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ABSTRACT 

Mutations in LRRK2 gene cause inherited Parkinson's disease (PD) and variations around LRRK2 act as risk 

factor for disease. Similar to sporadic disease, LRRK2-linked cases show late onset and, typically, the presence 

of proteinaceous inclusions named Lewy bodies (LBs) in neurons. Recently, defects on ceramide (Cer) 

metabolism have been recognized in PD. In particular, heterozygous mutations in the gene encoding for 

glucocerebrosidase (GBA1), a lysosomal enzyme converting glucosyl-ceramides (Glc-Cer) into Cer, increase the 

risk of developing PD. Although several studies have linked LRRK2 with membrane-related processes and 

autophagic-lysosomal pathway regulation, whether this protein impinges on the Cer pathway has not been 

addressed. Here, using a targeted lipidomics approach, we report an altered sphingolipid composition in Lrrk2
-/-

 

mouse brains. In particular, we observe a significant increase of Cer levels in Lrrk2
-/-

 mice and direct effects on 

GBA1. Collectively, our results suggest a link between LRRK2 and Cer metabolism, providing new insights into 

the possible role of this protein in sphingolipids metabolism, with implications for PD therapeutics. 
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INTRODUCTION 

Parkinson's disease (PD) is an incurable disorder of the nervous system that affects voluntary 

movements. It occurs as hereditary or sporadic condition that progressively impairs the functionality of 

dopaminergic neurons of the substantia nigra pars compacta and, at later stages, of other brain regions. Another 

pathological hallmark of PD is the presence of abnormal lipids and protein aggregates termed Lewy bodies 

(LBs) inside the nerve cells. The main constituent of these inclusions is an aggregated fibrillar form of α-

synuclein (aS) [1]. 

Sphingolipids are particularly abundant in the nervous system and play important roles in cell function 

under physiological conditions and during disease development and progression. Several studies have provided 

evidence that sphingolipid levels are often altered in neurodegenerative diseases [2–4]. Ceramides (Cer), 

components of all major sphingolipid species in the brain, were found to have a defective homeostasis in 

neurodegenerative disorders with LBs pathology, including PD [2,5–7]. This class of lipids is generated by three 

pathways: i) the sphingomyelin hydrolysis that occurs at the plasma membrane, ii) the de novo synthesis taking 

place within endoplasmic reticulum (ER)/Golgi apparatus and iii) the salvage pathway in the endo-lysosomal 

compartment. Cer play a crucial role in the regulation of both intracellular and plasma membrane dynamics, and 

in the modulation of membrane protein activity and signaling [8]. Moreover, Cer modulate processes that 

involve intracellular organelles such as autophagy [9] or mitochondrial-mediated apoptosis [10]. Other lines of 

evidence link Cer balance to PD pathogenesis: first, mutations in GBA1 and SMPD1, encoding two enzymes that 

regulate the ceramide salvage pathway, cause inherited forms of lysosomal storage disorders (LSDs) 

characterized by LB inclusions and neurodegeneration [11,12] and, second, common variants in these genes 

have been identified as risk factors for PD [13].  

LRRK2 is mutated in families with autosomal dominantly inherited PD, and common variations around 

LRRK2 act as susceptibility factors for the disease [14,15]. LRRK2 is a large multi-domain protein exhibiting 

both GTPase and kinase activities, and the most common PD-linked G2019S mutation shows a three-fold 

increase in LRRK2 kinase activity both in vitro and in vivo [16,17]. G2019S carriers exhibit a phenotype nearly 

indistinguishable from idiopathic PD, with a late onset and often with LBs pathology [18]. Accumulating 
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evidence indicates that LRRK2 is associated with membrane compartments [19,20] where it phosphorylates key 

proteins involved in membrane remodeling [17,21,22] and regulates different processes including autophagy-

lysosome pathway [23], vesicular trafficking and protein sorting [14,24]. However, Lrrk2
-/-

 mice or rats show a 

normal dopaminergic system, with subtle or no alterations in the number of dopaminergic neurons and in the 

levels of striatal dopamine [25].  

