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Abstract

Inclusive four-jet events produced in proton–proton collisions at a centre-of-mass energy of
√

s = 7 TeV are analysed for the presence of hard double-parton scattering using data corres-
ponding to an integrated luminosity of 37.3 pb−1, collected with the ATLAS detector at the
LHC. The contribution of hard double-parton scattering to the production of four-jet events
is extracted using an artificial neural network, assuming that hard double-parton scattering
can be approximated by an uncorrelated overlaying of dijet events. For events containing
at least four jets with transverse momentum pT ≥ 20 GeV and pseudorapidity |η| ≤ 4.4,
and at least one having pT ≥ 42.5 GeV, the contribution of hard double-parton scattering is
estimated to be fDPS = 0.092 +0.005

−0.011 (stat.) +0.033
−0.037 (syst.). After combining this measurement

with those of the inclusive dijet and four-jet cross-sections in the appropriate phase space
regions, the effective overlap area between the interacting protons, σeff , was determined to
be σeff = 14.9 +1.2

−1.0 (stat.) +5.1
−3.8 (syst.) mb. This result is consistent within the quoted uncer-

tainties with previous measurements of σeff , performed at centre-of-mass energies between
63 GeV and 8 TeV using various final states, and it corresponds to 21+7

−6% of the total in-
elastic cross-section measured at

√
s = 7 TeV. The distributions of the observables sensitive

to the contribution of hard double-parton scattering, corrected for detector effects, are also
provided.
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1. Introduction

Interactions involving more than one pair of incident partons in the same collision have been discussed
on theoretical grounds since the introduction of the parton model to the description of particle produc-
tion in hadron–hadron collisions [1–3]. These first studies were followed by the generalization of the
Altarelli–Parisi evolution equations to the case of multi-parton states in Refs. [4, 5] and a discussion of
possible correlations in the colour and spin degrees of freedom of the incident partons [6]. In the first
phenomenological studies of such effects, the most prominent role was played by processes known as
double-parton scattering (DPS), which is the simplest case of multi-parton interactions (MPI), leading to
final states such as four leptons, four jets, three jets plus a photon, or a leptonically decaying gauge boson
accompanied by two jets [7–15]. These studies have been supplemented by experimental measurements
of DPS effects in hadron collisions at different centre-of-mass energies, which now range over two orders
of magnitude, from 63 GeV to 8 TeV [16–30], and which have firmly established the existence of this
mechanism. The abundance of MPI phenomena at the LHC and their importance for the full picture of
hadronic collisions have reignited the phenomenological interest in DPS and have led to a deepening of
its theoretical understanding [31–39]. Despite this progress, quantitative measurements of the effect of
DPS on distributions of observables sensitive to it are affected by large systematic uncertainties. This is a
clear indication of the experimental challenges and of the complexity of the analysis related to such meas-
urements. Therefore, the cross-section of DPS continues to be estimated by ignoring the likely existence
of complicated correlation effects. For a process in which a final state A + B is produced at a hadronic
centre-of-mass energy

√
s, the simplified formalism of Refs. [12, 13] yields

dσ̂(DPS)
A+B (s) =

1
1 + δAB

dσ̂A(s)dσ̂B(s)
σeff(s)

. (1)

The quantity δAB is the Kronecker delta used to construct a symmetry factor such that for identical final
states with identical phase space, the DPS cross-section is divided by two. The σeff is a purely phe-
nomenological parameter, related to the degree of overlap between the interacting hadrons in the plane
perpendicular to the direction of motion, determining the overall size of DPS cross-sections. In hadronic
collisions it was typically found to range between 10 and 25 mb [16–30]. In Eq. (1), the various σ̂ are
the parton-level cross-sections, either for the DPS events, indicated by the subscript A + B, or for the
production of a final state A or B in a single parton scatter (SPS), given by

dσ̂A(s) =
1
2s

∑
i j

∫
dx1dx2 fi(x1, µF) f j(x2, µF) dΦA |Mi j→A(x1x2s, µF, µR)|2 . (2)

Here the functions fi(x, µF) are the single parton distribution functions (PDFs) which at leading order
parameterize the probability of finding a parton i at a momentum fraction x at a given factorization scale
µF in the incident hadron; dΦA is the invariant differential phase-space element for the final state A; M
is the perturbative matrix element for the process i j → A; and µR is the renormalization scale at which
the couplings are evaluated. To constrain the phase space to that allowed by the energy of each incoming
proton, a simple two-parton PDF is defined as

fi j(b, xi, x j, µF) = Γ(b) fi(xi, µF) f j(x j, µF) Θ(1 − xi − x j) , (3)

where Θ(x) is the Heaviside step function, Γ(b) the area overlap function, and the x and scale dependence
of the PDF are assumed to be independent of the impact parameter b. Equation (3) reflects the omission
of correlations between the partons in the proton.
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Typically, the main challenge in measurements of DPS is to determine if the A+B final state was produced
in an SPS via the 2→ 4 process or in DPS through two independent 2→ 2 interactions. In one of the first
studies of DPS in four-jet production at hadron colliders [10] the kinematic configuration in which there is
a pairwise balance of the transverse momenta (pT) of the jets was identified as increasing the contribution
of the DPS mechanism relative to the perturbative QCD production of four jets in SPS. The idea is that
in typical 2→ 2 scattering processes the two outgoing particles – here the partons identified as jets – are
oriented back-to-back in transverse plane such that their net transverse momentum is zero. Corrections
to this simple picture include initial- and final-state radiation as well as fragmentation and hadronization.
In addition, recoil against the underlying event can modify the four-momentum of the overall final-state
particle configuration. In attempting to describe all of these features, Monte Carlo (MC) event generators
form an integral part, providing a link between the experimentally observed jets and the simple partonic
picture of DPS as two almost independent 2→ 2 scatters.

An analysis of inclusive four-jet events produced in proton–proton collisions at a centre-of-mass energy
of
√

s = 7 TeV at the LHC and collected during 2010 with the ATLAS detector is presented here. The
topology of the four jets is exploited to construct observables sensitive to the DPS contribution. The
DPS contribution to the four-jet final state is estimated and combined with the measured inclusive dijet
and four-jet cross-sections in the appropriate phase space regions to determine σeff . The normalized
differential four-jet cross-sections as a function of DPS-sensitive observables are measured and presented
here as well.

