particular case of the pose
and scale problem [19] when the 3D points are co-planar, and therefore this
method could be adapted to solve this problem. However, the co-planarity of
points introduces further simplifications, and as we will show in this paper, this
problem can be minimally solved with a much more compact set of equations.
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Fig. 2. US probe models: (a) US emitted beams have a varying width. If we assume
that the scanned region is focused, beams are approximated by a straight line. (b)
Linear 2D US (c) Curvilinear 2D US (d) Curvilinear 3D US.

Our strategy to solve both registration problems is to convert them to an
equivalent registration between a set of 3D points and and a set of 3D planes.
Although this strategy has been described in the context of euclidean registration
[28], it is also valid for non-rigid registration.

Minimal solutions are a well established topic in computer vision literature
[29–33]. In most cases they require solving a system of polynomial equations,
which can be achieved using Grobner basis methods [30, 34, 33]. Although these
methods provide a general framework to build numeric polynomial solvers, they
require a certain amount of symbolic manipulation that often requires a case-by-
case analysis. To address this issue an automatic generator of polynomial solvers
have been proposed [32]. In this paper we develop minimum solutions using the
action matrix method as presented in [34].

3 2D/3D US Model

US probes emit a set of acoustic beams that are partially reflected whenever
they cross a medium interface with a change in acoustic impedance. The time
response of the echo reflections enables the formation of a spatial grayscale map
representing the different acoustic impedances within the US scanning field of
view. Note that US beams have a varying width (Fig. 2(a)) which might induce
undesired out of focus distortions. In an analogous way to most camera calibra-
tion models, we assume that the scanned region is always focused and thus each
scene point reflects a beam along a single straight line.

US image formation depends on the probe construction. Linear 2D US probes
(Fig. 2(b)) emit parallel beams and thus there are two scale factors involved: sy
depends on the speed of sound in the propagation medium, while sx is a fixed
parameter that depends on the physical distance between beam emitters. These
probes usually operate with high frequency acoustic signals (4 – 16 MHz) and
are used for short range scans (e. g. musculoskeletal imaging). The calibration
of these probes cannot be represented with a similarity transformation and we
discard it from further analysis in this paper. Curvilinear 2D US probes (Fig.
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Fig. 3. 3D US calibration problem. The similarity transformation A maps points Xi in
the 3D US volume (red) to points Pi in the marker reference frame (green). A can be
decomposed as a uniform scaling transformation followed by a rigid transformation.

2(c)) emit beams in radial directions that intersect in a single point, forming
a planar bundle of lines. In this case, the speed of sound in the propagation
medium affects the scan scale isotropically. The curvilinear 3D US (Fig. 2(d))
is a generalization of the curvilinear 2D US, emitting a 3D bundle of beams.
Curvilinear probes usually operate with lower frequency signals (2 – 8 MHz)
and are more suitable to long range scans (e. g. obstetrics, cardiac imaging).

4 Problem Statement

Consider a hand-held curvilinear 3D US probe whose pose is tracked by a rigidly
attached marker (Fig. 3). In each frame the tracking system determines the
transformation TM→O from the marker coordinate system (M) to a fixed frame O.
The freehand 3D US calibration consists in determining the unknown similarity
transformation A that maps 3D points Xi in the US volume to 3D points Pi

represented in M.
Pi = AXi (1)

The similarity A is defined by a rotation R, a translation t and a scale factor s
that converts the 3D US volume to metric coordinates, and is represented as

A =

(
S t
0 1

)
(2)

where S = sR is a scaled rotation matrix such that

STS = SST =

s2 0 0
0 s2 0
0 0 s2

 (3)

The calibration procedure consists in capturing a tracked needle in the 3D US
volume under different poses. The needle is previously calibrated by determining
its two endpoints in the reference frame M and then it is represented in each
acquisition as a 3D line Li. The needle is also detected as a 3D line Bi in the
3D US volume. The calibration problem is thus formulated as the 3D similarity
registration between two sets of lines (Fig. 4(a)).
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(a) (b)

Fig. 4. (a) The 3D US calibration is formulated as the similarity registration between
lines Bi and lines Li; (b) Each line Li can be re-defined as two intersecting planes Πi,
Π∗

i , while each line Bi can be redefined as two points Xi, X∗
i .

