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In current fMRI studies designed to map BOLD changes related to interictal epileptiform discharges (IED), which are
recorded on simultaneous EEG, the information contained in the morphology and field extent of the EEG events is
exclusively used for their classification. Usually, a BOLD predictor based on IED onset times alone is constructed, ef-
fectively treating all events as identical. We used intracranial EEG (icEEG)-fMRI data simultaneously recorded in
humans to investigate the effect of including any of the features: amplitude, width (duration), slope of the rising
phase, energy (area under the curve), or spatial field extent (number of contacts over which the sharp wave was
observed) of the fast wave of the IED (the sharp wave), into the BOLD model, to better understand the neurophys-
iological origin of sharp wave-related BOLD changes, in the immediate vicinity of the recording contacts. Among the
features considered, the width was the only one found to explain a significant amount of additional variance, sug-
gesting that the amplitude of the BOLD signal depends more on the duration of the underlying field potential
(reflected in the sharp wave width) than on the degree of neuronal activity synchrony (reflected in the sharp
wave amplitude), and, consequently, that including inter-event variations of the sharp wave width in the BOLD sig-

nal model may increase the sensitivity of forthcoming EEG-fMRI studies of epileptic activity.
© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

Introduction

Blood oxygen level dependent (BOLD) functional magnetic resonance
imaging (fMRI) is a non-invasive imaging technique commonly used to
localise the neuronal activity underlying sensory, or cognitive functions,
sleep, or rest (which may include epileptic activity), commonly captured
by electrophysiological techniques (Murta et al., 2015). The fMRI whole-
brain mapping capability complements the electroencephalogram (EEG)
temporal richness, particularly relevant in epilepsy, providing localising
information with potential clinical relevance. Simultaneously recorded
scalp EEG and BOLD fMRI data have been used to locate brain regions in-
volved in the generation and propagation of epileptic seizures
(Chaudhary et al., 2012; Murta et al., 2012) and interictal epileptiform dis-
charges (IED) (Caballero-Gaudes et al., 2013). The accurate delineation of
these regions is the main purpose of the pre-surgical evaluation per-
formed in patients with drug-resistant epilepsies because the best treat-
ment available is to surgically disrupt them. IED are high-amplitude, fast
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electrophysiological transients constituted by a sharp wave (lasting up
to 120 ms), often followed by a slow wave (lasting several hundreds of
milliseconds) (De Curtis and Avanzini, 2001). Although commonly associ-
ated with the epileptic state, sharp waves have also been observed in the
healthy hippocampus (Buzsaki et al., 1983; Suzuki and Smith, 1987;
Skaggs et al., 2007). Such universality makes the sharp waves a potentially
informative device for the study of the electrophysiological correlates of
the BOLD signal.

Many studies investigated whether it is the continuous power of
local field potentials (LFP), or the neuronal firing rate, that best predicts
the BOLD signal (Logothetis et al., 2001; Mukamel et al., 2005; Nir et al.,
2007). However, few have considered the morphology of the sharp
wave as potentially informative to predict the amplitude BOLD of the
signal; two studies in humans found mixed results regarding a signifi-
cant correlation between the amplitudes of scalp EEG sharp waves
and BOLD changes (Benar et al., 2002; LeVan et al., 2010); two studies
in rats found a significant, positive correlation between the amplitude
(and width (Geneslaw et al., 2011)) of LFP sharp waves and the
amplitude of CBF changes (Geneslaw et al., 2011; Vanzetta et al,,
2010). This limited number of studies is a lacuna in the field because
the morphology of the sharp wave is likely to reflect interesting aspects
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of the underlying neuronal activity; its amplitude and rising phase slope
are thought to reflect the degree of neuronal activity synchrony
(Einevoll et al., 2013); its width (duration) and energy (area under
the curve) are thought to reflect the duration of the underlying field po-
tential (Gold et al., 2006); its spatial field extent (number of contacts
over which the sharp wave was observed) is thought to reflect the
extent of the surrounding, synchronised sources of neuronal activity
(Einevoll et al., 2013).

Simultaneous intracranial EEG (icEEG)-fMRI data, recorded during
the pre-surgical evaluation of patients with drug-resistant epilepsy, is
now available (Carmichael et al., 2012; Boucousis et al., 2012), offering
a unique opportunity to further investigate the relationship between
these signals, especially at a local level (i.e. in the immediate vicinity of
the activity generators). In terms of morphology, spatiotemporal
localisation, and field distribution, sharp wave features are more
accurately estimated using icEEG than scalp EEG. However, the compar-
atively greater amount and complexity of information related to sharp
waves recorded on icEEG, poses a challenge to the modelling of the
simultaneous BOLD changes. For example, in our data, sharp waves are
observed at rates ranging from 0.17 to 1.7 events per second (see
Table 1). For very regular and frequent events, the conventional way of
modelling all events as identical can result in an essentially flat BOLD
predictor; a very inefficient fMRI “experimental design” that potentially
limits the sensitivity of the study (Dale, 1999; Friston et al., 1999).
Modelling strategies that introduce some variability based on event-
by-event feature measurements may actually increase the efficiency of
the model, and also exploit the variability of both signals better.