2. Analysis strategy

To extract σeff in the four-jet final state, Eq. (1) is rearranged as follows. The differential cross-sections in
Eq. (1) are rewritten for the four-jet and dijet final states and integrated over the phase space defined by
the selection requirements of the dijet phase space regions A and B. This yields the following expression
for the DPS cross-section in the four-jet final state:

σDPS
4j =

1
1 + δAB

σA
2jσ

B
2j

σeff

, (4)

where σA
2j and σB

2j are the cross-sections for dijet events in the phase space regions labelled A and B
respectively. The assumed dependence of the cross-sections and σeff on s is omitted for simplicity. The
DPS cross-section may be expressed as

σDPS
4j = fDPS · σ4j , (5)

where σ4j is the inclusive cross-section for four-jet events in the phase-space region A ⊕ B, including all
four-jet final states, namely both the SPS and DPS topologies, and where fDPS represents the fraction of
DPS events in these four-jet final states. The expression for σeff then becomes,

σeff =
1

1 + δAB

1
fDPS

σA
2jσ

B
2j

σ4j
. (6)

To extract σeff , it is therefore necessary to measure three cross-sections, σA
2j, σ

B
2j and σ4j, and estimate

fDPS .
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The four-jet and dijet final states are defined inclusively [40, 41] such that at least four jets or two jets
respectively are required in the event, while no restrictions are applied to additional jets. When measuring
the cross-section of n-jet events, the leading (highest-pT) n jets in the event are considered. The general
expression for the measured four-jet and dijet cross-sections may be written as

σnj =
Nnj

CnjLnj
, (7)

where the subscript nj denotes either dijet (2j) or four-jet (4j) topologies. For each nj channel, Nnj is the
number of observed events, Cnj is the correction for detector effects, particularly due to the jet energy
scale and resolution, and Lnj is the corresponding proton–proton integrated luminosity.

The DPS model contributes in two ways to the production of events with at least four jets, leading to two
separate event classifications. In one contribution, the secondary scatter produces two of the four leading
jets in the event; such events are classified as complete-DPS (cDPS). In the second contribution of DPS
to four-jet production, three of the four leading jets are produced in the hardest scatter, and the fourth jet
is produced in the secondary scatter; such events are classified as semi-DPS (sDPS). The DPS fraction is
therefore rewritten as fDPS = fcDPS + fsDPS, and fcDPS and fsDPS are both determined from data. The dijet
cross-sections in Eq. (6) do not require any modification since they are all inclusive cross-sections, i.e.,
the three-jet cross-section accounting for the production of an sDPS event is already included in the dijet
cross-sections.

Denoting the observed cross-section at the detector level by

Snj =
Nnj

Lnj
, (8)

and the ratio of the corrections for detector effects by

α
4j
2j =

C4j

CA
2jC

B
2j

, (9)

yields the expression from which σeff is determined,

σeff =
1

1 + δAB

α
4j
2j

fcDPS + fsDPS

SA
2jS

B
2j

S4j
. (10)

The main challenge of the measurement is the extraction of fDPS = fcDPS + fsDPS from optimally selected
measured observables. An artificial neural network (NN) is used for the classification of events [42],
using as input various observables sensitive to the contribution of DPS. The differential distributions of
these observables are also presented here.

3. The ATLAS detector

The ATLAS detector is described in detail in Ref. [43]. In this analysis, the tracking detectors are used
to define candidate collision events by constructing vertices from tracks, and the calorimeters are used to
reconstruct jets.
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The inner detector used for tracking and particle identification has complete azimuthal coverage and spans
the pseudorapidity region |η| < 2.5.1 It consists of layers of silicon pixel detectors, silicon microstrip
detectors, and transition-radiation tracking detectors, surrounded by a solenoid magnet that provides a
uniform axial field of 2 T.

The electromagnetic calorimetry is provided by the liquid argon (LAr) calorimeters that are split into
three regions: the barrel (|η| < 1.475) and the endcap (1.375 < |η| < 3.2) regions which consist LAr/Pb
calorimeter modules, and the forward (FCal: 3.1 < |η| < 4.9) region which utilizes LAr/Cu modules.
The hadronic calorimeter is divided into four distinct regions: the barrel (|η| < 0.8), the extended bar-
rel (0.8 < |η| < 1.7), both of which are scintillator/steel sampling calorimeters, the hadronic endcap
(1.5 < |η| < 3.2), which has LAr/Cu calorimeter modules, and the hadronic FCal (same η-range as for the
EM-FCal) which uses LAr/W modules. The calorimeter covers the range |η| < 4.9.

The trigger system for the ATLAS detector consists of a hardware-based level-1 trigger (L1) and the
software-based high-level trigger (HLT) [44]. Jets are first identified at L1 using a sliding-window
algorithm from coarse granularity calorimeter towers. This is refined using jets reconstructed from
calorimeter cells in the HLT. Three different triggers are used to select events for this measurement:
the minimum-bias trigger scintillators, the central jet trigger (|η| < 3.2) and the forward jet trigger
(3.1 < |η| < 4.9). The jet triggers require at least one jet in the event.

4. Monte Carlo simulation

Multi-jet events were generated using fixed-order QCD matrix elements (2 → n, with n = 2, 3, 4, 5, 6)
with Alpgen 2.14 [45] utilizing the CTEQ6L1 PDF set [46], interfaced to Jimmy [47] and Herwig 6.520 [48].
The events were generated using the AUET2 [49] set of parameters (tune), optimized to describe underlying-
event distributions obtained from a subsample of the 2010, 7 TeV ATLAS data as well as from the Tev-
atron and LEP experiments. The MLM [50] matching scale, which divides the parton emission phase
space into regions modelled either by the perturbative matrix-element calculation or by the shower re-
summation, was set to 15 GeV. The implication of this choice is that partons with pT > 15 GeV in the
final state originate from matrix elements, and not from the parton shower. Event-record information was
used to extract a sample of SPS candidate events from the sample generated with the Alpgen + Herwig +

JimmyMC combination (AHJ). A sample of candidate DPS events was also extracted from AHJ in order
to study the topology of such events and validate the measurement methodology.

An additional AHJ sample was available that differed only in its use of the earlier AUET1 [51] tune.
Because this sample contained three times as many events, it was used to derive the corrections for
detector effects in all differential distributions in the data.

Tree-level matrix elements with up to five outgoing partons were used to generate a sample of multi-
jet events using Sherpa 1.4.2 [52, 53] with the CT10 PDF set [54] and the default Sherpa tune. The

1 ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the detector
and the z-axis along the beam pipe. The x-axis points from the IP to the centre of the LHC ring, and the y-axis points upward.
Cylindrical coordinates (r, φ) are used in the transverse plane, φ being the azimuthal angle around the beam pipe, referred
to the x-axis. The pseudorapidity is defined in terms of the polar angle θ with respect to the beamline as η = − ln tan(θ/2).
When dealing with massive jets and particles, the rapidity y = 1

2 ln
(

E+pz
E−pz

)
is used, where E is the jet energy and pz is the

z-component of the jet momentum.
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CKKW [55, 56] matching scale, similarly to the MLM one, was set to 15 GeV. These events were gener-
ated without multi-parton interactions by disabling the MPI module. This SPS sample was compared to
the SPS sample extracted from the AHJ sample for validation purposes.

In addition, a sample of multi-jet events was generated with Pythia 6.425 [57] using a 2 → 2 matrix
element at leading order with additional radiation modelled in the leading-logarithmic approximation
by pT-ordered parton showers. The sample was generated utilizing the modified leading-order PDF set
MRST LO* [58] with the AMBT1 [59] tune.

To account for the effects of multiple proton–proton interactions in the LHC (pile-up), the multi-jet events
were overlaid with inelastic soft QCD events generated with Pythia 6.423 using the MRST LO* PDF set
with the AMBT1 tune. All the events were processed through the ATLAS detector simulation frame-
work [60], which is based on Geant4 [61]. They were then reconstructed and analysed by the same
program chain used for the data.

