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Abstract 

 

This paper presents an indoor overheating assessment study of 100 London dwellings 

during the summer of 2009. The study included physical building surveys, indoor dry 

bulb temperature monitoring and a questionnaire survey on occupant behaviour, 

including the operation of passive and active ventilation, cooling and shading systems. 

A theoretical London housing stock comprising 3,456 combinations of building 

geometry, orientations, urban patterns, fabric retrofit and external weather was 

simulated using the EnergyPlus thermal modelling software. A statistical meta-model of 

EnergyPlus was then built by regressing the independent variables (simulation input) 

against the dependent variables (overheating risk). The monitoring and questionnaire 

data were analysed to explore the relationship between self-reported behaviour and 

overheating, and to test the meta-model. The monitoring data indicated that London 

homes and, in particular, bedrooms are already at risk of indoor overheating during hot 

spells under the current climate. Around 70% of respondents tended to open only one 

or no windows at night mainly due to security reasons. An improvement in R2 values 

between measured temperature and meta-model predictions was obtained only for 

those dwellings where occupants reported actions that was in line with the modelling 

assumptions, thus highlighting the importance of occupant behaviour for overheating. 
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Introduction and background 

 

Background 

 

The last two decades have seen a growing research and policy interest in the 

assessment and mitigation of overheating risk for buildings in heating-dominated 

climates (ZCH, 2015). This has been driven by current climate change projections that 

predict an unprecedented rise in the frequency and severity of extreme heat episodes 

(Murphy et al., 2009), as well as recent events, such as the 2003 and 2006 European 

heat waves, which primarily affected elderly and socially isolated individuals (Fouillet et 

al., 2006; Kovats & Hajat, 2008). Significant emphasis has been placed recently on the 

role of the indoor environment (Buchin, Hoelscher, Meier, Nehls, & Ziegler, 2015; 

Vardoulakis et al., 2015); a large proportion of the deaths that occurred in 2003 in 

France were attributed to indoor heat exposure for individuals living alone at home 

(Fouillet et al., 2006). As 66% of the population is projected to live in cities by the 

middle of the century (UN DESA, 2015), tackling the issue of climate change-driven 

overheating in urban areas, where heat risk may be magnified by urban heat island 

effects and increasing urbanisation, emerges as a priority. 

 

Another significant driver of indoor overheating risk is the unintended consequences of 

poorly applied energy efficiency principles in building construction (Shrubsole, 

Macmillan, Davies, & May, 2014). New and retrofitted dwellings need to meet 

increasingly strict energy efficiency standards, which is fundamental in order to deliver 

a thermally efficient building stock and a reduction in fuel poverty, thus achieving the 

Government’s carbon emission reduction targets and a transition to a low carbon 

economy. However, if high levels of thermal insulation and air tightness are not 

combined with appropriate climate change adaptation strategies, such as shading, 



natural ventilation and other passive cooling measures, the risk of uncomfortable or 

excessive summer indoor temperatures may be inadvertently increased (Dengel & 

Swainson, 2012). 

 

Overheating may be already an issue even under the current climate; it has been 

estimated, for example, that it currently affects 20% of households in the UK (Beizaee, 

Lomas, & Firth, 2013; ZCH, 2015). In recent years, there has been a significant body of 

academic literature focusing on heat risk in UK homes comprising both:  

(i) monitoring studies (Baborska-Narozny, Stevenson, & Chatterton, 2015; 

Beizaee et al., 2013; Firth & Wright, 2008; Ji, Fitton, Swan, & Webster, 2014; 

Lomas & Kane, 2013; Mavrogianni, Davies, Wilkinson, & Pathan, 2009; 

Mavrogianni, Taylor, Davies, Thoua, & Kolm-Murray, 2015; Morgan, Foster, 

Sharpe, & Poston, 2015; Oraiopoulos, Kane, Firth, & Lomas, 2015; Pana, 2013; 

Vellei, Ramallo-González, Kaleli, Lee, & Natarajan, 2016; Wright, Young, & 

Natarajan, 2005); and 

(ii) modelling studies (de Wilde & Coley, 2012; Gul et al., 2015; Gupta, Gregg, & 

Williams, 2015; Gupta & Gregg, 2012; Holmes & Hacker, 2007; Mavrogianni, 

Wilkinson, Davies, Biddulph, & Oikonomou, 2012; McLeod, Hopfe, & Kwan, 

2013; Oikonomou et al., 2012; S. M. Porritt, Cropper, Shao, & Goodier, 2012; S. 

Porritt, Shao, Cropper, & Goodier, 2011; J. Taylor et al., 2016; Tillson, 

Oreszczyn, & Palmer, 2013). 

 

The UK Government and construction industry have responded to this challenge by 

launching a number of projects and reports that have emphasised the need to improve 

our understanding of heat risk across the UK’s building stock and embed climate 

resilience in planning, building design and retrofit (Anderson, Carmichael, Murray, 

Dengel, & Swainson, 2013; CCC ASC, 2014; CIBSE, 2013; DCLG, 2012a, 2012b; 



DEFRA, 2013; Garrett, 2014; NHBC Foundation, 2012; PHE, 2015; M. Taylor, 2014). A 

recent two-year project led by the Zero Carbon Hub (ZCH, 2015) quantified the extent 

to which the housing sector is preparing in order to address these challenges, and 

proposed necessary changes to policy frameworks and business procedures. There is 

also a growing trend towards the development of urban heatwave vulnerability indices 

for urban environments, such as London, that allow the mapping of overheating risk 

and identification of prioritisation areas by public health policymakers (Mavrogianni, 

Davies, Chalabi, et al., 2009; J. Taylor et al., 2015, 2016; Tomlinson, Chapman, 

Thornes, & Baker, 2011; Wolf, McGregor, & Analitis, 2013; Wolf & McGregor, 2013). 

 

It is evident, however, from the review of the literature presented above that the 

influence of human behaviour on heat risk exposure is less well understood, and that 

the various existing modelling frameworks are very rarely validated against actual 

monitored data from large building samples.  

 

Study aims and objectives 

 

The aims of this study were two-fold: 

(i) to develop an empirically tested indoor overheating prediction method entailing 

a set of simple rules that will enable the mapping of building-specific 

determinant factors of indoor overheating in London homes based on the 

limited data that are usually available at the citywide level; and 

(ii) to quantify the potential impact of uncertainties surrounding occupant behaviour 

on these predictions. 

 

The specific objectives of this study were: 



(i) to quantify the extent to which summer overheating occurs in London dwellings 

under the current climate; 

(ii) to analyse monitored summer indoor thermal conditions in London homes in 

relation to occupant behaviour with a focus on the operation of shading devices, 

windows and other ventilation sources; 

(iii) to construct a simplified, physics-based tool for the estimation of relative indoor 

overheating risk in London dwellings that can be run with the reduced data 

readily available and easily extractable from existing Geographic Information 

System (GIS) databases and imputed building fabric characteristics as a 

function of known attributes; and 

(iv) to empirically test its predictions based on measured data on the summer 

thermal performance of a large sample of London dwellings and information 

about the home energy use and ventilation behaviour of their occupants. 

 

Methods 

 

This section offers an overview of the mixed methods approach that was employed in 

this study. The work was divided into four distinct parts:  

(i) an empirical study involving the physical survey and indoor thermal monitoring 

of 100 household spaces in London, and a questionnaire survey on occupant 

behaviour with respect to the operation of home energy appliances, shading 

and ventilation systems; 

(ii) the generation of a large set of dynamic thermal simulations of the summer 

thermal performance of archetypical London dwellings;  

(iii) the development of a multiple linear regression meta-model based on the above 

simulations; and 



(iv) the comparison of the meta-model indoor overheating risk predictions against 

measured data. 

 

The entire process is summarised in Figure 1. 