5 3D US Calibration Solution

In this section we derive a minimal solution for the calibration of a 3D US probe.
We start by re-stating it as the similarity registration between 3D points and 3D
planes, and then derive a linear and a minimal solution for this problem. The
calibration of a 2D US is presented in section 6 as a particular case of the 3D
US problem.

5.1 3D US Calibration as Point-Plane Registration

Ramalingam et. al. showed that any 3D registration problem involving 3D planes,
lines and/or points can be re-stated as the registration between 3D planes and
3D points [28]. In our calibration problem this can be achieved by defining each
needle line Li as two intersecting planes Πi, Π∗i and each line Bi as two points
Xi, X∗i (Fig. 4(b)).

Given that both Pi = AXi and P∗i = AX∗i are contained in planes Πi and
Π∗i , each line-line correspondence (Li,Bi) puts 4 linear constraints on A

Πi
TAXi = 0 (4)

Π∗i
TAXi = 0 (5)

Πi
TAX∗i = 0 (6)

Π∗i
TAX∗i = 0 (7)

Note that the same reasoning can be applied to any combination of plane,
point, and line correspondences (planes are defined by 3 points, and points are
defined as the intersection of 3 planes), and thus the remainder of this section
equally applies to these problems as well.

5.2 Linear Solution

The similarity matrix A has 13 linear parameters and for N line-line correspon-
dences we can stack instances of the equations 4 – 7) to form a linear system
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with 4N equations and 13 unknowns. This linear system can be solved with
SVD decomposition using at least 3 correspondences, determining A up to a
scale factor. The correct scale of A can be recovered by setting the homogeneous
parameter to 1. Note, however, that with noisy line measurements equation 3
is not satisfied and thus the linear solution for A is generally not a similarity.
The linear estimation can be projected to a similarity using QR decomposition
of matrix S and forcing its upper triangular component to be a scaled identity
matrix (using the mean of its diagonal elements as scale s)

S = sR = R

s 0 0
0 s 0
0 0 s

 (8)

5.3 Minimal Solution

Equation 3 puts 5 quadratic constraints on matrix A and therefore only 7 linear
constraints are required to compute its 13 parameters. This can be achieved with
a minimum of 2 line-line correspondences. Note that with 2 correspondences
we have 8 linear constraints. To solve the problem minimally we should either
discard one of the linear equations or partially solve the complete linear system,
leaving 6 up to scale unknowns undetermined. We found the latter option to be
numerically more stable. The linear system with 7 equations and 13 unknowns
is partially solved using SVD decomposition, generating a 6D solution subspace
for A

A = aAa + bAb + cAc + dAd + eAe + fAf (9)

where a, b, c, d, e, f are the remaining 6 unknowns.
Equation 3 can be written as the following system of 10 quadratic equations

c1
Tc1 − c2

Tc2 = 0

c1
Tc1 − c3

Tc3 = 0

c1
Tc2 = 0

c1
Tc3 = 0

c2
Tc3 = 0

r1
Tr1 − r2

Tr2 = 0

r1
Tr1 − r3

Tr3 = 0

r1
Tr2 = 0

r1
Tr3 = 0

r2
Tr3 = 0

(10)

where ci is the ith column of S and ri is the ith row of S. Substituting
equation 9 into equation 10 generates a system of 10 quadratic equations in the
6 unknowns a, b, c, d, e, f . Note that this polynomial system is the same solved
in [19] for the Generalised Pose and Scale Problem.