Recently, a strong association among PD, the G2019S LRRK2 mutation and/or GBA1 mutations was 

documented [26]. Accordingly, altered GBA1 activity was measured in blood from LRRK2 G2019S carriers 

compared to non-carriers [27]. However, it is not known whether LRRK2 is directly or indirectly implicated in 

sphingolipid/ceramide metabolism and/or to GBA1 function. Here, we investigate whether LRRK2 impacts 

sphingolipid metabolism: using a targeted lipidomics approach, we look at the consequence of Lrrk2 knock-out 

on the sphingolipid composition in mouse brains. 
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MATERIALS AND METHODS 

Animals 

C57BL/6 knock-out (Lrrk2
-/-

) mice were provided by Dr. Heather Melrose. Housing and handling of 

mice were done in compliance with national guidelines. All animal procedures were approved by the Ethical 

Committee of the University of Padova and the Italian Ministry of Health (license 46/2012). 

Lipid extraction 

Brains were collected from three male Lrrk2
+/+

 and three male Lrrk2
-/- 

mice at 1 year of age. Lipid 

extraction was performed through a protocol optimized for sphingolipids. Brains were homogenized in ultra-pure 

water and incubated on ice. 3 mL Folch solution (chloroform:methanol 2:1 v/v) were added to the homogenate 

and the solution was sonicated for 15 min at 4 °C. Centrifugation at 16000g for 15 min at 4 °C followed to 

recover the liquid phase [28]. The extracted samples were dried using a rotary evaporator, dissolved in 150 µL 

HPLC-grade methanol (Sigma-Aldrich Co.) and stored in closed vials at -20 °C until analysis.  

LC-MS analysis 

The LC-MS measurements were carried out using a Shimadzu High Performance LC system (CBM-20 

A, equipped with the binary pump LC-20AB, Italy) working in reversed phase with a Kinetex C18 column (100 

Å pore size, 4.6 mm ID, 2.6 μm particle size, and 10 cm length, Phenomenex, Italy). The mobile phase was 

composed of solvent A, methanol:water (7:3 v/v) with 12 mM ammonium acetate, and solvent B, methanol with 

12 mM ammonium acetate. The gradient elution program started with 70% B, reached 100% B in 45 min, and 

was maintained at 100% B for 20 min, at the steady flow rate of 1 mL/min.  

The HPLC was combined with an Applied Biosystems API 3000 QQQ mass spectrometer equipped with 

an electrospray ion source. Each sample was injected twice (10 µL aliquots). Standard solutions were used to 

obtain the response factors needed to convert peak areas into molar quantities. The mass spectrometer was 

operated in Precursor Ion Scan Mode (PIS), in particular PIS of m/z 184 allowed to identify 

phosphatidylcholines (PC), lyso-phosphatidylcholines (Lyso-PC), plasmenyl-phosphatidylcholines (pPC) and 

sphingomyelins (SM), PIS of m/z 264 was used to characterize 18:1 ceramides (Cer 18:1), 18:1 glycosyl-

ceramides (Gly-Cer 18:1), 2-hydroxylated 18:1 glycosyl-ceramides (Gly-Cer 18:1(2-OH)) and sulfatides, 
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whereas PIS of m/z 266 was employed for 18:0 ceramides (Cer 18:0) and 18:0 glycosyl-ceramides (Gly-Cer 

18:0). Since the reversed-phase chromatography method we used did not allow to resolve the different 

glycosylated species, such as glucosyl-ceramides and galactosyl-ceramides [29], they are all referred to as 

glycosyl-ceramides (Gly-Cer). 

Lipidomics data analysis 

The LC-MS chromatograms were integrated using the proprietary software (Analyst 1.4.2), and the 

obtained molar amounts were analyzed using R environment. 

To directly compare sphingolipid levels across samples, their molar amounts were normalized to the 

total lipid content, to obtain molar fractions. This approach allowed us to take into account the different 

biomasses of the samples. To compare changes in ceramides chain length and/or unsaturation across samples, 

the molar fraction of each ceramide was normalized to the total amount of ceramide d18 and expressed as 

percentage. 