 

Building physical survey, indoor thermal monitoring and questionnaire survey 

 

The empirical data collection process consisted of two stages. The first stage (May-

June 2009), included the recruitment of study participants and the calibration and 

installation of indoor and outdoor thermal monitoring equipment. A convenience sample 

of London householders was recruited following a call for participation circulated 

through the Bartlett School of Graduate Studies staff mailing list and online 

construction industry networks. To maximise research participation, a free Energy 

Performance Certificate (EPC, HM Government, 2016) was offered to all participants. 

This included information on the energy and environmental impact rating of a dwelling 

and a recommendation report with suggestions on how energy use and carbon 

emissions could be reduced if energy saving measures were put in place. An initial 

group of 111 participants were selected out of 350 who originally responded to the call. 

The main selection criteria were the type of the dwelling and its location within the 

London urban heat island. In order to achieve a wide spread of building geometries 

across the Greater London Area (GLA), a minimum of one mid-terraced house, one 

semi-detached house, one detached house and one purpose-built flat was chosen 

within each postcode area, wherever this was possible. The distribution of built form 

and construction age of the 94 dwellings for which reliable EPC data were obtained at 

the end of the study is illustrated in Figures 2 and 3. The distribution of dwelling types 

in the study sample is compared against the Energy Saving Trust’s Home Energy 

Efficiency Database for London (EST HEED, EST, 2016) in Figure 4. Although it 



appears that mid-terraced houses were overrepresented and flats underrepresented in 

the present study, HEED also contains a significant proportion of missing data, thus not 

allowing a full comparison. Unsurprisingly, whilst a varied sample of housing 

characteristics was achieved, the sample is relatively homogenous as regards to its 

socioeconomic characteristics: Approximately 80% of participants were academic, 

research or administrative staff, or graduate students at the Bartlett School of Graduate 

Studies. 

 

Dry bulb air temperature was measured in the participating dwellings at ten-minute 

intervals during the summer months using Onset HOBO U12-012 data loggers (Onset, 

2016) with accuracy ± 0.35 °C between 0 °C and 50 °C. The loggers were calibrated by 

being exposed to constant thermal environmental conditions for 24 hours using an 8-

point calibration method in a thermal chamber at the Bartlett School of Graduate 

Studies. Study participants received two data loggers each by post and were asked to 

place one in the main living area and one in the main sleeping space of their dwelling, 

in convenient locations at approximately eye level and away from sources of direct light 

and heat, such as radiators, light bulbs, televisions or other large electronic appliances. 

In addition, 10 participants were asked to mount a data logger on their garden walls, 

which was protected by a solar radiation shield (Stevenson screen), in order to 

measure external temperature. Of these externally installed loggers, 8 were deemed 

reliable at the end of the study; their locations are indicated with triangles in the map of 

Figure 3. 

 

The summer period of 2009 was not typical of UK conditions and slightly cooler than 

normal. It was characterised by unsettled weather, with a number of cold spells and 

very wet days. According to the MetOffice, July 2009 was the wettest July on record (in 

a series from 1914). However, external temperatures above 25 oC were also recorded 



on a number of days. The only particularly hot spell occurred early in the summer, from 

29th June to 3rd July. This five-day period was particularly hot and cloudless with an 

average external ambient temperature, as recorded in London Heathrow, of 23.1 oC 

(maximum 31.0 oC, minimum 15.0 oC). A detailed comparative analysis of their indoor 

thermal performance during this more extreme heat event has been presented 

elsewhere (Mavrogianni et al., 2010). 

 

The second stage of the study (September 2009 - January 2010) involved the on-site 

visits to the participating dwellings. Building inspections were completed by two 

surveyors in 94 out of 111 dwellings due to 17 participants dropping out of the full 

survey. During these visits, the monitoring equipment was collected, and detailed 

questionnaire and EPC surveys were simultaneously conducted. The physical surveys 

followed the Government-approved and industry-agreed standardised Reduced 

Standard Assessment Procedure (RdSAP) 2005 method for the creation of EPC for 

existing dwellings (BRE, 2009). Following this method, a reduced number of data items 

were collected during the inspection of the property. Missing data were inferred by 

using default data contained in look-up tables in the approved RdSAP software (NES 

Ltd., 2016). Where possible, gas and electricity meter readings were obtained, and 

detailed architectural sketches of the interior layout were produced. 

 

The participants underwent a detailed 16-page interviewer-assisted questionnaire, thus 

ensuring a very high response rate (80%, 89 out of 111 participants). The design of the 

questionnaire built upon an existing extensively-researched questionnaire (Shipworth, 

2011; Shipworth et al., 2010), initially designed for the longitudinal home energy 

surveys undertaken within the context of the ‘Carbon Reduction in Buildings’ (CaRB, 

2016) research project. The questionnaire was modified by removing questions related 

to the winter thermal performance of the dwelling and adjusted for summer by adding a 



number of questions on the operation of passive and active ventilation, cooling and 

shading systems. Its completion took 20 minutes on average and it included a variety 

of both close-ended (multiple choice, categorical, Likert-scale, numerical and ordinal) 

and open-ended questions on energy consumption habits, ventilation behaviour and 

systems operation during the monitoring period. Optional questions on the occupant’s 

socioeconomic profile were also included at the end. The questions related to summer 

cooling, heating and ventilation behaviour are provided in the Appendix. 

 

A number of participating dwellings were removed from the final dataset for a variety of 

reasons (participants dropping out or unable to arrange a visit, logger data judged as 

unreliable etc.). The survey completion rates are given in Table 1. 

 

Dynamic thermal modelling of the theoretical London housing stock  

 

The intermittent nature of indoor overheating phenomena necessitates the use of 

dynamic thermal models that function at a fine spatiotemporal resolution. The London 

housing typology originally developed by Oikonomou et al. (2012), and subsequently 

applied in studies by Mavrogianni et al. (2012), Taylor et al. (2014) and Mavrogianni et 

al. (2014), were used in the present study (Table 2 and Figure 5). The typology 

includes 15 main geometries and three variants for purpose-built flats (ground, mid and 

top floor flat), resulting in 27 dwelling types in total. In brief, these representative 

dwelling types were created using GIS analysis by identifying the most frequently 

occurring combinations of construction age and built form, and average values of 

height and footprint area across London areas for which such data were available. The 

rest of the input data items required for a complete thermal modelling simulation 

(building storey height, roof type, insulation levels, air permeability, glazing ratio etc.) 

were inferred as a function of known variables from the analysis of existing databases 



such as the English Housing Survey (EHS, DCLG, 2016) and HEED (EST, 2016), as 

described in Oikonomou et al. (2012). Two different levels of energy efficiency were 

considered in the present study: (i) as-built; and (ii) retrofitted by current standards. 

Two separate insulation levels were, thus, considered for each construction element. 

The corresponding U-values were extracted from look-up tables contained in RdSAP. 

The thermal insulation and capacity characteristics of the modelled archetypes are 

given in Table 3. Building fabric permeability was also estimated based on construction 

age using the most comprehensive UK air leakage cohort study undertaken in the late 

1990s (Stephen, 2000). The same standard occupancy, window opening schedules, 

domestic hot water, lights and appliances use were assumed for all modelled dwellings 

as specified by Oikonomou et al. (2012) based on the review of existing studies. With 

regard to occupant-controlled ventilation, it was assumed that occupants will tend to 

open windows when the temperature reached a threshold temperature (25 ˚C for living 

rooms and 23 ˚C for bedrooms) and leave them open for as long as the external 

temperature remained below the internal. The specified thresholds are in line with the 

recommendations on general summer indoor comfort temperatures for non-air 

conditioned dwellings assuming warm summer conditions contained in the 7th edition of 

the Chartered Institution of Building Services Engineers (CIBSE) Guide A (CIBSE, 

2007). It was also assumed that all windows would remain closed during the night time 

or when the dwelling was unoccupied. This was deemed a plausible assumption as this 

study focuses on urban areas with potential security and noise issues. The use of 

internal or external shading as a means to limit solar heat gains was not included in the 

assumptions. Τhe thermal performance of the notional building stock was tested using 

a standardised weather file, the CIBSE Design Summer Year (DSY) for London 

Heathrow (CIBSE, 2016). This weather file represents a year with a hot, but not 

extreme, summer. It consists of an actual one-year sequence of hourly data that was 

selected from 20-year datasets based on dry bulb temperatures during the period April-



September. The selected year corresponds to the mid year of the upper quartile and is 

widely used by UK building professionals to assess indoor overheating. Two different 

building patterns were considered in order to take into account the urban 

overshadowing and wind sheltering effects or lack thereof: (i) urban; and (ii) rural. In 

the rural pattern, all dwellings were modelled as stand-alone buildings, whereas in the 

urban pattern, each archetype was multiplied in order to create a uniform urban 

structure in the 3D environment of the thermal modelling software. For example, mid-

terraced houses formed rows with adjacent buildings. 