This polynomial system is solved with the action matrix method [34]. Since
the quadratic constraints determine A up to scale we set f = 1. We expand the
polynomial system by multiplying all equations by a, b, c, d and form a cubic
system with 47 linearly independent equations and 55 monomials. Using LU
decomposition, we reduce the system to 5 equations in 13 monomials(

C5×5 B5×8
)(mC

mB

)
= 0 (11)
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Fig. 5. (a) The 2D US calibration is formulated as the similarity registration between
co-planar points Pi and lines Li; (b) Each line Li can be re-defined as two intersecting
planes Πi, Π∗

i .

with

mC =
(
b3 ab2 be bd bc

)T
(12)

mB =
(
b2 ab e d c b a 1

)T
(13)

When a polynomial system is presented in this format, it can be solved with the
action matrix method if matrix C5×5 is invertible and also if there is a monomial
w such that wmB is a linear combination of mB . In our calibration problem
C5×5 is generally invertible, and for w = b we can build a 8 × 8 matrix M such
that

MmB = bmB (14)

The 8 solutions to mB that verify this constraint are the eigen vectors of M,
from which we can extract 8 solutions for a, b, c, d, e and recover 8 solutions
for A using equation 9. The correct scale of A is recovered in the same way as
explained in section 5.2.

6 2D US Calibration Solution

If we consider the same calibration problem with a curvilinear 2D US probe
instead, each needle acquisition is detected as a single point Xi that belongs to
the US scanning plane. For the sake of continuity with the previous section, we
still treat the image coordinates Xi of the 2D US as 3D co-planar points, for
an arbitrarily fixed scanning plane ∆. Note that calibrating a curvilinear 2D
US aims at determining the same 7 parameters as in the 3D US case. Therefore
the calibration problem becomes the 3D similarity registration between a set of
co-planar points Xi and a set of lines Li (5(a)).

Each point-line correspondence puts 2 linear constraints on matrix A (equa-
tion 4 and 5), and therefore this problem can be minimally solved using 4 point-
line correspondences. The same minimal solution described in section 5.3 can be
used in this case, since the co-planarity of points Xi is not a degenerate config-
uration. We observed that some particular choices for the scanning plane ∆ (e.
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g. z = 0) result in matrix C5×5 being singular and thus the polynomial system
becomes numerically unstable. We found out through simulation that defining
∆ as the plane z = k, with k > 0 generally produces an invertible matrix C5×5
and the polynomial system is solvable.

On the other hand, the linear solution described in section 5.2 will not solve
the 2D US problem, as the system will always be rank deficient. This can only be
achieved with the additional elimination of parameters in the linear equations.
These simplifications also lead to an alternative minimal solution for the 2D US
case. Both methods are described in the remainder of this section.

6.1 Linear Solution

If we define the scanning plane ∆ as z = 0, the 2D US points have the format

Xi =
(
xi yi 0 1

)T
and the linear equations do not put any constraints on the

third column of S. The linear equations for each acquisition become

Πi
TĀ
(
xi yi 1

)T
= 0 (15)

Π∗i
TĀ
(
xi yi 1

)T
= 0 (16)

with

Ā =

(
S̄ t
0 1

)
(17)

S̄ =
(
c1 c2

)
(18)

where c1 and c2 are the first two columns of S. The linear system is thus reduced
to 10 unknown parameters and can be solved with a minimum of 5 point-line
correspondences. Note that analogously to the 3D US case (equation 3), Ā must
verify the following constraint

S̄S̄T =

(
s2 0
0 s2

)
(19)

and with noisy measurements the linear solution must be forced to this format
using its QR decomposition

S̄ = R

s 0
0 s
0 0

 (20)

The third column of S can then be extracted by multiplying the third column
of rotation R by s.

6.2 Alternative Minimal Solution (2D US only)

This problem can be minimally solved with 7 linear constraints (4 point-line
correspondences). Since in this case there are only 10 linear parameters, we can
generate a 3D linear solution subspace

Ā = aĀa + bĀb + cĀc (21)
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Equation 19 is re-written as the following system

c1
Tc1 − c2

Tc2 = 0

c1
Tc2 = 0

(22)

Substituting equation 21 into equation 22 we generate a system of 2 quadratic
homogeneous equations in the 3 unknowns a, b, c. Using the same procedure from
section 5.3 we use monomial multiplication and LU decomposition to re-write
this system as (

C2×2 B2×4
)(mC

mB

)
= 0 (23)

with

mC =
(
ab2 b2

)T
(24)

mB =
(
ab b a 1

)T
(25)

We solve this system using eigen decomposition of the action matrix, yelding
up to 4 solutions.