We compared five sharp wave features (amplitude, slope of the
rising phase, width, energy, and spatial field extent) in terms of their in-
dividual capability to explain variance of the BOLD signal amplitude that
was not explained by the sharp wave onsets. Sharp wave features were
quantified event-by-event, convolved with a haemodynamic kernel,
and compared with the BOLD changes in the surroundings of the most
active icEEG contact, within the General Linear Model (GLM) frame-
work. Crucially, this choice of region of interest was used to ensure
that we were studying the BOLD changes related to the generators
rather than any potential propagation effects, which are commonly
seen in epileptic activity. This study aimed to shed further light on the
neurophysiological origin of the BOLD signal related to sharp waves,
and improve the sensitivity of EEG-fMRI studies. To the best of our
knowledge, this is the first study using invasively recorded sharp
waves and simultaneous fMRI data to investigate which aspects of the
sharp wave best explain the variance of the BOLD signal.

Methods

We analysed icEEG and fMRI data simultaneously recorded from 6
patients with severe drug-resistant epilepsy, undergoing invasive EEG
monitoring as part of their pre-surgical evaluation. This study was
approved by the Joint UCL/UCLH Committees on the Ethics of Human
Research, and the patients gave written informed consent.

Simultaneous icEEG-fMRI data acquisition

MRI data was acquired on a 1.5 T scanner (TIM Avanto, Siemens,
Erlangen, Germany), with a quadrature head transmit-receive RF coil
using low specific absorption rate sequences (<0.1 W/kg head average),
simultaneously with icEEG data, in accordance with our acquisition
protocol (Carmichael et al., 2012).

The patients were asked to lie still with eyes closed during data
acquisition. One (in 3/6 cases) or two (3/6 cases) 10-min sessions of
200 fMRI volumes were acquired during rest.

The fMRI scan consisted of a gradient-echo EPI sequence with the
following parameters: TR/TE/flip angle = 3000 ms/40 ms/90°, 64 x 64
acquisition matrix, 38 x 2.5 mm slices with 0.5 mm gap. In addition, a
FLASH T1 weighted structural scan was acquired with the following

parameters: TR/TE/flip angle = 15 ms/4.49 ms/25°, resolution
1.0 x 1.2 x 1.2 mm, FoV 260 x 211 x 170 mm, 256 x 176 x 142
image acquisition matrix with the readout direction lying in the sagittal
plane; scan duration: 6 min 15 s.

The icEEG data were acquired with an MR-compatible system (Brain
Products, Gilching, Germany) and related software (Brain Recorder,
Brain Products, Gilching, Germany) at a 5 kHz sampling rate. The
icEEG recording system was synchronised with the 20 kHz gradient
MR scanner clock.

Computed tomography (CT) data were acquired shortly after the
implantation of the icEEG electrodes and prior to the icEEG-fMRI
acquisition.

ICEEG and fMRI data pre-processing

SPM12 (http://www.fil.ion.ucl.ac.uk/spm) was used to realign and
spatially smooth (using an isotropic 5 mm FWHM Gaussian kernel)
the fMRI data. Prior to smoothing, physiological noise was removed
from the fMRI data using FIACH (Functional Image Artefact Correction
Heuristic) (Tierney et al., 2015).

MR acquisition-related artefacts were removed from the icEEG using
an average template subtraction approach (Allen et al., 2000), and sub-
sequently down-sampled to 500 Hz. Cardiac pulse-related artefact
correction was not performed because the amplitude of this artefact in
our icEEG recordings is much smaller (approximately 95%) than the am-
plitude of a typical [ED (Carmichael et al., 2012).

IED quantification was performed on bipolar montage data; for
depth electrodes, the signal from the contact of interest was subtracted
from the adjacent medial one; for grid electrodes, the signal was
subtracted from the adjacent anterior one.

IED classification

IED events (Fig. 1) were identified visually by an experienced EEG
reviewer, and their onset time (peak of the sharp wave) was marked
in relation to the start of the icEEG recording. IED were then grouped
into classes, according to their spatiotemporal localisation and field
distribution. Each IED class was labelled as either: focal, if simultaneous-
ly observed in 2-4 contiguous contacts; regional, if simultaneously ob-
served in 5-10 contiguous contacts that could span up to two gyri;
widespread, if involving >10 contiguous contacts; or non-contiguous, if
having a focal or regional field but also propagating to non-contiguous
contacts. Additionally, the position of each manually placed IED marker
was adjusted to the position of the peak value using an automated
process applied on the 24 ms-wide window centred at the manual
mark, because the accurate IED parameterisation is reliant on the
precise marking of the IED peak. Visual inspection of the realignment
results confirmed the validity of this approach.

Patient-specific contacts of interest (COI)

For each focal IED class and contact pair, [ED were averaged, and the
contact pair showing the largest average focal IED (i.e. the most active
contact pair) was chosen as the contact pair of interest (COI) (see
Table 1 for details on the anatomical location of each COI); this study
is focused on the BOLD changes in the immediate vicinity of the most
active contacts (see Voxels of interest section).

Since the BOLD changes in the immediate surroundings of a particu-
lar COI are expected to reflect all neuronal activity captured by the COI,
all IED classes that shared the COI were grouped in a unique set of
events of interest, called the Sco;. For example, let the contact pair # 1
be the COI; A the focal IED class observed at contact pairs # 1 and 2;
and B the regional IED class observed at contact pairs # 1, 2, 12 and
13, such that A and B constitute all IED classes that involve contact
pair # 1. In this case, events in A and B are taken to form the set of events
of interest: S = {A U B}. Through this process, IED were grouped in 10
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Table 1

Electrophysiological data and effects of interest for BOLD modelling: types of icEEG electrodes used and number of I[ED events included in the BOLD models. D: depth electrode contacts, E: electrocorticography (ECoG) contacts, R: right, L: left, A:

anterior, M: medial, P: posterior, I: inferior, and S: superior.