 

Multiple combinations of the parameters listed below led to the creation of a theoretical 

dwelling stock database comprising 3,456 variants (Table 4): 

(a) 15 dwelling archetypes (27 variants including ground, mid and top floor level flats); 

(b) 2 insulation levels (as-built and post-retrofit) for 4 construction elements (external 

walls, windows, ground floor, roof/loft); 

(c) 4 orientations of the principal facade (0o, 90o, 180 o and 270o  East of North);  

(d) 2 building patterns (whether a stand-alone building or part of a larger building 

structure); and 

(e) 1 weather file (CIBSE DSY for London Heathrow). 

 

The summertime dry bulb and mean radiant temperature of these 3,456 dwelling 

variants was simulated at hourly intervals in batch mode using the EnergyPlus thermal 

modelling software v. 3-1-0 (US DoE, 2016), an extensively tested and validated 

program. An in-house customised automation Microsoft Excel tool was used to 

generate EnergyPlus Input Definition Files (IDF) in batch mode, which allowed for the 

quick input insertion of multiple building configurations. 

 

 



Development of a meta-model of indoor overheating risk in the London housing stock  

 

A key restriction of dynamic thermal modelling tools when applied at the building stock 

level is the significant computing time that they require. To counteract this problem, a 

statistical meta-model was developed for the purposes of this study that replicates the 

building thermal simulation process in a time effective manner based on a set of 

representative London dwelling archetypes. The main aim of this analytical step was to 

build a set of simple rules/equations that could then be applied to rank the propensity to 

overheat of any random set of London dwellings for which only their building fabric 

properties are known without the need to perform detailed, time-consuming EnergyPlus 

simulations for each individual building. The input and output items of the extensive 

theoretical housing stock modelling described in the previous section was organised in 

groups of independent variables (regressors/predictor variables) and dependent 

variables (controlled variables). A statistical multiple linear regression model of 

EnergyPlus was then built by regressing the independent variables of the modelled 

theoretical housing stock (simulation input) against the dependent variables (simulation 

output) using the Statistical Analysis Software v. 9 (SAS, SAS Institute Inc., 2016). 

Following a preliminary sensitivity analysis, a total of 36 EnergyPlus inputs were 

selected as independent variables in the multiple regression analysis. These are the 

main parameters that are thought to affect the indoor temperature profiles in the 

modelled dwellings and are summarised in Table 5. Whilst the modelled theoretical 

stock is a non-experimental dataset, it was ensured that the selected independent 

variables varied to a satisfactory degree, thus reflecting real-world distributions. 

Defining the dependent variables involved a higher level of complexity as their 

selection highly depends on the chosen definition of overheating. Informed from a 

review of existing overheating criteria and epidemiological studies at the time of the 

study (Mylona, Mavrogianni, Davies, & Wilkinson, 2015), the series of indoor 



temperature statistics were considered to be of interest from a thermal comfort or 

epidemiological point of view and were hence used as dependent variables in this 

analysis. These included:  

(i) the daytime (8 am to 8 pm) mean, maximum and minimum living room 

operative temperature; 

(ii) the night time (8 pm to 8 am) mean, maximum and minimum bedroom operative 

temperature; 

(iii) the number of occupied hours with living rooms above 28 oC; and 

(iv) the number of occupied hours with bedrooms above 26 oC. 

 

Each one of the dependent variables was then regressed against independent 

variables, so that for each dependent variable i regressed against n dependent 

variables, a linear equation with the format of Equation (1) was created: 

  

y! =   a! + a!x! + a!x! + a!x!+. . .+a!x!                                             (1) 

 

where: 

𝑦! : the dependent variable, i.e. a marker for overheating, such as, 

for example, maximum daily summer temperature 

x!,   x!,   x!,… , x! : independent variables, i.e. building fabric properties such as 

U-values, thermal mass, glazing ratio etc. 

a! : the intercept of the multiple regression model 

a!,   a!,   a!,… , a! : the parameter estimates of the multiple regression model 

 

The stepwise forward selection regression technique in SAS was used for the multiple 

regression analysis. This selection was dictated by the fact that the dataset considered 



in this modelling study is artificial, i.e. non-experimental. In other words, the simulated 

building stock was created by arbitrarily assigning fabric properties to the 15 base 

dwelling types until all possible combinations were made. As a result, it is likely that the 

independent variables are not truly independent and are correlated with each other. It 

can, therefore, be expected that in a simple non-stepwise regression analysis the 

calculated parameter estimates may be significantly affected by that particular subset 

of correlated independent variables in the regression equation and the resulting 

collinearity issues. Stepwise regression is hence applied in order to select the optimum 

set of statistically significant explanatory variables. This approach finetunes the prior 

selection of variables and eliminates the ones that do not yield significant 

improvements in the coefficient of determination (R2) values (no additional benefit in R2 

would be gained by entering the next best independent variable). Only parameter 

estimates with significance levels p < 0.15 were accepted. Following this, only the 

equations with R2 higher than 0.50 were considered to provide reliable predictions and 

were, therefore, kept in the model. Approximately 85% of the simulation runs (2,938 

runs) were randomly selected to train the model (i.e. build the regression equations). 

The ability of the model to mimic the behaviour of EnergyPlus was first assessed by 

validating the regression predictions against the remaining 15% of the simulation 

output (518 runs). 

 

Comparison of meta-model predictions against monitored data 

 

The ability of the meta-model to rank random groups of London dwellings based on 

their summer overheating levels was then tested by comparing its predictions against 

the summer 2009 monitored indoor temperature data. 

 



The core multiple regression equations used operative temperature as the basis of the 

indoor overheating metrics, in line with the CIBSE Guide A guidelines against 

overheating in domestic environments. However, as only dry bulb temperature was 

recorded by the HOBO data loggers, a similar set of equations was also generated for 

dry bulb temperature to allow the direct comparison of modelled temperature rankings 

against the ones derived from the monitored data. 

 

The EPC survey data was translated into a format suitable for input into the EnergyPlus 

meta-model. Quantitative building fabric properties (e.g. U-values, thermal admittance 

values) were assigned to each surveyed dwelling based on the corresponding 

qualitative descriptions of its building elements obtained from the survey, in conjunction 

with other known information, such as its construction age band. This included building 

fabric air permeability, wall, roof, floor and window U-values and specific heat capacity. 

The meta-model was finally employed to estimate relative overheating risk in each one 

of the 100 dwellings in the field study. 