7 Degenerate Cases

The degenerate configurations for both 3D US and 2D US calibration are closely
related to the ones described for the pose and scale problem [19]. If the needle
is moved without rotation (lines Li are parallel) there is an ambiguity in trans-
lation. This implies that fixing the needle and scanning with the US probe in
different positions is a degenerate case, however, the inverse scenario of fixing
the US probe while moving the needle is generally not a degenerate case. If the
needle motion is a pure rotation around itself (lines Li intersect in a single point)
there is an ambiguity in scale. This is analogous to pose estimation with monocu-
lar pinhole cameras. If lines Li are co-planar, the point detections Xi of a 2D US
are co-linear and there is a rotation ambiguity around the axis defined by these
points. This, however, is not generally a degenerate case in 3D US calibration
unless only 2 line correspondences are available, since it falls under either one of
the two previously mentioned cases. Therefore, the similarity between two sets
of co-planar lines can only be estimated from a minimum of 3 correspondences.

8 Iterative refinement

The closed-form solutions can be refined with Levenberg-Marquardt iterative op-
timization [35], however, there is no consensus on the most appropriate residue
metric for 3D line registration [27]. In all our experiments we perform itera-
tive refinement by minimizing the euclidean orthogonal distance between the
3D lines Li and the projected 3D points from the US image Pi = AXi. The
refined solution is parametrised by the translation t, 3 rotation parameters (R
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Fig. 6. The needle detections in 3D are obtained by sampling 2D slices: (a) Simulated
set-up with a fixed 3D US scanner and random needle poses in green; (b) 3D US line
acquisition; 2D US point acquisition.

is represented as a unit norm quaternion), and the scale factor s. For the 3D US
the optimization problem is

min
R,t,s

N∑
i=1

d(Li,Pi)
2 + d(Li,P

∗
i )2 (26)

where d(Li,Pi) represents the euclidean distance between line Li and point Pi.
For the 2D US problem the last term of the minimization is ignored.

9 Experimental Results

We test the calibration algorithms both in simulation and with real data. For
the 3D US calibration we test the linear solution from section 5.2 (3line3D) and
the minimum solution from section 5.3 (2line3D), while for the 2D US we test
the linear solution from section 6.1 (5point2D), the general minimal solution
from section 5.3 (2line3D), and the simplified minimum solution from section
6.2 (4point2D). All algorithms are tested within a RANSAC framework [36]
with outlier threshold of 5mm, followed by iterative refinement.

With both synthetic and real data, the 3D US lines Bi are obtained by sam-
pling points from 2D slices with different angles (Fig. 6). This is is a practical
solution since we can directly define the points Xi and X∗i to input in equations
4 to 7. The needle tracking measurements (lines Li) are converted to two inter-
secting planes Πi and Π∗i such that Πi intersects both Li and the origin of the
US attached marker reference frame M, and Π∗i is orthogonal to Πi. Note that
this approach degenerates when the needle is aligned with the origin of M and
therefore this should be taken into account when positioning the needle during
calibration.

All plots in this section are represented with Matlab boxplot function: the
central mark is the median, the box limits are the 25th and 75th percentiles,
the whiskers are the maximum and minimum inliers, and individual crosses are
outliers.
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Fig. 7. 2D US error distributions with synthetic data
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Fig. 8. 3D US error distributions with synthetic data

9.1 Simulation

We simulate a 2D/3D US probe with a scale factor s = 0.24 in a fixed position.
50 line segments with 400mm are generated at random poses within the field
of view of the US. Gaussian noise is added to the US points along the 2D
slices (σ = 1 pixel) and also to the extreme points of the line segments Li