Patient ID A B C D E F
Type of epilepsy Temporal lobe Frontal lobe epilepsy
epilepsy
Summary of the icEEG -Rand L amygdalae -R A and P insula - L superior (SFG), middle - L frontal lobe - L frontal lobe - L frontal and parietal
implantation (RA) -RA (RASMA) and P (MFG) and inferior frontal (laterally and inferiorly) (laterally and inferiorly) convexity
-Rand L hippocampi (R PSMA) supplementary gyrus -LM (MFG) and I (IFG) -LM (MFG) and I (IFG) frontal - L frontal pole

Number of icEEG contacts

Number of fMRI sessions

Type of contact

Distance between the
contacts (mm)

Number of focal IED classes

Location of COI

Irritative Zone
[ED classes

Set of events of interest
Number of [EDs at the COI

Five 6-contact depths

Ko N

1
RA

R and L temporal lobes

Focal plus more
widespread

S1

1630

ICEEG feature (mean = standard deviation)

Amplitude (uV)

Slope (UV /s)

Width (FWHM) (ms)
Energy (uV's)

Spatial field spread (a.u.)

7115 £ 91.14
4.67 + 6.96
23.19 £ 6.83
1.78 +2.27
7.06 + 1.61

sensorimotor areas
-R A, M and P cingulum (P C)

Two 6-contact depths,
three 8-contact depths,
two 10-contact depths

2

10 5

3

RP SMA RASMA

R ASMA and R PSMA

Focal

Sa S3

209 470

368.60 4+ 395.52 78.62 + 62.34
12.68 + 18.04 6.45 + 538
40.89 + 10.95 19.47 + 4.08
16.00 + 16.51 148 +£1.33
14.85 + 2.88 13.24 £ 247

10

RPC

R I parietal and
M frontal gyrus

Focal plus more widespread

Sa
253

139.43 + 241.95

494 + 875
48.68 + 21.24
7.78 £12.97
14.18 £ 2.18

- L precentral gyrus

- L central sulcus and part of
postcentral sulcus

- L superior frontal sulcus

- L postcentral regions

One 8 x 8 contact grid,

two 4-contact depths,

one 2 x 8 contact grid

1

E

10 10

2

L P SFG and L P SFG and
MFG MFG

L P SFG and MFG

Ss Ss

397 613

101.38 + 72.52 1940 + 28.51
7.85 + 6.09 248 +3.77
10.46 4+ 2.10 8.91 4 4.03
2.06 + 1.48 0.31+ 049
10.93 + 2.76 945 4+ 242

frontal gyrus
- L frontal pole

One 8 x 8 contact grid,
one 2 x 8 contact grid,
two 6-contact depths,

two 6-contact strips

1

D E

10 10

2

LIFG and MFG L lateral
orbitofrontal

LIFG and MFG L lateral
orbitofrontal
Focal

S; Sg

993 194

47.11 + 40.67 78.73 £ 66.86

377 £3.22 6.15 + 5.68

9.88 + 2.90 10.81 + 2.57

1.01 £ 1.01 1.71 + 1.58

1027 +£1.70  9.63 £ 2.00

gyrus
- L temporal lobe

One 6 x 8 contact grid,
two 2 x 8 contact grids,
one 4 x 8 high-density
contact grid,

two 6-contact strips,
two 6-contact depths

1

D

10

1
L IFG and MFG

L IFG and MFG
Focal plus more widespread

So
887

41.18 + 26.64
346 +2.25
11.29 + 4.49
1.03 £+ 0.66
7.38 £ 1.61

- LS frontal gyrus (SFG)
- L1 frontal gyrus
- L mesial frontal surface

One 8 x 8 contact grid,
one 2 x 8 contact grid,
one 8-contact strip,
one 6-contact strip,
one high-density 4 x 8
contact grid

2

E

10

1
L SFG

L SFG (lateral and medial)
Focal

S0
191

66.19 £+ 53.36
5.83 + 4.96
2130 £ 6.33
140 + 1.27
17.32 £ 3.59
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Fig. 1. Representative EEG time courses (patient ID: E, events of interest set: Sg, see Table 1) showing sharp waves of different amplitudes and widths (blue arrows point at events visually

marked at COI: DA 3-4).

Scor, across all patients (see Table 1 for details on the IED classes
modelled and numbers of IED that constitute each Sco;; see Fig. 2 for
the average IED for each Sco).