 

Results 

 

Monitored thermal performance of London dwellings in relation to occupant behaviour 

 

The distribution of mean and maximum indoor dry bulb temperatures in the main living 

and sleeping areas in the 100 monitored dwellings during August 2009 is illustrated in 

Figure 6. On average, across all dwellings, the living room daytime (8 am to 8 pm) 

mean temperature was 23.1 oC (95% C.I. 22.9-23.4 oC) and the peak temperature was 

26.1 oC (95% C.I. 25.7-26.5 oC). In bedrooms, the average mean night time (8 pm to 8 

am) temperature was 23.4 oC (95% C.I. 23.1-23.6 oC) and the maximum temperature 

was 26.2 oC (95% C.I. 25.9-26.6 oC). Quantifying the actual levels of overheating is 



challenging in this analysis due to the lack of detailed occupancy pattern information on 

a daily basis, which does not allow the estimation of occupied hours. For example, it is 

likely that some dwellings were unoccupied for parts of August when people might 

have been on holidays etc. However, it is worth noting that despite the fact that 2009 

was a mild summer, a significant number of living rooms and, in particular, bedrooms 

appear to have experienced temperatures above established indoor overheating 

thresholds (CIBSE, 2007), which is in agreement with the findings of other UK domestic 

overheating monitoring studies (Beizaee et al., 2013; Lomas & Kane, 2013). 

 

Summertime cooling in UK dwellings currently relies on natural ventilation. A very small 

number of study participants had air conditioning units in their home (only 3.4%, 3 out 

of 89 dwellings, 2 of which had a fixed unit and 1 of which had a portable unit that was 

not used). This is in line with the data contained in the EHS Energy Follow-Up Survey 

(EFUS) 2011 (Hulme, Beaumont, & Summers, 2011), which found that domestic air 

conditioning use is currently very rare across England with less than 3% of households 

using fixed or portable air conditioning units in the summer. Interestingly, it was found 

that ceiling fans are fairly uncommon; they were installed in only 4.5% (4 out of 89) 

dwellings. Pedestal/oscillating fans were much more common as they were used in 

around 60% (53 out of 89) dwellings. Where fans existed, they were switched on for 

2.5 hours on a typical day and for 5.1 hours on a hot day on average. External shading 

devices are also uncommon; whilst the windows in almost all dwellings had some form 

of internal blinds or curtains, other types of shading, such as external shutters, awnings, 

overhangs, low emissivity glazing or vegetation were found in only 5 dwellings. As 

shown in Figure 7, internal blinds or curtains are used for solar protection and/or 

privacy by the majority of householders on summer days although it is worth noting that 

around one fourth of respondents do not tend to use them even on very warm days. 

 



As part of the questionnaire survey, the occupants were asked to report on their 

ventilation habits on typical and very warm days. Figure 8 summarises the main drivers 

for opening windows in the surveyed households, in conjunction with parameters that 

might have hindered the use of natural ventilation. More than one third of participants 

typically open windows when cooking and more than half when bathing or showering 

(57 and 51 out of 89 respondents, respectively). The need for fresh air was shown to 

be the main driver for window opening (85%, 76 out of 89 respondents). Importantly, a 

little less than half of householders (41 out of 89) reported that high indoor 

temperatures was a key reason for opening windows, even under the current climate. 

Dwellings where occupants stated that they were led to open windows because of 

overheating were marginally warmer. Small but statistically significant differences (p < 

0.05) of 0.8 oC and 1.3 oC in average and maximum living room air temperatures during 

August were observed, respectively; no statistically significant differences were found 

as regards to their night time thermal performance, however. Other reasons for 

opening windows included the removal of odours from bedrooms or smoking, moisture 

from drying clothes indoors and condensation, as well as the maximisation of daylight. 

 

What is revealing in the analysis of the questionnaire results is that, overall, observed 

window opening behaviour for cooling seems to differ from standard modelling 

assumptions in theoretical indoor overheating assessment studies. More than half of all 

respondents (48 out of 89) stated that they were unable to open windows when they 

needed it due to security reasons, whereas more than one third (33 out of 89) would 

not open windows due to high external noise levels (Figure 8). A striking result to 

emerge from this study is that, on a very hot day, more than 1 in 5 respondents (10 out 

of 88) would not tend to open any windows at night, whilst around 1 in 10 (16 out of 85) 

would also keep all windows closed during the daytime (Figure 9). The majority of the 

participants stated that, if it was a very hot day, they would open most windows during 



the daytime (38%, 33 out of 88 respondents) and keep only one window open during 

the night (53%, 45 out of 85 respondents). In total, 72% of respondents stated that they 

open only one or no windows at night, mainly due to security reasons, which potentially 

highlights the limited potential for night cooling through purge cross ventilation in 

London urban dwellings. 

 

The summertime thermal performance of the monitored dwellings was examined in 

relation to the self-reported ventilation behaviour of the occupants in order to assess 

the effectiveness of daytime rapid ventilation and/or night ventilative cooling. Figure 10 

illustrates the cross comparison of the ventilation behaviour questionnaire responses 

and various metrics of thermal performance calculated for the August month. (Of the 

100 dwellings shown in Figure 6, Figure 11 only includes the 89 dwellings for which 

questionnaire responses were also available.) The relatively small sample size of the 

study does not allow definitive conclusions to be drawn and no clear pattern emerges 

in the summertime thermal performance of living rooms in relation to window opening 

habits. However, there appears to be a clear trend of increasing temperatures with the 

number of open windows in bedrooms during the night time. There are also small but 

potentially statistically significant differences in both the mean and maximum night time 

temperature of bedrooms without purpose-provided natural ventilation and bedrooms 

where all windows remained open at night (of 1.5 oC and 2.7 oC, respectively). 

Disentagling causes and effects is challenging when dealing with the complex issue of 

indoor overheating; it is not apparent if the higher temperatures in these bedrooms 

resulted in occupants opening all windows, or if the ingress of warmer external air did 

not provide any cooling benefit, thus further increasing indoor overheating. 

 

 

 



Stepwise multiple linear regression model 

 

The predictors, regression coefficients and probability statistics of the multiple 

regression meta-model, which was trained on 85% randomly selected simulations, are 

presented for the CIBSE DSY weather file in Tables 6 and 7. Interestingly, R2 values 

obtained for daytime maxima and night time minima were systematically higher than 

the ones calculated for daytime minima and night time maxima, respectively. 

 

It has to be kept in mind that the parameter estimates of the model are not directly 

comparable unless their linked variables are expressed in the same units. Bearing this 

in mind, the following can be concluded from Table 6 on the daytime thermal 

performance of the modelled building stock: 

(i) Wall and floor insulation levels appear to be positively correlated with peak 

temperatures, with wall insulation having the largest impact of all measures. 

This is potentially due to the fact that the insulation was placed internally in the 

dwelling archetypes with solid walls, which is likely to lead to trapped internal 

heat gains (Mavrogianni et al., 2012). Roof and window insulation generally 

appear beneficial for the alleviation of overheating, with window thermal 

upgrades being more effective. This could be partly explained by the lower solar 

radiation levels transmitted through double glazed windows compared to single 

glazed ones. 

(ii) Increasing the wall thermal mass appears to stabilise the internal temperatures 

by increasing the minima, dropping the peaks and decreasing the number of 

hours above 28 oC. The thermal admittance of roof elements is negatively 

correlated with temperature, that is the more heavyweight a roof, the lower the 

indoor temperatures overall. This is potentially due to the slow solar heat 



absorption and rerelease rates through the roof as a result of its high thermal 

inertia. 

(iii) The analysis of the parameter estimates of opaque and glazed surface areas 

offers some intuitive results: Smaller rooms and dwellings with large exposed 

roof areas tend to overheat more in the daytime. Increasing the external wall 

area also leads to a rise in overheating risk for all orientations apart from the 

North facing wall areas, which are not exposed to solar radiation throughout the 

day. Window areas are generally negatively correlated with indoor temperature, 

possibly due to the fact that they provide means of daytime ventilation, apart 

from West facing glazing areas that appear to slightly increase temperature 

peaks. 

 

Broadly similar relationships appear to hold true for the general impact of insulation, 

thermal mass and geometry on night time operative temperature averages and peaks 

(Table 7): 

(i) However, the daytime relationships with minima appear inverted: 

Unsurprisingly, insulating any construction element is expected to increase 

minimum bedroom temperatures. 