(σ = 1mm) to simulate tracking error. In each trial, we calibrate the US by
sampling N random line segments. N varies between 3 and 10 for the 3D US
case, and between 5 and 10 for the 2D US case. For each value N we perform 100
trials. The calibration results are compared against of rotation (RGT ), translation
(tGT ), and scale factor (sGT ) and are presented in figures 7 and 8. The rotation
error is measured as the angle displacement of the residual rotation RTRGT , the
translation error as ||tGT − t|| and the scale error as |sGT − s|. As expected, the
minimal solutions perform better than the linear solutions with a low number of
input acquisitions and converge to the same result as the number of acquisitions
grow. Also not surprisingly, 3D US performs better that 2D US for the same
number of acquisitions, given that it has twice as much linear constraints. In the
case of 2D US, the two alternative minimum solutions have similar performance.
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(a) (b)

Fig. 9. (a) Calibration set-up with a tracked 3D US probe and a tracked needle; (b)
Validation using a cross wire pattern that defines a known 3D point in the tracker
reference frame.

9.2 Real Data

Our calibration method is tested using the set-up displayed in Fig. 9(a) that
includes a GE Voluson E10 machine with a eM6C probe (3D US) and a 333
mm length metal needle. Both instruments are tracked by the infrared camera
system Optitrack V120 Trio. Experiments were conducted in a container filled
with water at room temperature. We use the same probe for both for 2D US
and 3D US data acquisition. For the 2D US we just choose a single 2D slice from
the 3D US volume at a specified angle. The needle is manually segmented as a
point in each 2D slice. Unlike in the simulation experiment, in this calibration
procedure both the needle and the 3D US probe are moved between acquisitions.

To validate the calibration accuracy we use an x-shaped wire phantom 9(b)
whose point intersection can be measured as a single point in the US scan.
We use this phantom to measure the projection reconstruction accuracy (PRA)
of our calibration results,, i. e., the difference in mm between the intersection
point AX according to the calibrated US measurement and the same point P
measured by the tip of the tracked needle. We performed 10 acquisitions of the
wire phantom in order to cover different regions of the US scan. Figs. 10(b) and
10(a) display the distribution of PRA results for all trials. Each distribution
contains 200 error measurements (20 trials × 10 phantom scans). In the 2D US
results we only display the results for one of the minimal solutions, since as we’ve
seen in simulation the results from both approaches are very similar.

The US calibration converges to a solution with with an error between 2
and 3 mm within a total scanning radius of 120 mm. Since in each trial we
select random needle poses, close to degenerate configurations can be chosen
and result in outlier results. This can be avoided in practice by scanning the
needle in a spread region of the US volume, and by exploring all 6 degrees of
freedom while moving the needle. Overall, the difference in accuracy between
linear and minimal solutions is even more pronounced than in simulation.
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Fig. 10. Validation results: (a) Projection reconstruction accuracy (PRA) with 3D US;
(b) PRA with 2D US (c) Sample registration result with 3D US projected lines in red
and needle tracking measurements in green (d) Sample registration result with 2D US
projected points in red and needle tracking measurements in green

10 Conclusions

We propose a minimum solution to the similarity registration between two sets
of 3D lines, and between co-planar points and 3D lines. These solutions are
tested to calibrate a US probe using a tracked line target with both 3D and
2D data. This is useful in medical imaging to guide a biopsy needle during US
based interventions. The method can be easily be extended to additional US
calibration problems using other types of phantoms, e. g. scanning single plane
target leads to the similarity registration between co-planar lines and 3D planes
(2D US) or between two sets of 3D planes (3D US). In other computer vision
domains this algorithm can potentially be used as an extension of the pose and
scale problem to the alignment of line-based and/or plane-based SfM sequences.
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30. Stewenius, H.: Gröbner Basis Methods for Minimal Problems in Computer Vision.
PhD thesis, Lund University (2005)

31. Stewénius, H., Nistér, D., Oskarsson, M., Åström, K.: Solutions to minimal gener-
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