The icEEG contacts coordinates used in the BOLD analysis were ob-
tained in two steps: the creation of a patient-specific contacts mask;
and the clustering of the voxels representing the contacts, together
with the computation of the centres of mass (CM) of these clusters.
The contacts mask was created by thresholding the intensity of an up-

sampled version of the original CT, to isolate the voxels with the highest
intensities (contact-voxels) from those with the lowest intensities
(head tissues, CSF, and head-surrounding space). The threshold value
was chosen by trial-and-error, so that all contacts were represented
by a group of voxels large enough to be detected after the two co-regis-
trations (using the SPM12 toolbox (www.fil.ion.ucl.ac.uk/spm/
software/spm12/)) that followed: the contacts mask was, first, co-regis-
tered in the SMRI space, and, then, in the EPI space, and the nearest

80 400 | 200
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i 100 50
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0 0
3 o
E; 100 | -50
= 20 -200 - ) -100
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0
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SG S? SS SQ S10
Time (Ms)

Fig. 2. Average IED for each set of events of interest (Scoy).
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neighbour criterion was used to resample the images in both cases. The
second step consisted in clustering the contact-voxels (in the EPI space)
and finding the coordinates of the CM of these clusters using an in-
house Matlab routine that did not require any prior information regard-
ing the number of contacts or their positions. This routine consists of:
computing the distances between each and every other contact-voxel;
sorting these distances, for each contact-voxel, to find its nearest neigh-
bours, which we defined to be the contact-voxels that are at most 4 mm
apart from it; forming clusters composed of each contact-voxel and its
nearest neighbours; finding the coordinates of the CM of every cluster
and aggregating the CM with equal coordinates, therefore reducing
the dimension of the problem - the resulting CM becomes the new con-
tact-voxels; repeating the previous instructions, decreasing, each time,
the diameter of the cluster in 0.25 mm, which leads to a unique set of
coordinates {x,y,z} per contact. Once the coordinates of every contact
were known, the contacts were plotted in a 3D representation, and visu-
ally labelled using the patient's implantation scheme and clinical notes
as reference.

IED parameterisation

First, the EEG was high-pass filtered (low-cut-off at 3 Hz) and
segmented into IED epochs of 600 ms duration, starting 200 ms before
the IED marker. For each event, in any given Sco;, four sharp wave
morphological features (see Fig. 3) and one sharp wave spatial field
extent feature were estimated, as described below. These features
were estimated from single-trial IED estimates rather than from the
raw [ED; the reason why is described below.

The IED sharp wave amplitude (A) was computed as the voltage
value at the peak within a 40 ms-wide window, centred at the
maximum of the averaged IED (Fig. 3 A). The sharp wave width (W)
was computed as the full-width at half maximum:

(M

W =ty _osa —tv-058"

-60 L L L L L L L L L L L L L L L

375

where ty—os54)- and tiy—osa)+ represent the points preceding and
following, respectively, the sharp wave peak at which the signal is
equal to 50% of A (Fig. 3 B). The slope of the rising phase of the sharp
wave (S) was computed as the ratio:

0.8A—0.2A

- oeATaeA
tv=0.84) —t(v=024)

(2)

where fy—g24) and t(y—o.ga) represent the points preceding the IED
peak at which the signal is equal to 20% and 80% of A, respectively
(Fig. 3 C). The sharp wave energy (E) was computed as the area under
the curve of the estimated IED over the interval [t(v—o)-, fiv=0)*],
where t(v—o)- and t o)+ represent the points preceding and follow-
ing, respectively, the sharp wave peak at which the signal first crosses
0 (Fig. 3 D).

The IED spatial field extent (SFE) was estimated as the sum of the
absolute value of the Pearson correlation coefficients between the
epoch time courses from the COI and remaining contacts:

2

ceC \{COI}

SFE = |corr(ecor, ec)|

3)

where C represents all contacts, eco; is the epoch time course from the
COJ, e, is the epoch time course from the contact ¢, and corr(,) stands
for the Pearson correlation coefficient.

The morphological features were estimated using the EEG analysis
toolbox STEP1 (http://iannettilab.webnode.com; Hu et al., 2011); the
spatial field extent was estimated with a Matlab routine developed by
us. In brief, the STEP1 processing consists of (1) computing the (COI-
specific) average IED; (2) generating a variability matrix that models
the variability of the latency and morphology across events (see below
for details on how the variability matrix is built); (3) performing a prin-
cipal component analysis (PCA) on this variability matrix; (4) using the
three principal components (PC) that explain the most variance of the
variability matrix as the basis set of a linear model, which is then used

Average IED
— Single-trial IED data
— Single-trial IED estimate

| E

icCEEG signal amplitue (uV)

E = grey area

L L L L L L L L L

L L L L
100 150 200 250 300 350 -150 -100 -50 O

L
50

L L L L L L | L
100 150 200 250 300 350 -150 -100 -50 0 50 100 150 200 250 300 350

Time (ms)