5. Cross-section measurements

5.1. Data set and event selection

The measurement presented here is based on the full ATLAS 2010 data sample from proton–proton
collisions at

√
s = 7 TeV. The trigger conditions evolved during the year with changing thresholds and

prescales. A full description of the trigger strategy, developed and used for the measurement of the dijet
cross-section using 2010 data, is given in Ref. [62]. For the events in the samples used in this study,
the trigger was fully efficient. In total, the data used correspond to a luminosity of 37.3 pb−1, with a
systematic uncertainty of 3.5% [63]. This data set was chosen because it has a low number of proton–
proton interactions per bunch crossing, averaging to approximately 0.4. It was therefore possible to collect
multi-jet events with low pT thresholds and to efficiently select events with exactly one reconstructed
vertex (single-vertex events), thereby removing any contribution from pile-up collisions to the four-jet
final-state topologies.

To reject events initiated by cosmic-ray muons and other non-collision backgrounds, events were required
to have at least one reconstructed primary vertex, defined as a vertex that is consistent with the beam spot
and is associated with at least five tracks with transverse momentum ptrack

T > 150 MeV. The efficiency for
collision events to pass these requirements was over 99%, while the contribution from fake vertices was
negligible [62, 64].

Jets were identified using the anti-kt jet algorithm [65], implemented in the FastJet [66] package, with ra-
dius parameter R = 0.6. The inputs to jet reconstruction are the energies in three-dimensional topological
clusters [67, 68] built from calorimeter cells, calibrated at the electromagnetic (EM) scale.2 A jet energy
calibration was subsequently applied at the jet level, relating the jet energy measured with the ATLAS
calorimeter to the true energy of the stable particles entering the detector. A full description of the jet
energy calibration is given in Ref. [64]. For the MC samples, particle jets were built from particles with
a lifetime longer than 30 ps in the Monte Carlo event record, excluding muons and neutrinos.

2 The electromagnetic scale is the basic calorimeter signal scale to which the ATLAS calorimeters are calibrated. It was
established using test-beam measurements for electrons and muons to give the correct response for the energy deposited by
electromagnetic showers, while it does not correct for the lower response to hadrons.
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For the purpose of measuring σeff in the four-jet final state, three samples of events were selected, two
dijet samples and one four-jet sample. The former two samples have at least two, and the latter at least
four, jets in the final state, where each jet was required to have pT ≥ 20 GeV and |η| ≤ 4.4. In each event,
jets were sorted in decreasing order of their transverse momenta. The transverse momentum of the i th jet
is denoted by pi

T and the jet with the highest pT (p1
T) is referred to as the leading jet. To ensure 100%

trigger efficiency, the leading jet in four-jet events was required to have p1
T ≥ 42.5 GeV.

The selection requirements for the dijet samples were dictated by those used to select four-jet events.
In one class of dijet events, the requirement on the transverse momentum of the leading jet must be
equivalent to the requirement on the leading jet in four-jet events, p1

T ≥ 42.5 GeV. The other type of dijet
event corresponds to the sub-leading pair of jets in the four-jet event, with a requirement of pT ≥ 20 GeV.
In the following, the cross-section for dijets selected with p1

T ≥ 20 GeV is denoted by σA
2j and the cross-

section for dijets with p1
T ≥ 42.5 GeV is denoted by σB

2j.

To summarize, the measurement was performed using the dijet A sample and its two subsamples (dijet B
and four-jet), selected using the following requirements:

Dijet A: Njet ≥ 2 , p1
T ≥ 20 GeV , p2

T ≥ 20 GeV , |η1,2| ≤ 4.4 ,

Dijet B: Njet ≥ 2 , p1
T ≥ 42.5 GeV , p2

T ≥ 20 GeV , |η1,2| ≤ 4.4 ,

Four-jet: Njet ≥ 4 , p1
T ≥ 42.5 GeV , p2,3,4

T ≥ 20 GeV , |η1,2,3,4| ≤ 4.4 ,

(11)

where Njet denotes the number of reconstructed jets. All of the selected events were corrected for jet
reconstruction and trigger inefficiencies, the corrections ranging from 2%–4% for low-pT jets to less
than 1% for jets with pT ≥ 60 GeV. The observed distributions of the pT and y of the four leading jets in
the events are shown in Figures 1(a) and 1(b) respectively.

5.2. Correction for detector effects

The correction for detector effects was estimated separately for each class of events using the Pythia6
MC sample. The same restrictions on the phase space of reconstructed jets, defined in Eq. (11), were
applied to particle jets. The correction is given by

C
A,B
nj =

NA,B reco
nj

NA,B particle
nj

, (12)

where NA,B reco
nj (NA,B particle

nj ) is the number of n-jet events passing the A-or-B selection requirements
using reconstructed (particle) jets.

This correction is sensitive to the migration of events into and out of the phase space of the measurement.
Due to the very steep jet-pT spectrum in dijet and four-jet events, it is crucial to have good agreement
between the jet pT spectra in data and in MC simulation close to the selection threshold before calculating
the correction. Therefore, the jet pT threshold was lowered to 10 GeV and the fiducial |η| range was
increased to 4.5 for both the reconstructed and particle jets, and the MC events were reweighted such that
the jet pT–y distributions reproduced those measured in data. The value of α4j

2j (see Eq. (9)), as determined
from the reweighted MC events, is

α
4j
2j = 0.93 ± 0.01 (stat.) , (13)

where the uncertainty is statistical. The systematic uncertainties are discussed in Section 7.
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Figure 1: Distributions of the (a) transverse momentum, pT, and (b) rapidity, y, of the four highest-pT jets, denoted
by p1,2,3,4

T and y1,2,3,4, in four-jet events in data selected in the phase space as defined in the legend.

6. Determination of the fraction of DPS events

The main challenge in the measurement of σeff is to estimate the DPS contribution to the four-jet data
sample. It is impossible to extract cDPS and sDPS candidate events on an event-by-event basis. Therefore,
the usual approach adopted is to fit the distributions of variables sensitive to cDPS and sDPS in the data
to a combination of templates for the expected SPS, cDPS and sDPS contributions. The template for the
SPS contribution is extracted from the AHJ MC sample, while the cDPS and sDPS templates are obtained
by overlaying two events from the data. In addition to assuming that the two interactions producing the
four-jet final state in a DPS event are kinematically decoupled, the analysis relies on the assumption that
the SPS template from AHJ properly describes the expected topology of four-jet production in a single
interaction. The latter assumption is supported by the observation of good agreement between various
distributions in the SPS samples in AHJ and in Sherpa. To exploit the full spectrum of variables sensitive
to the various contributions and their correlations, the classification was performed with an artificial neural
network.

6.1. Template samples

Differences were observed when comparing the pT and y distributions in data with those in AHJ. There-
fore, before extracting template samples, the events in the four-jet AHJ sample selected with the require-
ments detailed in Eq. (11) are reweighted such that they reproduce the distributions in data.