(ii) In addition, large wall or window areas in bedrooms are associated with lower 

minimum and higher maximum temperatures at night, as they increase the 

room thermal responsiveness. 

 

In both living rooms and bedrooms, temperatures are positively correlated with dwelling 

floor level, which is in accordance with existing literature indicating that top floor 

dwellings are more prone to overheating (Vandentorren et al., 2006).  

 



At the next stage, this surrogate model of EnergyPlus was validated against the 

remaining 15% of the simulations. Simple linear regression was performed to assess 

the level of fit between actual and predicted values for various overheating metrics 

derived from the simulated time-series of daytime living room operative temperature of 

the CIBSE DSY weather file (Figure 11). A relatively good agreement between the 

EnergyPlus and its meta-model has been achieved, with the latter being better at 

replicating maximum values (R2 = 0.7633, p < 0.0001). Although a certain level of 

scattering is present in all plots, the regression of minimum temperatures reveals 

distinct clusters of data, potentially representing groups of dwellings with similar 

thermal and ventilation behaviour. 

 

Comparison of the meta-model against monitored data 

 

For testing purposes, a modified version of the meta-model that was presented in the 

previous section was created by replacing operative with dry bulb temperature as the 

dependent variable. In the first stage, the monitored minimum, mean and maximum 

daytime living room and night time bedroom dry bulb temperature of the entire 

monitored housing sample (100 dwellings) in August 2009 was regressed against the 

corresponding predictions of the meta-model. It is worth noting that the comparison 

investigates the relationship of the relative positioning of values, i.e. the ranking rather 

than absolute values. Thus, the R2 rather than the slope of the best fit line is the most 

suitable performance assessment criterion. The results of this analysis are summarised 

in Table 8. It is unclear whether the poor performance of the EnergyPlus meta-model 

should be attributed to weaknesses of the linear equations per se, limitations of the 

EnergyPlus algorithm, fabric input data used (both due to inaccuracy during the 

physical survey data collection process, as well as during the inference of the missing 

data items) or the impact of occupant ventilation and shading, occupancy patterns and 



the local urban climate on indoor temperature. With regard to the latter, no correlation 

was found between mean dry bulb temperature against distance of each dwelling from 

the centre of London (R < 0.0). Although this does not exclude the possibility of 

modifying effects caused by local microclimates, it does suggest that urban heat island 

effects are not dominant.  

 

At the second stage, to investigate the potential influencing role of occupant behaviour 

on temperatures, the surveyed dwellings were divided into sub-sets based on the 

occupant responses to questions related to the frequency of window opening and 

operation of shading systems, such as curtains, blinds or external shutters (Table 9 

and Figure 12). Both EPC and completed occupant questionnaires were available for 

85 participating households. The two dwellings that reported the use of an active 

cooling systems in the summer of 2009 were removed from the analysis at this stage 

leaving 83 points of analysis. Rather interestingly, an improvement in R2 values was 

obtained only for those dwellings were occupants reported a behaviour that was in line 

with the modelling assumptions, namely that they kept ‘all windows open during the 

daytime’ on a very hot day in summer (16%, 14 out of 83 homes) and had curtains or 

blinds drawn ‘none of the time’ on a typical summer day (26%, 23 out of 83 homes). 

The strongest relationship was observed for monitored and modelled minimum 

temperature in dwellings with all windows open (R2 = 0.5757, p = 0.003). Importantly, 

nevertheless, in the majority of the other sub-sets, R was significantly lower. 

 

 

 

 

 

 



Discussion 

 

Study implications 

 

This paper discussed the creation of a multiple linear regression meta-model based on 

a large number of EnergyPlus simulations. The results of this validation were 

encouraging and it was shown that the meta-model can broadly replicate the simulation 

output. The model predictions were then also compared to monitored data obtained 

from a set of London homes in summer 2009.  

 

The results of the study are significant in at least five major respects. First, it was found 

that even though the summer of 2009 was rather mild, excess temperatures above 

established overheating thresholds occurred in a large number of living rooms and, in 

particular, bedrooms. The existing housing stock also currently lacks the passive 

cooling strategies necessary to mitigate overheating and the constraints of living in an 

urban environment (noise, pollution, security concerns) limit the potential to cool rooms 

through ventilation means. This suggests that London dwellings are likely to experience 

major overheating problems in the future, as a result of climate change and urban 

warming trends. The integration of climate resilience strategies into building design and 

retrofit hence needs to become a priority for architects, engineers, developers and 

retrofit providers.  

 

Second, it was shown that it is generally possible to replicate the predictions of detailed 

thermal simulation programs through the use of a limited set of key variables/proxies 

related to the building dimensions and physical properties of the construction materials. 

High Pearson coefficients of determination of up to R2 = 0.7633 were achieved for 

regression of values of maximum daytime temperature obtained from actual 



EnergyPlus simulations and the linear meta-model of EnergyPlus. The meta-model 

was found to perform better when attempting to replicate maxima rather than minima. 

This could potentially be explained by the fact that the mean radiant component of 

peak operative temperature is highly dependent on the building fabric properties. The 

maximum temperature distribution is also characterised by a wider spread across the 

stock, i.e. a larger variation to be explained by individual differences across the 

dwelling variants. This is of particular relevance to researchers and practitioners who 

aim to develop simplified, quick-to-run indoor overheating assessment tools. Such tools, 

when applied at the building stock level and embedded in GIS mapping platforms, 

could become invaluable in the co-ordination of efforts between public health and 

urban planning departments, which is essential for the successful mitigation of urban 

heat risk (Fernandez Milan & Creutzig, 2015). 

 

It was also demonstrated that individual building fabric characteristics are significant 

determinant factors for indoor overheating levels. In other words, if dwellings are 

exposed to the same external weather conditions and operated in the same way by 

their occupants, features such as geometry, thermal insulation and thermal mass levels 

of the building fabric are able to describe a large proportion of the variance in their 

thermal behaviour. As discussed previously in other studies (Oikonomou et al., 2012), 

this finding is particularly important to building designers and retrofit providers, as well 

as planners, who seek to identify the most efficient course of action to minimise urban 

heat risk.   

 

Another key finding of this study was that occupant behaviour is a critical factor for 

indoor overheating. Significant differences were observed between indoor 

temperatures predicted by the meta-model and field monitored temperature data 

collected from 100 London homes during the summer of 2009. Arguably, there are 



many possible explanations for the observed discrepancy, including local microclimatic 

variations, epistemic uncertainties in the initial EnergyPlus simulations on which the 

multiple regression equations were based, as well as the high level of uncertainty in the 

fabric input data used. However, a factor that appears to alter results to a certain extent 

was self-reported occupant ventilation and shading habits. Although no agreement 

between modelled and monitored indoor overheating risk rankings was found across 

the entire surveyed stock, a statistically significant medium strong correlation was 

reported for the sub-set of dwellings with self-reported occupant ventilation and 

shading behaviour similar to the settings of the original EnergyPlus simulations. The 

samples are too small to draw any definitive conclusions, but this finding is clearly an 

indication of the potential significant modifying effect of behaviour on indoor 

overheating risk, which has been shown in other studies (Mavrogianni et al., 2014). 

This suggests that although building fabric characteristics are likely to explain a large 

proportion of the variance in overheating risk across the building stock, risk levels could 

potentially be significantly altered by individual behaviour. 

 

Last but not least, an important finding is that the analysis of the questionnaire survey 

indicates that people in urban environments behave in a considerably different way to 

that assumed not only by standard indoor overheating modelling studies but also by the 

recommendations of policy documents that aim to protect the UK population from 

adverse heat-related health effects. For instance, Public Health England’s Heatwave 

Plan of England (PHE, 2015) suggests that windows that are exposed to the sun 

remain closed during the day and night ventilation occurs when the external 

temperature has dropped. However, a significant proportion of Londoners interviewed 

in this study stated that opening windows at night was not an option even when indoor 

temperatures were uncomfortable due to security and noise reasons. The Heatwave 

Plan also recommends the use of curtains to block solar gains, but their use is also 



limited; the use of alternative, more effective shading options, such as external shutters 

(Gupta & Gregg, 2012), was also very rare in the participating dwellings. It is 

recommended that public health policymakers take these issues into account when 

designing best-practice guidance for urban areas. 