Fig. 3. Sharp wave morphology-based features (A-D): A amplitude (A), width (B), slope of the rising phase (C), energy (D), overlaid on an example of a single-trial IED estimate. Single-trial
IED estimates examples (E-F). The original IED is displayed in black, the average IED is displayed in grey, and the estimated IED is displayed in blue.
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to obtain the single-trial IED estimate of a raw event. We chose to use a
PCA-based method to obtain the single-trial IED estimates to overcome
issues concerning the use of the raw signal; most importantly, the
strong dependence of the accuracy of the feature estimate on the SNR
of the raw signal. Let us, for instance, take the case shown in Fig. 3 F;
the energy estimate using the raw signal (black curve) would be con-
taminated by the artefact peaking 25 ms before the sharp wave peak be-
cause the feature energy is computed as the area under the signal curve,
over the interval [t.y—o)-, t(v=0)+], where t(y—o)- and ty—q)+ represent
the points preceding and following the sharp wave peak, respectively, at
which the signal first crosses 0. We chose to use the first three PC to
compute the single-trial IED estimates given the way in which the
variability matrix is built (by time shifting and changing the width of
the (COI-specific) average IED (Hu et al., 2011)). In brief, the variability
matrix is an array of multiple plausible synthetic IED, i.e., a basis set,
derived from each (COI-specific) average IED and representing every
combination of the following manipulations: shifting (by —50 to
+ 50 ms in steps of 5 ms) and changing the width (by a compression
factor ranging from 1 to 2, in steps of 0.05) of the (COI-specific) average
[ED, in relation to each single-trial IED. Therefore, the variability matrix
is a set of base functions that differ in their shape, and can be linearly
combined to create each single-trial IED estimate. The PCA on the vari-
ability matrix is performed to identify the three PC that explain most
of the variance of the events shape variability. By linearly combining
these PC, we obtain (COI-specific) IED estimates, that are fitted to each
raw [ED, and from which we can quantify the features of interest. Note
that the amplitude variability was not explicitly modelled in the
variability matrix but it is captured by the component's weights that
result from the PCA. The three PC that explain most variance represent
the average event, its temporal derivative, and its temporal dispersion
(asshown in Hu et al. (2011)) because construction of the variability
matrix is explicitly based on the events shape variability. Note that
STEP1 was designed to remove the nefarious effects of noise, and
therefore to reduce the proportion of variance which represents
noise (i.e. overfitting) by choosing a basis set that captures well the
key features of waveforms that most neurophysiologists would
recognise as IED.

The mean and standard deviation of each IED-derived feature are
presented in Table 1.

Models of IED-related BOLD changes

For each Sco, a total of six models of BOLD changes were estimated:
Mo, Moa, Mow, Mos, Mog, and Mosgg, corresponding to the following
effects of interest respectively: IED onsets alone, IED onsets and ampli-
tude, IED onsets and width, IED onsets and slope, IED onsets and energy,
and [ED onsets and spatial field extent. Let Do, Doa, Dow, Dos, Dok, and
Dose, be the respective design matrices of these models: Do, the design
matrix of the basic model, comprised IED onset times convolved with
the canonical haemodynamic response function (HRF) (regressor O),
and the following confounding effects (regressors C): 24 movement re-
lated confounds (6 realignment parameters, and their Volterra expan-
sion (Friston et al., 1996)), and 6 fMRI physiological noise related
confounds (Tierney et al., 2015). Each of the design matrices, corre-
sponding to a feature, comprised the respective IED feature convolved
with the canonical HRF as a modulatory effect of the amplitude of the
stick functions placed at the IED onset times, such that Doy = [A Do];
Dow = [W Dol; Dos = [S Dol; Doe = [E Dol; and Dogspe = [SFE Do
For example, Mow was defined as:

Yi = Boi x (O®HRF) + By; x (W ®HRF) + 5C + ¢ 4)

where y; is the time course of the amplitude of the BOLD signal for the
voxel i, x is the multiplication symbol, O is the sharp wave onset times
regressor, ® is the convolution symbol, HRF is the time course of the

canonical HRF, W is the sharp wave width regressor, C is the confound-
ing effects matrix, and ¢; is the error for the voxel i.

Variance explained quantification

To quantify the amount of BOLD signal (y) explained by a given
model M, the coefficient of determination adjusted for the number of
degrees of freedom, R%adj, was computed as:

T N2

CT-1 Y i)
—p— T —
T=P=15~ i-9)?

where T is the number of fMRI scans, P is the number of regressors in

R*adj(M) =1 (5)

the model, y; and y; are respectively the i values of y and y' (the esti-
mation of y obtained with M), and ¥ is the temporal average of y.
R?adj was chosen because it takes the number of degrees of freedom
of the model into account, and expresses the degree to which the addi-
tional regressor is capable of explaining more variance than what would
be expected by chance (if a random regressor was included).

To quantify the amount of BOLD signal, y, explained by a given re-
gressor or set of regressors R, in addition to a regressor or set of regres-
sors O, we computed the variance explained by R, VE(R), which
corresponds to the difference between the R%adj obtained for the
more complete model comprising both the set of regressors O and R,
Mog, and the R%adj obtained for the simpler (and nested in Mog)
model comprising only the regressor O, Mo (Bianciardi et al., 2009a;
Shmueli et al., 2007), such that:

VE(R) = R*adj(Mor) —R*adj(Mo) (6)

Voxels of interest

All models (Moa, Mow, Mos, Mok, and Mosge) were estimated using
SPM12 (http://www.fil.ion.ucl.ac.uk/spm). Let us call the point halfway
between the two contacts constituting the COI, the point of interest
(POI). The voxels within a distance of 10 mm from the POI and that
were significantly correlated (p < 0.05, uncorrected) with a positive or
negative linear combination of the 2 regressors of interest (O + A,
0+ W,0 +S,0 + E, and O + SFE), found using the t-contrasts [1 1
0...] (pBOLD voxels) or [—1 —1 0...] (nBOLD voxels), respectively,
were considered of interest. The variance explained was averaged
across the pBOLD and nBOLD voxels, separately.

Results

Representative examples of voxels of interest are presented in Fig. 4
(pBOLD in red; nBOLD in blue). Average VE values, for each IED feature,
are shown in Fig. 5. The average VE value for IED feature W was above 0
in 9/10 IED sets for the BOLD increases; and 8/10 for the BOLD decreases
(Fig.5 A and C; Fig. S1 for event-by-event plots of BOLD signal amplitude
vs sharp wave width (W)). This effect was statistically significant at the
group level (Fig. 5 B and D). The feature E showed a trend towards
explaining more variance (p = 0.09 for the BOLD increases; and p =
0.03 for the BOLD decreases) (Fig. 5 B and D).