In events generated in AHJ, the outgoing partons can be assigned to the primary interaction from the
Alpgen generator or to a secondary interaction, generated by Jimmy, based on the MC generator’s event
record. The former are referred to as primary-scatter partons and the latter as secondary-scatter partons.
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The pT of secondary-scatter partons was required to be pT ≥ 15 GeV in order to match the minimum
pT of primary-scatter partons set by the MLM matching scale in AHJ. Once the outgoing partons were
classified, the jets in the event were matched to outgoing partons and the event was classified as an SPS,
cDPS or sDPS event.

The matching of jets to partons is done in the φ–y plane by calculating the angular distance, ∆Rparton−jet,
between the jet and the outgoing parton as

∆Rparton−jet =

√
(yparton − yjet)2 + (φparton − φjet)2 . (14)

For 99% of the primary-scatter partons, the parton can be matched to a jet within ∆Rparton−jet ≤ 1.0,
which was therefore used as a requirement for the matching of jets and partons. Jets were first matched
to primary-scatter partons and the remaining jets were matched to secondary-scatter partons.

Events in which none of the leading four jets match a secondary-scatter parton were assigned to the SPS
sample. This method of obtaining an SPS sample is preferred over turning off the MPI module in the
generator since it retains all of the soft MPI and underlying activity in the selected SPS events. Events
were classified as cDPS events if two of the four leading jets match primary-scatter partons and the other
two match secondary-scatter partons. Events in which three of the leading jets match primary-scatter
partons and the fourth jet matches a secondary-scatter parton were classified as sDPS events.

Four-jet DPS events were modelled by overlaying two different events. To reduce any dependence of
the measurement on the modelling of jet production, this construction used events from data rather than
MC simulation. Complete-DPS events were built using dijet events from the A and B samples selected
from data (see Eq. (11)). To build sDPS events, two other samples were selected with the following
requirements:

One-jet: Njet ≥ 1 , p1
T ≥ 20 GeV , |η1| ≤ 4.4 ,

Three-jet: Njet ≥ 3 , p1
T ≥ 42.5 GeV , p2,3

T ≥ 20 GeV , |η1,2,3| ≤ 4.4 .
(15)

The overlay was performed at the reconstructed jet level. When constructing cDPS and sDPS events the
following conditions were imposed for a given pair of events to be overlaid:

• none of the four jets contains the axis of one of the other jets, i.e., ∆R jet−jet > 0.6;

• the vertices of the two overlaid events are no more than 10 mm apart in the z direction;

• when building cDPS events, each of the overlaid events contributes two jets to the four leading jets
in the constructed event;

• when building sDPS events, one of the overlaid events contributes three jets to the four leading jets
in the constructed event and the other contributes one jet.

The first condition ensures that none of the jets would be merged if the four-jet event had been recon-
structed as a real event; the second condition avoids possible kinematic bias due to events where two jet
pairs originate from far-away vertices; the last two conditions enforce the appropriate composition of the
four leading jets in the constructed event.

As is discussed in Section 6.4, the topology of cDPS and sDPS events constructed by overlaying two
events is compared to the topology of cDPS and sDPS events extracted from the AHJ sample respect-
ively.
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6.2. Kinematic characteristics of event classes

In cDPS, double dijet production should result in pairwise pT-balanced jets with a distance |φ1 − φ2| ≈ π

between the jets in each pair. In addition, the azimuthal angle between the two planes of interactions is
expected to have a uniform random distribution. In SPS, the pairwise pT balancing of jets is not as likely;
therefore the topology of the four jets is expected to be different for cDPS and SPS.

The topology of three of the jets in sDPS events would resemble the topology of the jets in SPS inter-
actions. The fourth jet initiated by the primary interaction in an SPS is expected to be closer, in the φ–y
plane, to the other three jets originating from that interaction. In an sDPS event, the jet produced in the
secondary interaction would be emitted in a random direction relative to the other three jets.

In constructing possible differentiating variables, three guiding principles were followed:

1. use pairwise relations that have the potential to differentiate between SPS and cDPS topologies;

2. include angular relations between all jets in light of the expected topology of sDPS events;

3. attempt to construct variables least sensitive to systematic uncertainties.

The first two guidelines encapsulate the different characteristics of SPS and DPS events. The third
guideline led to the usage of ratios of pT in order to avoid large dependencies on the jet energy scale
(JES) uncertainty. Various studies, including the use of a principal component analysis [69], led to the
following list of candidate variables for distinguishing event topologies:

∆
pT
i j =

∣∣∣∣~p i
T + ~p j

T

∣∣∣∣
pi

T + p j
T

; ∆φi j =
∣∣∣φi − φ j

∣∣∣ ; ∆yi j =
∣∣∣yi − y j

∣∣∣ ;
|φ1+2 − φ3+4| ; |φ1+3 − φ2+4| ; |φ1+4 − φ2+3| ;

(16)

where pi
T, ~p i

T, yi and φi stand for the scalar and vectorial transverse momentum, the rapidity and the
azimuthal angle of jet i respectively, with i = 1, 2, 3, 4. The variables with the subscript i j are calculated
for all possible jet combinations. The term φi+ j denotes the azimuthal angle of the four-vector obtained
by the sum of jets i and j.

In the following, the pairing notation {〈i, j〉〈k, l〉} is used to describe a cDPS event in which jets i and j
originate from one interaction and jets k and l originate from the other. In around 85% of cDPS events,
the two leading jets originate from one interaction and jets 3 and 4 originate from the other.

Normalized distributions of the ∆
pT
12 and ∆

pT
34 variables in the three samples (SPS, cDPS and sDPS) are

shown in Figures 2(a) and 2(b). In the cDPS sample, the ∆
pT
12 and ∆

pT
34 distributions peak at low values,

indicating that both the leading and the sub-leading jet pairs are balanced in pT. The small peak around
unity is due to events in which the appropriate pairing of the jets is {〈1, 3〉〈2, 4〉} or {〈1, 4〉〈2, 3〉}. In the
SPS and sDPS samples, the leading jet-pair exhibits a wider peak at higher values of ∆

pT
12 compared to that

in the cDPS sample. This indicates that the two leading jets are not well balanced in pT since a significant
fraction of the hard-scatter momentum is carried by additional jets.

The ∆φ34 distributions in the three samples are shown in Figure 2(c). The pT balance between the jets
seen in the ∆

pT
34 distribution in the cDPS sample is reflected in the ∆φ34 distribution. The ∆φ34 distribution

is almost uniform for the SPS and sDPS samples. The correlation between the distributions of the ∆
pT
34
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Figure 2: Normalized distributions of the variables, (a) ∆
pT
12 , (b) ∆

pT
34 , (c) ∆φ34 and (d) ∆y34, defined in Eq. (16),

for the SPS, cDPS and sDPS samples as indicated in the legend. The hatched areas, where visible, represent the
statistical uncertainties for each sample.
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and ∆φ34 variables can be readily understood through the following approximation: p3
T ≈ p4

T ≈ pT. The
expression for ∆

pT
34 then becomes

∆
pT
34 =

∣∣∣~p 3
T + ~p 4

T

∣∣∣
p3

T + p4
T

≈

√
2pT + 2pT cos(∆φ34)

2pT
=

√
1 + cos(∆φ34)
√

2
. (17)

The peak around unity observed in the ∆
pT
34 distributions in the SPS and sDPS samples is thus a direct

consequence of the Jacobian of the relation between ∆
pT
34 and ∆φ34.