 

Study limitations and suggestions for future research 

 

Indoor overheating in housing is a complex phenomenon with multiple confounding 

factors. There are a number of epistemic uncertainties in the development of the 

EnergyPlus meta-model, such as inherent limitations of the core calculation engine 

used (in the specific case, of the EnergyPlus thermal modelling software and its 

simplification into multiple linear regression equations); and errors due to the lack of 

building stock information. EnergyPlus, as is the case with any building physics model, 

can only be expected to function as an approximation to reality. Testing of the 

underlying physics algorithms and constant validation against real world monitored 

data are essential tools for the refinement of thermal performance models. It is 

important to bear in mind, however, that there will always be a trade-off between the 

level of output accuracy and the amount of input required to run a simulation. A certain 

amount of error will hence be pertinent in modelling work based on reduced data, such 

as GIS-based building stock models. 

 

Similarly, the multiple linear regression approach is characterised by significant 

limitations. Summarising the linkage between simulation inputs and outputs by a fitted 

linear relationship is bound to lead to loss of variation in results. The markers produced 

by equations with very low R2 should be, therefore, treated with caution. Additionally, 

reducing the entire set of EnergyPlus input items to only a few key variables forms a 

major assumption of uniformity across the modelled stock with regard to secondary 



variables (e.g. all dwellings were modelled with exhaust fans). It could be argued, 

however, that this simplified surrogate model of EnergyPlus aims to only flag up ‘hot 

spots’ across the city and that detailed simulation models could be produced later for 

individual buildings within these identified high-risk areas. 

 

Furthermore, the selection of the CIBSE single-temperature threshold exceedance 

overheating criteria to form the basis of the dependent variables of the regression 

model could be debated. Although the use of the adaptive thermal comfort criterion 

was initially examined (CIBSE, 2013), it was concluded that such a metric would be 

more appropriate for an occupant exposure risk model rather than a building-focused 

tool. 

 

Another major source of uncertainty lies in the inference methods used to impute 

missing building fabric characteristics. Estimating unknowns (e.g. glazing areas, wall 

construction types, insulation levels etc.) as a function of known attributes will always 

be associated with a significant level of error risk. In turn, this depends on the quality of 

the data used to build these logical assumptions. In this particular case, the 

representativeness of the stock of the EHS or the BRE air leakage database is crucial. 

For instance, it is known that the latter was not the result of random sampling and 

cannot be, therefore, considered a fully accurate depiction of the construction age-

fabric air permeability relationship. In addition, some of the assumptions contained in 

RdSAP, such as the U-values assigned to solid brick walls, have been found to be 

unreliable following field studies (Li et al., 2014). 

 

A convenience sample was used in the monitoring and questionnaire survey and, as a 

result, the socioeconomic characteristics of the participating households fell within a 

narrow range and, thus, do not form a representative sample of the London population. 



Moreover, owing to the volunteering nature of participation, it is highly likely that the 

participants that responded to the call were energy conscious individuals whose 

occupant behaviour is significantly different to the norm. One might argue, however, 

that summer ventilation behaviour does not vary with socioeconomic characteristics as 

it is not related to fuel consumption, cost and CO2 emissions. In contrary with the 

operation of heating systems which may be linked to fuel prices, and given that no 

auxiliary cooling systems were installed in the majority of the surveyed households, 

income and socioeconomic status, in general, are not expected to have a significant 

influence on the ability of a household to combat overheating. 

 

Participants in the monitoring study were not asked to keep detailed occupancy and 

thermal diaries during the entire monitoring study as it was thought that this might 

discourage participation. Any investigation of the variation between modelled and 

monitored data and its association with occupant ventilation behaviour relied on self-

reported ventilation behaviour during different times of the day. Currently, there are no 

large scale datasets that combine detailed monitoring of the indoor environment during 

the summer period and occupant behaviour in dwellings. A national level housing stock 

survey of indoor overheating risk needs to be undertaken before the association 

between indoor heat exposure and human factors is more clearly understood. 

 

An implication of the above notes on uncertainty is that it is not claimed that the meta-

model presented in this paper is able to produce absolute indoor temperature 

predictions. It is suggested, nonetheless, that its output offers a relative ranking of 

dwellings in the specific case study area based on their propensity to overheat based 

only on their fabric properties and for a specific set of assumptions. An integrated 

multivariate energy-comfort-health citywide model with common units is envisaged in 

the future that will be able to map energy demand, outdoor and indoor thermal comfort, 



as well as cold- and heat-related health risk vulnerability indices as multiple interlinked 

layers of information across urban environments within the context of a changing 

climate. 

 

Conclusions 

 

Existing epidemiological studies tend to focus on the impact of external rather than 

internal climate on health risk. This work presented the development of a simple model 

that isolates the contribution of the building fabric on indoor overheating risk and 

associated health risk. Novel inference GIS-based methods from reduced datasets 

were applied in order to create a quick ranking prediction meta-model of citywide 

indoor overheating risk that could be easily applied in the future by epidemiologists and 

public health policy makers. It has been argued that this GIS-based building sample 

approach could become of central importance in the future in studies aiming to inform 

policy at the building stock level, i.e. city or neighbourhood level, due to its time and 

cost advantages over approaches based on onsite data collection methods. Such an 

approach lends itself to future citywide energy, comfort or health impact assessment 

studies. The relevance of this method is supported by the findings of this study. 

However, whilst it was shown that the meta-model successfully replicates the 

predictions of a detailed dynamic thermal model, its testing against monitored data 

demonstrated the importance of occupant behaviour for overheating risk. More 

building-specific information from the UK building stock, combined with detailed data on 

occupant behaviour, would help researchers to establish a greater degree of accuracy 

on modelled outcomes. 
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Tables 

 
Table 1. Survey completion rates 

 
Count % Survey element 

111 100% participants initially recruited for indoor monitoring 
10 9% participants initially recruited for outdoor monitoring 

101 91% loggers with reliable data from living rooms 
99 89% loggers with reliable data from bedrooms 

8 80% loggers with reliable data from gardens 
90 81% EPC issued 
94 85% EPC survey notes collected 
89 80% questionnaires filled in 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table 2. Construction age and built form characteristics of the modelled dwelling 
archetypes 

 
Dwelling 
type code 

Construction 
age band Built form description 

H01 1902-1913 Two storey terraced houses with large T 
H02 1914-1945 Two storey terraced houses with small or no T 
H03 1914-1945 Large semi-detached houses 
H04a 1960-1979 Tall purpose shared discrete houses and ground floor 
H04b  maisonettes mid floor 
H04c   top floor 
H05 1902-1913 Two storey terraced houses with small or no T 
H06a 1946-1959 Tall purpose shared discrete houses and ground floor 
H06b  maisonettes mid floor 
H06c   top floor 
H07a 1980-2008 Tall purpose shared discrete houses and ground floor 
H07b  maisonettes mid floor 
H07c   top floor 
H08 1902-1913 Two storey linked and step linked houses 
H09 1914-1945 Bungalows and single storey houses 
H10 1960-1979 Two storey terraced houses with small or no T 
H11a 1960-1979 Three-four storey line built walk up flats and ground floor 
H11b  purpose built mews mid floor 
H11c   top floor 
H12a 1914-1945 Three-four storey line built walk up flats and ground floor 
H12b  purpose built mews mid floor 
H12c   top floor 
H13 1980-2008 Attached houses with shops below 
H14 1946-1959 Two storey linked and step linked houses 
H15a 1946-1959 Three-four storey line built walk up flats and ground floor 
H15b  purpose built mews mid floor 
H15c     top floor 
 