Discussion

We investigated the individual capability of four sharp wave
morphological (amplitude, width, slope of the rising phase, and energy)
and one spatial field extent features to explain variance of the amplitude
of the co-localised BOLD signal that was not explained by the sharp
wave onset times. Among these features, the width was the only one
found to explain a significant amount of additional variance, suggesting
that the amplitude of the BOLD signal depends more on the duration of
the underlying field potential than on the degree of neuronal activity
synchrony.
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Fig. 4. Representative example (patient ID: B, events of interest set: S, see Table 1) of IED
onset and width related BOLD changes (p < 0.05, uncorrected), within a 10 mm radius
sphere centred at middle distance between the pair of icEEG contacts that shows the
largest average IED (COI: PSMA 3-4). Positive BOLD changes (pBOLD) are showed in
red, and negative BOLD changes (nBOLD) are showed in blue.

Previous work using a pharmacologic animal model of epilepsy
found significant positive correlations between the amplitude and dura-
tion of epileptic LFP sharp waves and the amplitude of CBF changes,
simultaneously recorded with laser-Doppler flowmetry (Geneslaw
et al., 2011). A metabolic-hemodynamic model proposed by Sotero
and Trujillo-Barreto (2007, 2008), foresees amplitude, duration, and
area under the excitatory curve of the sharp wave as good predictors
of the amplitude of the BOLD signal (Voges et al., 2012). In the standard
model of the BOLD effect, an increase in neuronal activity induces an in-
crease in CBF, which provides more oxygen and glucose to the tissues; if
the increase in CBF exceeds the simultaneous increase in oxygen con-
sumption, the local concentration of deoxyhaemoglobin decreases and
the intensity of the BOLD effect increases (Buxton, 2012). Due to the
likely coupling between CBF and BOLD changes (Carmichael et al.,
2008), the principal finding of this study -the duration of the sharp
wave correlates significantly with the amplitude of the co-localised
BOLD signal- is in line with both Geneslaw et al. (2011) and Voges
etal. (2012).

Sharp wave width neurophysiological correlates and the BOLD signal

Any type of transmembrane current across an excitable membrane
contributes to an extracellular field potential that can be measured as
LFP or icEEG. This field potential is the superposition of all ionic process-
es, ranging from fast action potentials to slow fluctuations in glia. All
electrical currents in the brain superimpose at any given point in
space to yield a (differential) potential, at that location. Therefore, any
transmembrane current, irrespective of its origin, leads to an
extracellular voltage deflection, whose characteristics depend on the
proportional contribution of the multiple sources and properties of the
brain tissue (Buzsaki et al., 2012). The LFP signal amplitude and spatio-
temporal width are known to be markedly shaped by the impinging
pattern of postsynaptic currents and membrane characteristics
(Reimann et al.,, 2013). Therefore, the sharp waves width is likely to re-
flect the following aspects: (1) the duration and synchrony of excitatory

PSP (EPSP), (2) the presence of inhibitory PSP (IPSP), and (3) the time
constants of neurons. In particular, the sharp wave width is likely to re-
flect the distance between sources and field potential recording sensors
(Gold et al., 2006); a larger distance can be associated with a lower
degree of synchrony across multiple EPSP, which can sum and result
in a wider (longer lasting) field potential, depending on the cells spatial
arrangement. Hence, our main finding suggests that the BOLD signal
amplitude is predicted by the duration of the underlying field potential,
likely to reflect the sources geometric arrangement in relation to the
recording sensors.

The sharp wave width effect was observed in voxels at which BOLD
was either increased or decreased in relation to sharp wave onsets and
widths; i.e. the sharp wave width explains additional variance of the
BOLD signal amplitude in voxels where a linear combination of the
events onsets and widths is positively or negatively correlated with
the BOLD signal amplitude. Both IED onsets - related BOLD signal
increases and decreases have been reported (Benar et al., 2006;
Gotman et al., 2006; Grouiller et al., 2010; Jacobs et al., 2014; Lemieux
et al., 2008; Moeller et al., 2009; Pittau et al., 2013; Salek-Haddadi
et al., 2006). However, the mechanisms underlying BOLD signal
decreases are not completely understood: they may result from (1) neu-
ronal activity decreases (Shmuel et al., 2006) and associated CBF
decreases (Carmichael et al., 2008), or (2) neuronal activity increases
that lead to tissue oxygen consumption increases that exceed the
simultaneous CBF increases, resulting in local deoxyhaemoglobin con-
centration increases (Schridde et al., 2008). Finding that a significant
amount of the variance of BOLD signal decreases was explained by the
sharp wave width suggests that BOLD decreases may not be necessarily
associated with neuronal activity decreases (hypothesis (1)); our main
finding and those of Geneslaw et al. (2011) favour hypothesis (2).