The set of variables quantifying the distance between jets in rapidity, ∆yi j, is particularly important for
the sDPS topology. The colour flow is different in SPS leading to the four-jet final state and results in
smaller angles between the sub-leading jets. Hence, on average, smaller distances between non-leading
jets are expected in the SPS sample compared to the sDPS sample. This is observed in the comparison of
the ∆y34 distributions shown in Figure 2(d), where the distribution in the sDPS sample is slightly wider
than in the other two samples.

The study of the various distributions in the three samples is summed up as follows:

• Strong correlations between all variables are observed. The ∆
pT
i j and ∆φi j variables are correlated

in a non-linear way, while geometrical constraints correlate the ∆yi j and ∆φi j variables. Transverse
momentum conservation correlates the φi+ j − φk+l variables with the ∆

pT
i j and ∆φi j variables.

• None of the variables displays a clear separation between all three samples. The variables in which
a large difference is observed between the SPS and cDPS distributions, e.g., ∆

pT
34 , do not provide

any differentiating power between SPS and sDPS.

• All variables are important – in cDPS events, where the pairing of the jets is different from {〈1, 2〉〈3, 4〉},
variables relating the other possible pairs, e.g., ∆φ13, may indicate which is the correct pairing.

These conclusions led to the decision to use a multivariate technique in the form of an NN to perform
event classification.

6.3. Extraction of the fraction of DPS events using an artificial neural network

For the purpose of training the NN, events from each sample were divided into two statistically inde-
pendent subsamples, the training sample and the test sample. The former was used to train the NN and
the latter to test the robustness of the result. To avoid bias during training, the events in the SPS, cDPS
and sDPS training samples were reweighted such that each sample contributed a third of the total sum of
weights. In all subsequent figures, only the test samples are shown.

The NN used is a feed-forward multilayer perceptron with two hidden layers, implemented in the ROOT
analysis framework [70]. The input layer has 21 neurons, corresponding to the variables defined in
Eq. (16), and the first and second hidden layers have 42 and 12 neurons respectively. These choices
represent the product of a study conducted to optimize the performance of the NN and balance the com-
plexity of the network with the computation time of the training. The output of the NN consists of three
variables, which are interpreted as the probability for an event to be more like SPS (ξSPS), cDPS (ξcDPS)
or sDPS (ξsDPS). During training, each event is marked as belonging to one of the samples; e.g., an event
from the cDPS sample is marked as

ξSPS = 0, ξcDPS = 1, ξsDPS = 0. (18)
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ξsDPS

SPS cDPS

sDPS

ξSPSξcDPS

ξsDPS

Figure 3: Illustration of the ternary plot constructed from three NN outputs, ξSPS, ξcDPS, and ξsDPS, with the con-
straint, ξSPS + ξcDPS + ξsDPS = 1. The vertical and horizontal axes are defined in the figure. The coloured areas
illustrate the classes of events expected to populate the corresponding vertices.

For each event, the three outputs are plotted as a single point inside an equilateral triangle (ternary plot)
using the constraint ξSPS + ξcDPS + ξsDPS = 1. A point in the triangle expresses the three probabilities
as three distances from each of the sides of the triangle. The vertices would therefore be populated by
events with high probability to belong to a single sample. Figure 3 shows an illustration of the ternary
plot, where the horizontal axis corresponds to 1√

3
ξsDPS + 2√

3
ξcDPS and the vertical axis to the value of

ξsDPS. The coloured areas illustrate where each of the three classes of events is expected to populate the
ternary plot.

Figures 4(a), 4(b) and 4(c) show the NN output distribution for the test samples in the ternary plot,
presenting the separation power of the NN. The SPS-type events are mostly found in the bottom left
corner in Figure 4(a). However, a ridge of SPS events extending towards the sDPS corner is observed as
well. A contribution from SPS events is also visible in the bottom right corner. The clearest peak is seen
for events from the cDPS sample in the bottom right corner in Figure 4(b). A visible cluster of sDPS
events is seen in Figure 4(c) concentrated around ξsDPS ∼ 0.75 and there is a tail of events along the side
connecting the SPS and sDPS corners. The NN output distribution in the data, shown in Figure 4(d), is
visually consistent with a superposition of the three components, SPS, cDPS and sDPS.

Based on these observations, it is clear that event classification on an event-by-event basis is not possible.
However, the differences between the SPS, cDPS and sDPS distributions suggest that an estimation of the
different contributions can be performed. To estimate the cDPS and sDPS fractions in four-jet events, the
ternary distribution in data (D) is fitted to a weighted sum of the ternary distributions in the SPS (MSPS),
cDPS (McDPS) and sDPS (MsDPS) samples, each normalized to the measured four-jet cross-section in
data, with the fractions as free parameters. The optimal fractions were obtained using a fit of the form,

D = (1 − fcDPS − fsDPS)MSPS + fcDPSMcDPS + fsDPSMsDPS , (19)

where a χ2 minimization was performed, as implemented in the Minuit [71] package in ROOT, taking
into account the statistical uncertainties of all the samples in each bin. The results of the fit are presented
in Section 8, after the methodology validation and discussion of systematic uncertainties.
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Figure 4: Normalized distributions of the NN outputs, mapped to a ternary plot as described in the text, in the
(a) SPS, (b) cDPS, (c) sDPS test samples and (d) in the data.
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6.4. Methodology validation

A sizeable discrepancy was found in the ∆
pT
34 and ∆φ34 distributions between the data and AHJ (not

shown), suggesting that there are more sub-leading jets (jets 3 and 4) that are back-to-back in AHJ than
in the data. In order to test that the discrepancies are not from mis-modelling of SPS in AHJ, the ∆

pT
34

and ∆φ34 distributions in the SPS sample extracted from AHJ were compared to the distributions in the
SPS sample generated in Sherpa. Good agreement between the shapes of the distributions was observed
for both variables. This and further studies indicate that the excess of events with jets 3 and 4 in the
back-to-back topology is due to an excess of DPS events in the AHJ sample compared to the data.