Western blot 

Mouse brains were homogenized as previously described [30]. 20 µg of protein samples were resolved 

on 4-20% Tris-glycine polyacrylamide gels (Biorad) in SDS/Tris-glycine running buffer, transferred to 

polyvinylidenedifluoride (PVDF) membranes and probed with anti-LRRK2 MJFF2 (Epitomics Cat# 3514-1, 

RRID:AB_10643781, 1:100), anti-GBA1 validated in gba KO mice model [31] (Cat# AP1140, Calbiochem, 

1:500) or anti-tubulin (Sigma, Cat# T8328, RRID:AB_1844090, 1:5000) antibodies and then with horseradish 

peroxidase-conjugated anti-mouse IgG.  

GBA1 enzymatic activity 

The GBA1 enzymatic assay on brain lysates was performed as described elsewhere [31]. GBA1 activity 

was determined in samples (20 μg of total protein) by hydrolysis of 5 mM 4-methylumbelliferyl-b-D-

glucopyranoside (Cat# M3633, Sigma) in McIIvaine buffer pH 5.4 in the presence of 22 mM sodium 

taurocholate at 37 °C for 1 hour. The reaction was stopped by adding 0.25 M glycine pH 10.4 and 4-

methylumbelliferone and products quantified by fluorescence (Ls50, Perkin Elmer, Waltham, MA, USA). 10µM 
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GBA1 inhibitor (CBE, Conduritol B Epoxide, Cat# sc-201356, Santa Cruz) was added to the lysate as positive 

control. 
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RESULTS 

18:1 Cer level is increased in Lrrk2
-/-

 mouse brains 

In order to evaluate whether LRRK2 is involved in the regulation of the sphingolipid metabolism in the 

brain, we compared Cer, Gly-Cer, sulfatide and SM levels from brains of Lrrk2
-/-

 mice to those in the control 

(Lrrk2
+/+

) mice through a targeted LC-MS based approach (n=3 brains per condition analyzed separately). Data 

were normalized to the total lipids content to account for the different sample biomasses. The results are 

summarized in Figure 1, where the overall levels of identified sphingolipids in Lrrk2
-/-

 mice (KO) are compared 

to those in the control Lrrk2
+/+

 (WT) mice. Statistical analysis (t-test) suggest that normalized Cer amount is 

significantly higher in Lrrk2
-/-

 as compared to Lrrk2
+/+ 

mice, suggesting that the absence of LRRK2 has an 

impact on Cer metabolism. In addition, the normalized amounts of SM, sulfatides and Gly-Cer show an 

interesting trend: SM and sulfatides tend to be higher in Lrrk2
-/-

 samples, whereas Gly-Cer levels are lower. 

Interestingly, Cer, SM and sulfatides are all downstream of GBA1, while Gly-Cer, being partially constituted by 

Glc-Cer [29], are upstream. Since in our experimental setup we could not separate Glc-Cer and Gal-Cer, we 

verified if a measurable effect on the overall Gly-Cer level in neurons could be obtained by inhibiting GBA1 

using CBE. The results show that when GBA1 activity is reduced by about 80% through 50 μM CBE cronic 

treatment, a clear effect on the Gly-Cer level and on the Gly-Cer/Cer ratio can be appreciated in primary neurons 

(Supplementary Figure 1). Therefore, we calculated the overall molar ratio [Gly-Cer]/[Cer] on in Lrrk2
-/- 

brains 

compared to controls. Figure 2 shows the comparison between samples and even though there is a clear trend, 

the difference is not significant. Taken together, these results point to an involvement of LRRK2 on Cer 

metabolism but further experiments are needed to verify a possible LRRK2-mediated dysregulation of GBA1.  

LRRK2 deficiency does not affect the Cer fatty acyl chain composition 

The relative amounts of different Cer species, as defined by their fatty acyl chain composition, regulate 

ceramide function in lipid membranes and signaling pathways and was found to be unbalanced in PD brain 

samples [5,32]. To assess whether the observed increase of total 18:1 Cer in brains was specific to certain acyl 

chains, we compared their relative amounts across samples, as described in the Methods. As shown in Figure 3, 

there are no significant differences between Lrrk2
+/+

 and Lrrk2
-/- 

samples, and the intra-class profiles are 
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indistinguishable. Collectively, our results suggest that whereas the total Cer amount is affected by Lrrk2 knock-

out, the intra-class Cer distribution is not perturbed. 