Sharp wave amplitude neurophysiological correlates and the BOLD signal

The LFP, icEEG, and scalp EEG signals represent extracellular field
potentials primarily originated by postsynaptic activity, integrated
over different volumes (Creutzfeldt et al., 1966a, 1966b; Klee et al.,
1965; Niedermeyer and Lopes da Silva, 1999). The amplitude of these
signals depends on the geometric arrangement of the active cells, with-
in each element volume, as well as on the degree of synchrony among
the multiple element volumes, over larger distances (Einevoll et al.,
2013). Due to the different nature of the EEG and BOLD signals,
decoupling between them is to be expected to some degree (Nunez
and Silberstein, 2000). For instance, active pyramidal cells are expected
to be associated with a high metabolic demand, due to their action
potentials firing frequency (Connors and Gutnick, 1990), and with
large current dipoles, which result from the sum of many “open-field
generators”. However, the amplitude of the BOLD signal may be inde-
pendent of the geometric arrangement of active cells and equally sensi-
tive to synchronous and asynchronous activity (Nunez and Silberstein,
2000). For instance, BOLD changes may be coupled to neuronal signal-
ling processes rather than to energy demand (Attwell and ladecola,
2002) or neuronal activity synchronisation. Hence, the sharp wave am-
plitude may or may not be a good predictor of the BOLD signal
amplitude.

While Benar et al. (2002) only found a low (not significant), positive
correlation between the square root of the EEG and BOLD signals in the
time range of the interictal event (sharp and slow waves taken togeth-
er), LeVan et al. (2010) found significant correlations between the am-
plitudes of scalp EEG sharp waves and BOLD changes in the SOZ, but
not in distant regions. One of the reasons why we did not find a signif-
icant correlation between the amplitudes of icEEG sharp waves and
co-localised BOLD changes may be related with the spatial scale of our
electrophysiological measurements. For instance, Keller et al. (2010)
found that sharp waves recorded with microelectrodes in humans
could occur with relatively sparse neuronal participation. Furthermore,
sharp waves on icEEG can be generated by much smaller neuronal
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Fig. 5. Variance explained (VE) results. Experiments level analysis: Average VE values, by modulatory feature; for the set of voxels comprised in pBOLD (A), and in nBOLD (C). Group level
analysis: Average VE and respective standard deviation values, by modulatory feature; for the set of voxels comprised in pBOLD (B), and in nBOLD (D). Undefined values correspond to
cases where no voxel had a large enough t-value to survive the threshold used (p < 0.05, uncorrected).

populations than sharp waves on scalp EEG (Cooper et al., 1965;
Ebersole, 1997; Nunez and Silberstein, 2000); in particular, the first
may be generated by a synchronous, albeit small, neuronal population,
whose activity does not involve a large increase in metabolic demand.

IED spatial field extent neurophysiological correlates and the BOLD signal

IED generation is thought to reflect a dynamic and complex network
phenomenon, which is not yet completely understood (Keller et al.,
2010). However, assuming that IED simultaneously observed at multi-
ple icEEG contacts are comparable to LFP correlated across large dis-
tances (>0.2 mm), and noting that the LFP field extent is mainly
dependent on the spatial extent of the surrounding, synchronised
sources of neuronal activity (Einevoll et al., 2013), we may hypothesise
that IED are generated by either multiple, synchronous neuronal popu-
lations, or a single population, whose activity (instantaneously) spreads
to multiple contacts, through volume conduction. Since the BOLD signal
amplitude does not seem to strongly reflect the sharp wave spatial field
extent, it may also not reflect the volume of the surrounding,
synchronised sources.

Methodological aspects and technical limitations of this work

This study is based on the comparison of two models, one nested in
the other. More specifically, we estimate the amount of variance ex-
plained by each feature, quantified event-by-event, in addition to the
event onset; the latter being the standard way to model IED. Irrespec-
tive of the absolute amount of variance explained by any of these fea-
tures, this approach allowed us to rank them according to the amount
of variance explained in addition to a common reference.

We chose to use the simplest possible model for the relationship
between the amplitude of the BOLD signal and each sharp wave feature,
implying that the former is linearly proportional to the latter, through
convolution with a fixed haemodynamic kernel, in this case, the

canonical HRF. This choice was based on three main reasons. Firstly,
we had to explicitly and specifically test for BOLD changes related
with the EEG-derived features because the primary purpose of this
study was to better understand the neurophysiological correlates of
the BOLD signal. The canonical HRF simplicity allowed for a limited
number of degrees of freedom and, therefore, a more straightforward
and unambiguous interpretation of the results. In fact, the number of
comparisons would increase dramatically if we had chosen to use a
more flexible/complex HRF model, which we think is unwise given
the relatively limited amount of data at hand. Moreover, the possibility
of using other hemodynamic kernel does not invalidate our main find-
ing: among all factors considered, only sharp wave width explained a
significant amount of additional variance of the amplitude of the BOLD
signal. Secondly, we wanted to be consistent with the previous funda-
mental studies on the local electrophysiological correlates of the BOLD
signal (Goense and Logothetis, 2008; Magri et al., 2012; Nir et al.,
2007; Scheeringa et al., 2011). Thirdly, although some studies of epilep-
tic activity have raised the issue of the choice of the hemodynamic ker-
nel (deviations from the canonical HRF shape have been observed,
mostly in relation to generalised discharges or focal discharges in gener-
alised syndromes (Beers et al., 2015; Grouiller et al., 2010; Masterton
et al., 2010; Moeller et al., 2008)), others have found this variability to
be less significant, particularly in relation to focal discharges, with devi-
ants often remote from the presumed primary generator of epileptic ac-
tivity (Lemieux et al., 2008; Proulx et al., 2014). This study was focused
on BOLD changes in the immediate vicinity of the most active icEEG
contacts, i.e., BOLD changes within a small volume of brain tissue not ex-
pected to exhibit different haemodynamic responses. Furthermore, re-
ports of HRF shape variability are not limited to studies of epileptic
activity; it has also been observed in relation to location in the healthy
brain, using a relatively constrained basis set (Aguirre et al., 1998),
and in relation to various normal stimuli (Grouiller et al., 2010;
Handwerker et al., 2004). Analyses of exceptionally high SNR fMRI
data of normal brain activation, using a totally unconstrained
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hemodynamic kernel basis set, have revealed a wide range of HRF
shapes covering almost the entire brain, but with unknown biological
meaning (neuronal vs vascular effects) for the deviant ones
(Gonzalez-Castillo et al.,, 2012, 2014).