In order to verify that the topologies of cDPS and sDPS events can be reproduced by overlaying two
events, the overlay samples are compared to the cDPS and sDPS samples extracted from AHJ. An extens-
ive comparison between the distributions of the variables used as input to the NN in the overlay samples
and in AHJ was performed and good agreement was observed. This can be summarized by comparing the
NN output distributions. The NN is applied to the cDPS and sDPS samples extracted from AHJ and the
output distributions are compared to the output distributions in the corresponding samples constructed by
overlaying events selected from data. Normalized distributions of the projection of the full ternary plot on
the horizontal axis are shown in Figures 5(a) and 5(b) for the cDPS and sDPS samples respectively. Good
agreement is observed between the distributions. Based on these results, it is concluded that the topology
of the four jets in the overlaid events is comparable to that of the four leading jets in DPS events extracted
from AHJ. The added advantage of using overlaid events from data to construct the DPS samples is that
the jets are at the same JES as the jets in four-jet events in data, leading to a smaller systematic uncertainty
in the final result.
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Figure 5: Comparison between the normalized distributions of the NN outputs 1
√

3
ξsDPS + 2

√
3
ξcDPS, integrated

over all ξsDPS values 0.0 ≤ ξsDPS ≤ 1.0, in DPS events extracted from AHJ and in the DPS samples constructed
by overlaying events from data, for (a) cDPS events and (b) sDPS events. In the AHJ distributions, statistical
uncertainties are shown as the hatched area and the shaded area represents the sum in quadrature of the statistical
and systematic uncertainties.
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As an additional validation step, the NN is applied to the inclusive AHJ sample and the resulting distribu-
tion is fitted with the NN output distributions of the SPS, cDPS and sDPS samples. The fraction obtained
from the fit, f (MC)

DPS , is compared to the fraction at parton level, f (P)
DPS , extracted from the event record,

f (MC)
DPS = 0.129 ± 0.007 (stat.) , f (P)

DPS = 0.142 ± 0.001 (stat.) . (20)

Fair agreement is observed between the value obtained from the fit and that at parton level. The larger
statistical uncertainty in f (MC)

DPS compared to f (P)
DPS reflects the loss of statistical power due to the use of a

template fit to estimate the former.

7. Systematic uncertainties

For jets with 20 ≤ pT < 30 GeV, the fractional JES uncertainty is about 4.5% in the central region of the
detector, rising to about 10% in the forward region [64]. The overall impact of the JES on the distributions,
fDPS and α4j

2j was estimated by shifting the jet energy upwards and downwards in the MC samples by the
JES uncertainty and repeating the analysis. Similarly, the overall impact of the jet energy and angular
resolution was determined by varying the jet energy and angular resolution in the MC samples by the
corresponding resolution uncertainty [72].

The systematic uncertainties in the measured cross-sections due to the integrated luminosity measurement
uncertainty (±3.5%), the jet reconstruction efficiency uncertainty (±2%) and the uncertainty as a result of
selecting single-vertex events (±0.5%) were propagated to the uncertainty in σeff .

The statistical uncertainty in the AHJ sample was translated to a systematic uncertainty in fDPS by varying
the reweighting function used to reweight AHJ and repeating the analysis.

The statistical uncertainty in α4j
2j (∼1%) was propagated as a systematic uncertainty in σeff . The system-

atic uncertainty in α
4j
2j arising from model-dependence (±2%) was determined from deriving α

4j
2j using

Sherpa.

The stability of the value of σeff relative to the various parameter values used in the measurement was
studied. Parameters such as pparton

T and ∆R jet−jet were varied and the requirement ∆Rparton−jet ≤ 0.6 was
applied, leading to a relative change in σeff of the order of a few percent. Since the observed relative
changes are small compared to the statistical uncertainty in σeff , no systematic uncertainty was assigned
due to these parameters.

The relative systematic uncertainties in fDPS, α4j
2j and σeff are summarized in Table 1.

8. Determination of σeff

To determine fDPS and σeff and their statistical uncertainties taking into account all of the correlations,
many replica fits were performed by random sampling from the NN output distributions. The systematic
uncertainties were obtained by propagating the expected variations into this analysis, and the resulting
shifts were added in quadrature. The result for fDPS is

fDPS = 0.092 +0.005
−0.011 (stat.) +0.033

−0.037 (syst.) , (21)
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Source of systematic uncertainty ∆ fDPS ∆α
4j
2j ∆σeff

Luminosity ±3.5 %
Model dependence for detector corrections ±2 % ±2 %
Reweighting of AHJ ±6 % ±6 %
Jet reconstruction efficiency ±0.1 %
Single-vertex events selection ±0.1 %
Jet energy and angular resolution ±15 % ±3 % ±15 %
JES uncertainty +32

−37 % ±12 % +31
−19 %

Total systematic uncertainty +36
−40 % ±13 % +35

−25 %

Table 1: Summary of the relative systematic uncertainties in fDPS , α4j
2j and σeff .

where the contribution of fsDPS to fDPS was found to be about 40%. The fraction of DPS estimated in data
is 65+23

−27% of the fraction in AHJ as extracted from the event record (see Eq. (20)). Taking into account the
systematic uncertainties in the calculation of the goodness-of-fit χ2, a value for χ2/NDF of 112/84 = 1.3
is obtained, where NDF is the number of degrees of freedom in the fit.

In order to visualize the results of the fit, the ternary distribution is divided into five slices,

• 0.0 ≤ ξsDPS < 0.1,

• 0.1 ≤ ξsDPS < 0.3,

• 0.3 ≤ ξsDPS < 0.5,

• 0.5 ≤ ξsDPS < 0.7,

• 0.7 ≤ ξsDPS ≤ 1.0.

A comparison of the fit distributions with the distributions in data in the five slices of the ternary plot
is shown in Figure 6. Considering the systematic uncertainties, the most significant difference between
the data and the fit is seen for the two left-most bins in the range 0.0 ≤ ξsDPS < 0.1 (Figure 6(a)) of
the ternary plot. These bins are dominated by the SPS contribution. Thus, a discrepancy between the
data and the fit result in these bins is expected to have a negligible effect on the measurement of the DPS
rate. A discrepancy between the data and the fit result is also observed in the three rightmost bins in
Figure 6(a). These bins have about a 30% contribution from cDPS. To test the effect of this discrepancy
on the description of observables in data, the distributions of the various variables in data were compared
to a combination of the distributions in the SPS, cDPS and sDPS samples, normalizing the latter three
distributions to their respective fractions in the data as obtained in the fit. This comparison for the ∆

pT
34

and ∆φ34 variables is shown in Figure 7, where a good description of the data is observed. The same level
of agreement is seen for all the variables.

Before calculating σeff , the symmetry factor in Eq. (6) has to be adjusted because there is an overlap in
the cross-sections σA

2j and σB
2j when the leading jet in sample A has pT ≥ 42.5 GeV (see Eq. (11)). The

adjusted symmetry factor is

1
1 + δAB

−→ 1 −
1
2

σB
2j

σA
2j

= 0.9353 ± 0.0003 (stat.) , (22)