 

 

 

 

 

 

 

 

 

 

 

 

 



Table 3. Building fabric characteristics of the modelled dwelling archetypes 

Archetype 
Retrofit 
state 

U-value 
(W/m2K) 

Thermal admittance 
(W/m2K) 

walls floor 
win-
dows loft roof walls floor roof 

H01 As built 2.10 1.20 4.80 0.40 3.10 4.22 5.45 4.43 

 Retrofitted 0.60 0.51 2.00 0.15 3.10 4.35 5.46 4.43 
H02 As built 2.10 1.20 4.80 0.40 3.10 4.22 5.45 4.43 

 Retrofitted 0.60 0.51 2.00 0.15 3.10 4.35 5.46 4.43 
H03 As built 2.10 1.20 4.80 0.40 3.10 4.22 5.45 4.43 

 Retrofitted 0.60 0.51 2.00 0.15 3.10 4.35 5.46 4.43 
H04 As built 1.60 1.20 3.10 0.40 3.10 4.25 5.45 4.43 

 Retrofitted 0.50 0.51 2.00 0.15 3.10 4.52 5.46 4.43 
H05 As built 2.10 1.20 4.80 0.40 3.10 4.22 5.45 4.43 

 Retrofitted 0.60 0.51 2.00 0.15 3.10 4.35 5.46 4.43 
H06 As built 2.10 1.20 4.80 0.40 3.10 4.22 5.45 4.43 

 Retrofitted 0.60 0.51 2.00 0.15 3.10 4.35 5.46 4.43 
H07 As built 0.45 0.45 3.10 0.29 3.10 4.52 5.46 4.43 

 Retrofitted 0.35 0.25 2.00 0.15 3.10 4.54 5.46 4.43 
H08 As built 2.10 1.20 4.80 0.40 3.10 4.22 5.45 4.43 

 Retrofitted 0.60 0.51 2.00 0.15 3.10 4.35 5.46 4.43 
H09 As built 2.10 1.20 4.80 - 2.30 4.22 5.45 4.37 

 Retrofitted 0.60 0.51 2.00  0.15 4.35 5.46 5.97 
H10 As built 1.60 1.20 3.10 0.40 3.10 4.25 5.45 4.43 

 Retrofitted 0.50 0.51 2.00 0.15 3.10 4.52 5.46 4.43 
H11 As built 1.60 1.20 3.10 - 1.50 4.25 5.45 4.52 

 Retrofitted 0.50 0.51 2.00  0.15 4.52 5.46 5.97 
H12 As built 2.10 1.20 4.80 - 2.30 4.22 5.45 4.37 

 Retrofitted 0.60 0.51 2.00  0.15 4.35 5.46 5.97 
H13 As built 0.45 0.45 3.10 0.29 3.10 4.52 5.46 4.43 

 Retrofitted 0.35 0.25 2.00 0.15 3.10 4.54 5.46 4.43 
H14 As built 2.10 1.20 4.80 0.40 3.10 4.22 5.45 4.43 

 Retrofitted 0.60 0.51 2.00 0.15 3.10 4.35 5.46 4.43 
H15 As built 2.10 1.20 4.80 - 2.30 4.22 5.45 4.37 
  Retrofitted 0.60 0.51 2.00   0.15 4.35 5.46 5.97 
 

 

 

 

 

 

 

 

 

 

 

 



Table 4. Combinations of modelled dwelling variants 
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Table 5. Modelling inputs selected as independent variables in the multiple linear 
regression analysis 

Building descriptors 
External wall U-value (W/m2K) 
Ground floor U-value (W/m2K) 
Windows U-value (W/m2K) 
Loft U-value (W/m2K) 
Roof U-value (W/m2K) 
External wall thermal admittance (W/m2K) 
Ground floor thermal admittance (W/m2K) 
Roof thermal admittance (W/m2K) 
Loft roof thermal admittance (W/m2K) 
Loft ceiling thermal admittance (W/m2K) 
Air permeability (m3/m2h @ 50 Pa) 
Building height (m) 
Living room and bedroom descriptors 
Floor level (m) 
Net storey height (m) 
Ground floor area (m2) 
Exposed roof area (m2) 
Exposed North facing wall area (m2) 
Exposed East facing wall area (m2) 
Exposed South facing wall area (m2) 
Exposed West facing wall area (m2) 
North facing window area (m2) 
East facing window area (m2) 
South facing window area (m2) 
West facing window area (m2) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 6. Multiple linear regression analysis of indoor overheating markers for the 
living room for the June-August period of the Design Summer Year 

Dependent variable 

Minimum 
tempera-
ture (oC) 

Mean 
tempera-
ture (oC) 

Maximum 
tempera-
ture (oC) 

Count of 
occupied 
hours 
above 
28 oC 

Statistics     Number of regressors  14 18 17 17 
Error degrees of freedom  2,923 2,919 2,920 2,920 
Coefficient of determination (R2)  0.572 0.616 0.765 0.710 
Root mean squared error  0.455 0.475 1.197 23.934 
Parameter estimates*      Intercept 9.631 25.254 50.309 345.988 
External wall U-value (W/m2K) 0.230 -0.322 -1.101 -18.053 
Floor U-value (W/m2K) -0.203 -0.127 - - 
Window U-value (W/m2K) - 0.131 0.533 8.582 
Loft/roof U-value (W/m2K) 0.027 0.071 0.460 13.160 
External wall thermal admittance (W/m2K) 2.421 -0.570 -5.618 -79.765 
Roof thermal admittance (W/m2K) -0.208 -0.309 -0.726 -13.760 
Dwelling floor level (m) -0.011 0.060 0.228 2.846 
Living room net storey height (m) -1.667 0.585 2.292 29.739 
Living room floor area (m) -0.022 -0.020 -0.015 -0.309 
Living room exposed roof area (m) 0.065 0.034 0.042 2.099 
Living room exposed North facing wall area (m) -0.011 -0.037 -0.032 -0.742 
Living room exposed East facing wall area (m) - 0.017 0.063 0.662 
Living room exposed South facing wall area (m) - 0.024 0.107 1.603 
Living room exposed West facing wall area (m) - 0.018 0.117 1.231 
Living room North facing window area (m) -0.063 -0.054 -0.049 -1.423 
Living room East facing window area (m) -0.073 -0.034 -0.131 -1.327 
Living room South facing window area (m) -0.071 -0.100 -0.168 -2.813 
Living room West facing window area (m) -0.049 -0.043 0.302 3.131 
*Significance levels p < 0.15 for all parameter estimates. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 7. Multiple linear regression analysis of indoor overheating markers for the 
bedroom for the June-August period of the Design Summer Year 

Dependent variable 

Minimum 
tempera-
ture (oC) 

Mean 
tempera-
ture (oC) 

Maximum 
tempera-
ture (oC) 

Count of 
occupied 
hours 
above   
26 oC 

Statistics     Number of regressors  18 16 16 15 
Error degrees of freedom  2,919 2,921 2,921 2,922 
Coefficient of determination (R2)  0.648 0.496 0.631 0.505 
Root mean squared error  0.478 0.418 1.131 61.19 
Parameter estimates*     Intercept 18.277 25.52 43.346 507.432 
External wall U-value (W/m2K) -0.515 -0.380 -0.785 -39.753 
Floor U-value (W/m2K) -0.050 -0.079 - -6.706 
Window U-value (W/m2K) -0.116 0.063 0.384 14.308 
Loft/roof U-value (W/m2K) -0.120 0.090 0.541 23.435 
External wall thermal admittance (W/m2K) -0.421 -1.192 -4.609 -179.515 
Roof thermal admittance (W/m2K) 0.298 -0.088 -0.381 -16.372 
Dwelling floor level (m) 0.013 0.101 0.247 13.764 
Bedroom net storey height (m) 0.982 1.310 1.934 150.525 
Bedroom floor area (m) 0.004 0.022 0.087 3.173 
Bedroom exposed roof area (m) -0.064 -0.038 - -3.859 
Bedroom exposed North facing wall area (m) -0.038 - - 1.800 
Bedroom exposed East facing wall area (m) -0.067 -0.007 0.058 1.380 
Bedroom exposed South facing wall area (m) -0.031 - - - 
Bedroom exposed West facing wall area (m) -0.029 0.024 0.094 4.005 
Bedroom North facing window area (m) -0.104 -0.193 - -19.821 
Bedroom East facing window area (m) - -0.035 0.203 - 
Bedroom South facing window area (m) -0.184 -0.136 0.276 -7.287 
Bedroom West facing window area (m) -0.156 -0.099 0.239 - 
*Significance levels p < 0.15 for all parameter estimates. 
 