We, and others, have found that BOLD changes related to epileptic
activity, including the statistical maximum, can be located remotely
from the most active electrodes (Chaudhary et al., 2012; Flanagan
et al., 2014; Kobayashi et al., 2009; Krakow et al., 1999). By focusing
on the local relationship between IED features and BOLD signal ampli-
tude, we ensure that the knowledge gained is more directly related to
the generators rather than any potential propagation effects.

The apparent absence of BOLD changes despite the presence of
neuronal activity, due to the limited spatial resolution of fMRI acquisi-
tions, together with a diminished signal to noise ratio (SNR) in the
surroundings of the metallic icEEG contacts, caused by magnetic suscep-
tibility gradient-induced signal drop-out are limitations of this study.
The quality of our fMRI data was quantified and discussed in the previ-
ous study, Carmichael et al. (2012). Notwithstanding that the % of signal
loss varied across contacts depending on the electrode orientation rela-
tive to the MRI scanner axes (there were greater losses for contacts with
a vector normal to the grid surface parallel to By), the amplitude of the
fMRI signal was generally around 70% of its whole brain average value
at ~5 mm away from the icEEG contact and 100% at ~10 mm away
from it (Carmichael et al., 2012). Our approach has been to use clinically
certified electrodes, with sub-optimal imaging properties, and to scan at
1.5 T, which reduces health risks and the amount of signal drop-out
compared to 3 T (Carmichael et al., 2012); we note that the develop-
ment of electrodes with improved imaging properties and excellent
electrophysiological recording characteristics, suitable for clinical use,
represents an interesting challenge.

The lack of a strong correlation between the sharp wave amplitude
and BOLD signal amplitude may be a consequence of these limitations
because large sharp waves may be the reflection of highly local,
synchronised activity (Einevoll et al., 2013) that is so spatially restricted
that it cannot be captured by fMRI. Even so, we found a significant cor-
relation between the sharp wave width and the BOLD signal amplitude
because wider sharp waves may be the reflection of widespread, not
perfectively synchronised EPSP, that sum and give rise to a wider field
potential. A larger number of sets of events of interest (Sco;) could reveal
that other sharp wave features (for example, amplitude) are also signif-
icantly correlated with the amplitude of the BOLD signal. Nevertheless,
the significant effect of the sharp wave width would almost surely re-
main. We believe that our 10 Sco; are representative of interictal epilep-
tic events in general; they were recorded from multiple brain regions
(amygdale, anterior and posterior supplementary sensorimotor areas,
posterior cingulate, superior, middle, and inferior frontal gyrus, and
the lateral orbitofrontal area), and show relatively heterogeneous
shapes (Fig. 2).

Relevance to EEG-fMRI studies

Most EEG-fMRI studies of epileptic activity use IED onsets as the only
EEG-feature of interest. As a supplementary analysis, we computed the
variance explained by IED onsets in addition to confounds (i.e. we com-
pared the residuals of the models [IED onsets + confounds] and
[confounds]); we found average VE of 1.17% (pBOLD) and 1.21%
(nBOLD). Therefore, the amount of BOLD signal variance explained by
IED onsets, but not by confounds, is of the same magnitude as the vari-
ance explained by sharp wave widths, but not by IED onsets and
confounds. Our VE values are comparable to studies of physiological
noise, Jorge et al. (2013) and Bianciardi et al. (2009b), reporting average
VE values (within grey matter masks) of the order of 1% and 2%. There-
fore, modelling sharp wave width variability, in addition to their onsets,
is likely to improve the BOLD sensitivity related to epileptic activity; this
may be relevant for scalp EEG-fMRI studies aiming to map the focus
and/or propagation networks underlying epileptic activity.

Relevance to neuroscience

Sharp waves have been observed in both pathological and healthy
contexts (Sullivan et al,, 2011). In particular, physiological sharp
waves were recorded in the hippocampal CA1 stratum radiatum of
healthy rodents having minimal interaction with their environment
(during immobility, consummatory behaviours, or slow-wave sleep)
(Buzsaki et al., 1983; Suzuki and Smith, 1987), and of healthy macaques
at an inactive/drowsy-or-sleeping behavioural state (Skaggs et al.,
2007). This suggests that our main finding may be relevant for non-
epileptic tissues; the BOLD signal amplitude may be generally depen-
dent on the duration of the underlying field potential.

Conclusion

We compared a number of epileptic sharp wave features (ampli-
tude, width, energy, rising slope, and field extent) in terms of their
individual capability to explain variance of the co-localised BOLD signal
that was not explained by sharp wave onset times alone; we found that
the width was the only one explaining a significant amount of addition-
al variance. This suggests that the amplitude of the BOLD signal depends
more on the duration of the underlying field potential than on the
degree of neuronal activity synchrony.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.neuroimage.2016.08.001.
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