17



cDPS
ξ

3
2 + 

sDPS
ξ

3
1

E
nt

rie
s/

0.
05

210

310

410

510
 ATLAS

-1 = 7 TeV, 37 pbs

 < 0.1
sDPS

ξ ≤0.0 

cDPS
ξ

3
2 + 

sDPS
ξ

3
1

0 0.2 0.4 0.6 0.8 1

F
it/

D
at

a

0.6
0.8

1
1.2
1.4

(a)

cDPS
ξ

3
2 + 

sDPS
ξ

3
1

E
nt

rie
s/

0.
05

210

310

410

510

 ATLAS
-1 = 7 TeV, 37 pbs

 < 0.3
sDPS

ξ ≤0.1 

cDPS
ξ

3
2 + 

sDPS
ξ

3
1

0.2 0.4 0.6 0.8 1

F
it/

D
at

a

0.6
0.8

1
1.2
1.4

(b)

cDPS
ξ

3
2 + 

sDPS
ξ

3
1

E
nt

rie
s/

0.
05

1

10

210

310

410

510

610
 ATLAS

-1 = 7 TeV, 37 pbs

 < 0.5
sDPS

ξ ≤0.3 

cDPS
ξ

3
2 + 

sDPS
ξ

3
1

0.2 0.4 0.6 0.8

F
it/

D
at

a

0.6
0.8

1
1.2
1.4

(c)

cDPS
ξ

3
2 + 

sDPS
ξ

3
1

E
nt

rie
s/

0.
05

1

10

210

310

410

510

610  ATLAS
-1 = 7 TeV, 37 pbs

 < 0.7
sDPS

ξ ≤0.5 

cDPS
ξ

3
2 + 

sDPS
ξ

3
1

0.3 0.4 0.5 0.6 0.7 0.8

F
it/

D
at

a

0.6
0.8

1
1.2
1.4

(d)

cDPS
ξ

3
2 + 

sDPS
ξ

3
1

E
nt

rie
s/

0.
02

1

10

210

310

410

510
 ATLAS

-1 = 7 TeV, 37 pbs

 1.0≤ 
sDPS

ξ ≤0.7 

cDPS
ξ

3
2 + 

sDPS
ξ

3
1

0.5 0.6 0.7

F
it/

D
at

a

0.6
0.8

1
1.2
1.4

(e)

Data 2010
SPS (AHJ)
cDPS (data, overlay)
sDPS (data, overlay)
Fit distribution (stat. uncertainty)
Fit distribution (stat. + sys. uncertainty)

 = 0.6R jets, tkAnti-

 42.5 GeV≥ 1
T

p

 20 GeV≥ 2,3,4

T
p

 4.4≤| 
1,2,3,4

η|

Figure 6: Distributions of the NN outputs, 1
√

3
ξsDPS+ 2

√
3
ξcDPS, in the ξsDPS ranges indicated in the panels, for four-jet

events in data, selected in the phase space defined in the legend, compared to the result of fitting a combination of
the SPS, cDPS and sDPS contributions, the sum of which is shown as the solid line. In the fit distribution, statistical
uncertainties are shown as the dark shaded area and the light shaded area represents the sum in quadrature of the
statistical and systematic uncertainties. The ratio of the fit distribution to the data is shown in the bottom panels.
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Figure 7: Comparison between the distributions of the variables (a) ∆
pT
34 and (b) ∆φ34, defined in Eq. (16), in four-jet

events in data and the sum of the SPS, cDPS and sDPS contributions, as indicated in the legend. The sum of the
contributions is normalized to the cross-section measured in data and the various contributions are normalized to
their respective fractions obtained from the fit. In the sum of contributions, statistical uncertainties are shown as
the dark shaded area and the light shaded area represents the sum in quadrature of the statistical and systematic
uncertainties. The ratio of the sum of contributions to the data is shown in the bottom panels.
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as determined from the measured dijet cross-sections. This factor was also determined using Pythia6 and
good agreement was observed between the two values. The relative difference in the value of σeff obtained
by using the symmetry factors extracted from the data and from Pythia6 was of the order of 0.2%, a
negligible difference compared to the statistical uncertainty of σeff .

An additional correction of +4% is applied to the measured DPS cross-section due to the probability of
jets from the secondary interaction overlapping with jets from the primary interaction. In this configur-
ation, the anti-kt algorithm merges the two overlapping jets into one, and hence the event cannot pass
the four-jet requirement. The value of this correction was determined from the fraction of phase space
occupied by a jet. It was also determined directly in AHJ and good agreement between the two values
was observed.

Finally, the measurements of the dijet and four-jet cross-sections can be used to calculate the effective
overlap area between the interacting protons, yielding

σeff = 14.9 +1.2
−1.0 (stat.) +5.1

−3.8 (syst.) mb . (23)

This value is consistent within the quoted uncertainties with previous measurements, performed by the
ATLAS collaboration and by other experiments [16–30], all of which are summarized in Figure 8. Fig-
ure 9 shows σeff as a function of

√
s, where the AFS result and some of the LHCb results are omit-

ted for clarity. Within the large uncertainties, the measurements are consistent with no
√

s dependence
of σeff . The σeff value obtained is 21+7

−6% of the inelastic cross-section, σinel, measured by ATLAS at
√

s = 7 TeV [73].

9. Normalized differential cross-sections

To allow the results of this study to be used in future comparisons with MPI models, the distributions of
the variables used as input to the NN were corrected for detector effects. The corrections were derived
using an iterative unfolding, producing an unfolding matrix for each observable, relating the particle-level
and reconstructed-level quantities. These matrices were derived using samples of four-jet events selected
from the AHJ and Pythia6 samples by imposing the cuts detailed in Eq. (11) on particle jets. The AHJ
sample generated with the AUET1 tune was used to derive the unfolding matrix. The distributions were
unfolded with the Bayesian unfolding algorithm, implemented in the RooUnfold package [74], using two
iterations.

The unfolding matrices derived from AHJ were taken as the nominal matrices and the differences ob-
served when using the matrices derived from Pythia6 were used as an additional systematic uncertainty,
typically of the order of a few percent in each bin. The total systematic uncertainty of the differential
distributions in data was obtained by summing in quadrature the uncertainty due to MC modelling in a
given bin with the systematic uncertainties in this bin due to the JES and jet energy and angular resolution
uncertainties, while preserving correlations between bins. Figure 10 shows the normalized differential
cross-section distribution in data for the ∆

pT
34 and ∆φ34 variables compared to the particle-level distribu-

tions in the AHJ samples generated with the AUET1 and AUET2 tunes. The particle-level distributions
in the AUET2 AHJ sample overestimate the normalized differential cross-section distributions in data in
the regions ∆

pT
34 ≤ 0.15 and ∆φ34 ≥ 2.8, demonstrating the excess of the DPS contribution in this sample

compared to the data. On the other hand, the DPS contribution in the data is underestimated by the pre-
diction obtained with the AUET1 tune. These comparisons demonstrate the power of these distributions

20



E
xp

er
im

en
t (

en
er

gy
, f

in
al

 s
ta

te
, y

ea
r)

 [mb]effσ

0 5 10 15 20 25 30

 ATLAS
ATLAS (

√
s = 7 TeV, 4 jets, 2016)

CDF (
√
s = 1.8 TeV, 4 jets, 1993)

UA2 (
√
s = 630 GeV, 4 jets, 1991)

AFS (
√
s = 63 GeV, 4 jets, 1986)

DØ (
√
s = 1.96 TeV, 2γ+ 2 jets, 2016)

DØ (
√
s = 1.96 TeV, γ+ 3 jets, 2014)

DØ (
√
s = 1.96 TeV, γ+ b/c + 2 jets, 2014)

DØ (
√
s = 1.96 TeV, γ+ 3 jets, 2010)

CDF (
√
s = 1.8 TeV, γ+ 3 jets, 1997)

ATLAS (
√
s = 8 TeV, Z + J/ψ, 2015)

CMS (
√
s = 7 TeV, W+ 2 jets, 2014)

ATLAS (
√
s = 7 TeV, W+ 2 jets, 2013)