Lrrk2
-/-

 mouse brains show alterations in GBA1 enzymatic activity 

Considering GBA1 involvement in PD, we hypothesize that the detected imbalance in Cer levels might 

be due to (at least in part) a dysregulation of GBA1 activity in Lrrk2
-/- 

brains. To further explore the impact of 

LRRK2 on the regulation of GBA1, we measured GBA1 protein levels in Lrrk2
+/+

 and Lrrk2
-/- 

brain lysates. 

Unexpectedly, we observed a significant downregulation of GBA1 in Lrrk2
-/- 

brain lysates (Figure 4A-B; 

representative image of n=3 brains per condition; experiment repeated three times, 9 brains in total per condition, 

t-test). Next, to assess whether GBA1 activity is affected in Lrrk2
-/-

 mice, we performed in vitro GBA1 activity 

assays on Lrrk2
+/+ 

and Lrrk2
-/- 

brain lysates. To take into account the differences between total GBA1 amount in 

Lrrk2
+/+ 

and Lrrk2
-/- 

brain lysates, we calculated the specific GBA activity by normalizing the enzymatic activity 

(measured in lysates containing 20 μg of total proteins) to the protein level (measured by western blot) per each 

genotype.  The results show that GBA1 specific activity is increased in Lrrk2
-/- 

brain lysates (Figure 4C, t-test), 

in agreement with the accumulation of Cer measured by the MS approach.  
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DISCUSSION 

In the present study we used a targeted lipidomics approach to identify possible sphingolipid alterations 

in brain samples of knock-out compared to wild-type Lrrk2 mice. To achieve this, we performed targeted LC-

MS measurements and focused on sphingolipids, whose alterations in brain tissue of PD patients have been 

previously reported [5] and have been associated with dysregulation in GBA1 level and activity [33]. 

We first observed a significant increase in the relative amount of Cer, together with a modest, non-

significant increase in SM and sulfatides, and a modest, non-significant decrease in Gly-Cer. These variations 

suggest that LRRK2 deficiency affects sphingolipid metabolism, particularly Cer, which are the direct products 

of the reaction catalyzed by GBA1 in lysosomes. Specifically, the lack of LRRK2 is associated with a significant 

increase in GBA1 product, hinting that LRRK2 may regulate GBA1. However, by computing the Gly-Cer/Cer 

ratios we observed no significant differences, suggesting that the effect (if any) is order of magnitude lower 

compared to those exerted by CBE treatment in cortical neurons, or that the presence of Gal-Cer in the overall 

Gly-Cer may mask a measurable decrease in the Gly-Cer and therefore in Gly-Cer/Cer ratio [34]. To test the 

possibility that GBA1 is directly affected by the lack of LRRK2, we measured GBA1 protein amount and GBA1 

enzymatic activity in brain lysates. Our results show that while GBA1 protein levels are reduced in Lrrk2
-/-

 

brains as compared to wild-type, GBA1 specific activity is increased, a finding consistent with the accumulation 

of Cer observed with the lipidomics approach. 

Our data, together with the reported increase in GBA1 activity in the blood samples from LRRK2 

G2019S patients [27], further support the involvement of LRRK2 in GBA1 regulation and suggest that both the 

presence of LRRK2 and its kinase activity might be involved in Cer metabolism through GBA1 regulation. On 

the other hand, in idiopathic PD patients as well as in PD patients carrying GBA1 mutations and in GD patients, 

a decrease in GBA1 level is usually associated with a decrease in GBA1 activity [27,33,35–40] (Table 1). The 

overall picture that emerges from this analysis is that Cer metabolism is important in PD etiopathogenesis. The 

association of abnormal GBA1 activity with PD, higher in LRRK2 G2019S patients and in LRRK2 deficient 

systems and lower in both GBA1 mutation carriers as well as sporadic PD patients without GBA1 mutations, 

may reflect a distinct pathogenic mechanism for LRRK2-linked PD that deserves further investigation.  
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Since LRRK2 functions as scaffold for several kinases and in the Wnt signalling by orchestrating their 

subcellular distribution and/or their interactions with upstream and downstream effectors [30,41], one possibility 

is that LRRK2 regulates GBA1 activity by affecting GBA1 localization, e.g. its delivery to lysosomes from the 

ER, which is controlled by lysosomal integral membrane protein type-2 (LIMP-2) [42]. Since an increase in 

GBA1 specific activity causes Cer accumulation, which we observed in Lrrk2
-/-

 brains, we suggest that a 

feedback mechanism may occur, leading to a reduction in GBA1 expression level.  A decreased GBA1 level 

may be reached through an increase in its degradation rate or through the downregulation of GBA1 gene. 