DØ (
√
s = 1.96 TeV, J/ψ + Υ, 2016)

LHCb (
√
s = 7&8 TeV, Υ(1S)D0,+, 2015)

DØ (
√
s = 1.96 TeV, J/ψ + J/ψ, 2014)

LHCb (
√
s = 7 TeV, J/ψΛ+

c , 2012)

LHCb (
√
s = 7 TeV, J/ψD+

s , 2012)

LHCb (
√
s = 7 TeV, J/ψD+, 2012)

LHCb (
√
s = 7 TeV, J/ψD0, 2012)

Figure 8: The effective overlap area between the interacting hadrons, σeff , determined in various final states and in
different experiments [16–30]. The inner error bars (where visible) correspond to the statistical uncertainties and
the outer error bars represent the sum in quadrature of the statistical and systematic uncertainties. Dashed arrows
indicate lower limits and the vertical line represents the AFS measurement published without uncertainties.

to constrain MPI models and tunes. In Appendix A, the normalized differential cross-sections in data
for the remaining variables are compared to the particle-level distributions in the AHJ samples generated
using the AUET1 and AUET2 tunes.

10. Summary and conclusions

A measurement of the rate of hard double-parton scattering in four-jet events was performed using a
sample of data collected with the ATLAS experiment at the LHC in 2010, with an average of approx-
imately 0.4 proton–proton interactions per bunch crossing, corresponding to an integrated luminosity
of 37.3 ± 1.3 pb−1. Three different samples were selected, all consisting of single-vertex events from
proton–proton collisions at a centre-of-mass energy of

√
s = 7 TeV. Four-jet events were defined as

those containing at least four reconstructed jets with pT ≥ 20 GeV and |η| ≤ 4.4, and at least one jet
having pT ≥ 42.5 GeV. Two additional dijet samples were selected with the requirement of having at
least two jets with pT ≥ 20 GeV and |η| ≤ 4.4. One of the dijet samples was further constrained such that
it contained at least one jet with pT ≥ 42.5 GeV.
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the statistical uncertainties and the outer error bars represent the sum in quadrature of the statistical and systematic
uncertainties. Dashed arrows indicate lower limits. For clarity, measurements at identical centre-of-mass energies
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√
s.

The contribution of hard double-parton scattering to the production of four-jet events was extracted using
an artificial neural network. The four-jet topology originating from hard double-parton scattering was
represented by a random combination of events selected in data. The fraction of events corresponding to
the contribution made by hard double-parton scattering in four-jet events was determined to be,

fDPS = 0.092 +0.005
−0.011 (stat.) +0.033

−0.037 (syst.) . (24)

After combining this result with measurements of the dijet and four-jet cross-sections in the appropriate
phase space regions, the effective overlap area between the interacting protons was determined to be

σeff = 14.9 +1.2
−1.0 (stat.) +5.1

−3.8 (syst.) mb .

This value is 21+7
−6% of the measured value of σinel at

√
s = 7 TeV and is consistent with previous meas-

urements performed at various centre-of-mass energies and in various final states. It is compatible with
a model in which σeff is a universal parameter that does not depend on the process or phase space. To
facilitate future studies of the dynamics of multi-parton interactions, distributions of observables sensitive
to the presence of hard double-parton scattering are also presented.
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Figure 10: Distributions of the variables (a) ∆
pT
34 and (b) ∆φ34, defined in Eq. (16), in data after unfolding to particle

level, compared to the MC prediction from AHJ at the particle level, generated using the AUET1 and AUET2
tunes, as indicated in the legend. The hatched area represents the sum in quadrature of the statistical and systematic
uncertainties in the normalized differential cross-sections and all histograms are normalized to unity. The ratio of
the particle-level distribution to the normalized differential cross-section is shown in the bottom panels, where the
shaded areas represent statistical uncertainties.
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Appendix
A. Normalized differential cross-sections

Figures 11–15 show the normalized differential cross-sections in data for all the observables used as input
to the NN, compared to the particle-level distributions in the AHJ samples generated using the AUET1
and AUET2 tunes. The hatched areas in the distributions represent the total uncertainty of the normalized
differential cross-section, obtained by adding in quadrature the statistical and systematic uncertainties.
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Figure 11: Distributions of the variables (a) ∆
pT
12 , (b) ∆

pT
13 , (c) ∆

pT
23 and (d) ∆

pT
14 , defined in Eq. (16), in data after un-

folding to particle level, compared to the MC prediction from AHJ at the particle level, generated using the AUET1
and AUET2 tunes, as indicated in the legend. The hatched areas represent the sum in quadrature of the statistical
and systematic uncertainties in the normalized differential cross-sections and all histograms are normalized to unity.
The ratio of the particle-level distribution to the normalized differential cross-section is shown in the bottom panels,
where the shaded areas represent statistical uncertainties.
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Figure 12: Distributions of the variables (a) ∆
pT
24 , (b) ∆φ12, (c) ∆φ13 and (d) ∆φ23, defined in Eq. (16), in data

after unfolding to particle level, compared to the MC prediction from AHJ at the particle level, generated using
the AUET1 and AUET2 tunes, as indicated in the legend. The hatched areas represent the sum in quadrature
of the statistical and systematic uncertainties in the normalized differential cross-sections and all histograms are
normalized to unity. The ratio of the particle-level distribution to the normalized differential cross-section is shown
in the bottom panels, where the shaded areas represent statistical uncertainties.
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Figure 13: Distributions of the variables (a) ∆φ14, (b) ∆φ24, (c) ∆y12 and (d) ∆y34, defined in Eq. (16), in data
after unfolding to particle level, compared to the MC prediction from AHJ at the particle level, generated using
the AUET1 and AUET2 tunes, as indicated in the legend. The hatched areas represent the sum in quadrature
of the statistical and systematic uncertainties in the normalized differential cross-sections and all histograms are
normalized to unity. The ratio of the particle-level distribution to the normalized differential cross-section is shown
in the bottom panels, where the shaded areas represent statistical uncertainties.
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Figure 14: Distributions of the variables (a) ∆y13, (b) ∆y23, (c) ∆y14 and (d) ∆y24 defined in Eq. (16), in data
after unfolding to particle level, compared to the MC prediction from AHJ at the particle level, generated using
the AUET1 and AUET2 tunes, as indicated in the legend. The hatched areas represent the sum in quadrature
of the statistical and systematic uncertainties in the normalized differential cross-sections and all histograms are
normalized to unity. The ratio of the particle-level distribution to the normalized differential cross-section is shown
in the bottom panels, where the shaded areas represent statistical uncertainties.
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Figure 15: Distributions of the variables (a) φ1+2 − φ3+4, (b) φ1+3 − φ2+4 and (c) φ1+4 − φ2+3, defined in Eq. (16),
in data after unfolding to particle level, compared to the MC prediction from AHJ at the particle level, generated
using the AUET1 and AUET2 tunes, as indicated in the legend. The hatched areas represent the sum in quadrature
of the statistical and systematic uncertainties in the normalized differential cross-sections and all histograms are
normalized to unity. The ratio of the differential distribution to the particle-level distributions is shown in the
bottom panels, where the shaded areas represent statistical uncertainties.
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