However, it is worth noting that also the other pathways involved in Cer regulation described in the introduction 

may be affected directly or indirectly by LRRK2 depletion. 

 To conclude, we propose that LRRK2 may play an important role in the sphingolipid metabolism, by 

affecting GBA1 regulation. Future studies are needed to confirm this link using independent models and to gain 

mechanistic insights into how LRRK2 regulates GBA1 function. Moreover, more needs to be done to understand 

if LRRK2 directly or indirectly regulates Cer metabolism through other pathways. Our results together with 

other recently published papers [2,5,7,11,27,33] suggest that PD shares several features with sphingolipid 

disorders, opening new avenues for the identification of novel therapeutic strategies. 
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FIGURE LEGENDS 

Figure 1: Comparisons of sphingolipid classes between Lrrk2
+/+ 

and Lrrk2
-/-

 mouse brain extracted lipids.  

Sphingolipids were measured by LC-MS in Lrrk2
+/+ 

(WT) and Lrrk2
-/-

 (KO) mouse brains and Cer 18:1 levels 

were significantly increased in Lrrk2
-/-

 brain samples, compared to controls. Relative levels are expressed as 

molar fractions (normalized to the total lipid content in the sample).  

Figure 2: Gly-Cer/Cer ratio is comparable in Lrrk2
+/+

 and Lrrk2
-/-

 mouse brains.  

Gly-Cer/Cer ratio is slightly lower in Lrrk2
-/-

 (KO) mouse brains, hinting to a possible dysfunction in GBA1, the 

key enzyme converting Glc-Cer to Cer. However, the difference is not significant as measured by t-test (p=0.14) 

and may be solely due to the significant difference observed in Cer levels. 

Figure 3: Intra-class distribution of Cer 18:1 in Lrrk2
+/+ 

and Lrrk2
-/-

 mouse brain extracted lipids.  

The Cer 18:1 intra-class distributions are indistinguishable between Lrrk2
+/+

 (WT) and Lrrk2
-/-

 (KO) samples, 

meaning that the increase in Cer levels following the knocking-out of Lrrk2 is not specific for Cer with certain 

acyl chains but it equally affects them.  

Figure 4: GBA1 protein is downregulated and GBA1 specific activity is higher in Lrrk2
-/-

 mouse brains.  

A. Western blot of different brain lysates for GBA1 protein level (and the relative LRRK2 level) for Lrrk2
+/+

 

and Lrrk2
-/-

 mice and (B) the relative quantification (n=9 for each genotype). The result shows that there is a 

significant reduction in GBA1 protein levels in the knock-out mice for LRRK2, suggesting that the observed 

increase in Cer is due to other mechanisms affected by LRRK2 depletion. 

C. GBA1 specific activity was calculated normalizing the GBA1 activity measured for the lysate of each 

genotype (20 μg total protein) by the GBA1 expression level as measured by western blot (n=9 for each 

genotype). Asterisks indicate statistical significance by t-test (* p< 0.05).  

Table 1. Summary of GBA1 activity/level and Cer/Gly-Cer amount in different PD and GD models. 



GBA activity GBA level GBA specific activity

Idiopathic PD patients
Blood ↓ (27)      Brain 

↓ (33,36,38)        
Brain ↓ (33,36)  Brain (probably =)

PD patients carrying GBA 

mutations

Blood ↓ (27)      Brain 

↓ (36)        
Brain ↓ (36)  Brain (probably =)

GD patients or gba-/-  mice
Blood ↓ (27)      Brain 

↓ (39)        
Brain ↓ (39)  Brain (probably =)

LRRK2-linked PD patients Blood ↑ (27)

Lrrk2-/-  mice Brain = Brain ↓ Brain ↑

Table
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