 

 

 

 

 

 

 

 

 

 

 

 



Table 8. Comparison of modelled vs. monitored indoor overheating rankings for 
all surveyed dwellings (daytime living room and night time bedroom dry bulb 

temperature) 

Dry bulb temperature 
R2 between meta-model predictions 
and monitored data 

Daytime (living room, 8 am to 8 pm) minimum 0.0774 
mean 0.1156 
maximum 0.1084 

Night time (bedroom, 8 pm to 8 am) minimum 0.0014 
mean 0.0005 
maximum 0.0127 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 9. Comparison of modelled vs. monitored indoor overheating rankings for a 
sub-set of surveyed dwellings (daytime living room dry bulb temperature) 

Dry bulb temperature 
R2 between meta-model predictions 
and monitored data 

 

Dwellings with all 
windows open 

Dwellings with no 
shading 

Daytime (living room, 8 am to 8 pm) minimum 0.5757 0.3038 
mean 0.2762 0.3241 
maximum 0.1828 0.1654 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



Appendix 

(Part of the questionnaire) 

 
1. Use of Cooling and Heating Systems 
The first series of questions are about cooling and heating systems. Your answers will 
help us understand how you use energy to cool or heat your home. 
 
1.1 Are there any rooms where you had the central heating on during the 
monitoring period (June to September)? 

£ Yes à Please specify approximate dates 
£ No à (Skip to 1.3) 

 
1.2 Which rooms were these? 

£ 1. Main Living Room 
£ 2. 2nd Living / Dining Room 
£ 3. 3rd Living / Dining Room 
£ 4. 4th Living / Dining room  
£ 5. Conservatory 
£ 6. Kitchen 
£ 7. Other room for cooking 
£ 8. Main Bedroom  
£ 9. 2nd Bedroom 
£ 10. 3rd Bedroom 
£ 11. 4th Bedroom 
£ 12. 5th Bedroom 
£ 13. Main Bathroom 
£ 14. 2nd Bathroom 
£ 15. 3rd Bathroom 
£ 16. Toilet or WC 
£ 17. Main Hallway 
£ 18. 2nd Hallway 
£ 19. Stairs 
£ 20. Landing(s) 
£ 21. Other Room, please specify ___________________ 

 
1.3 Was your boiler installed before the end of 1997, between 1998 and 2004 or 
after 2004?  

£ 1.  1997 or earlier 
£ 2.  1998 to 2004  
£ 3.  2005 to 2009   

 
1.4 Does your home have any electric extractor fans or cooker hoods with external 
vents? 

£ Yes 
£ No 

 
1.5 How many electric extractor fans or cooker hoods are there? 
0..7 _______________ 
 
1.6 How often do you use it (them)? 

£ 1.  Every day 
£ 2.  5 or 6 days a week 
£ 3.  3 or 4 days a week 



£ 4.  1 or 2 days a week 
£ 5.  1 – 3 times a month 
£ 6.  Less than once a month 
£ 7.  No regular frequency, it depends 

 
1.7 Is there any air conditioning (cooling) in use in your home?  
(INTERVIEWER INSTRUCTIONS: Please do not include fans) 

£ Yes 
£ No  à (Skip to 1.12) 

 
1.8 How many air conditioning units are in use in your home? (MULTICODE OK) 
0..7 _______________ fixed AC units 
0..7 _______________ portable AC units 
0..7 _______________ portable evaporative coolers 
0..7 _______________ other, please specify _______________ 
 
1.9 During a typical summer, for how many months would the air conditioning 
(cooling) be in use? 
0..7 _______________ 
 
1.10 During a typical month when the air conditioning (cooling) is in use, for how 
many days would the air conditioning (cooling) be in use?  
0..31 _______________ 
 
1.11 During a typical day when the air conditioning (cooling) is in use, for how 
many hours would it be turned on? 
0..24 _______________ 
 
1.12 How many cooling fans do you have in your home? (MULTICODE OK) 
0…7 _______________ ceiling fans 
0…7 _______________ oscillating/pedestal fans 
 
1.13 During a typical day in summer, for how many hours would the fans be turned 
on? 
0..24 _______________ 
  
1.14 During a very hot day in summer, for how many hours would the fans be 
turned on? 
0..24 _______________ 
 
1.15 Do you regularly open kitchen windows when cooking? 

£ Yes 
£ No 

 
1.16 Do you regularly open windows when bathing/showering? 

£ Yes 
£ No 
 

1.17 What is the main reason for opening windows in summer other than cooking 
or bathing/showering? (MULTICODE OK)   

£ 1. High indoor temperatures   
£ 2. Need for fresh air 
£ 3. Other, please specify __________________________ 

 
1.18 During a typical day in summer, how often were windows open in your home 
other than when cooking or bathing/showering? (MULTICODE OK)   

£ 1. Windows never open during the daytime  



£ 2. At least one window open during the daytime 
£ 3. Most windows open during the daytime   
£ 4. All windows open during the daytime 
£ 5. Windows never open at night  
£ 6. At least one window open at night 
£ 7. Most windows open at night 
£ 8. All windows open at night 
 

1.19 During a very hot day in summer, how many windows were open in your home 
other than when cooking or bathing/showering? (MULTICODE OK) 

£ 1. Windows never open during the daytime  
£ 2. At least one window open during the daytime 
£ 3. Most windows open during the daytime   
£ 4. All windows open during the daytime 
£ 5. Windows never open at night  
£ 6. At least one window open at night 
£ 7. Most windows open at night 
£ 8. All windows open at night 
 

1.20 Did any of the following prevent you from opening windows when you wanted 
to? (MULTICODE OK)  

£ 1. Security issues  
£ 2. External noise 
£ 3. External air pollution 
£ 4. High external air temperatures 
£ 5. Other, please specify _______________ 

 
1.21 Is it possible to close off the living room from neighbouring rooms by closing 
a door or doors? 
£ 1. Yes, from all neighbouring rooms 
£ 2. Yes, from some neighbouring rooms 
£ 3. No 
HELPSCREEN: The “living” room is that which is used regularly by the family for 
watching TV etc. Neighbouring rooms include stairs, hallways, etc.  
 
1.22 During a typical day in summer, how often did you leave the internal doors 
open? 

£ 1. All of the time   
£ 2. Most of the time 
£ 3. About half of the time 
£ 4. Some of the time 
£ 0. None of the time   

 
1.23 During a very hot day in summer, how often did you leave the internal doors 
open? 

£ 1. All of the time   
£ 2. Most of the time 
£ 3. About half of the time 
£ 4. Some of the time 
£ 0. None of the time   

 
1.24 Do you have any shading systems installed in your home? (MULTICODE OK) 

£ 1. Internal blinds or curtains  
£ 2. External blinds or awnings 
£ 3. Low-e coated glazing 
£ 4. Other, please specify _______________ 



1.25 During a typical day in summer, how often did you draw the internal 
curtains/blinds during the daytime? 

£ 1. All of the time   
£ 2. Most of the time 
£ 3. About half of the time 
£ 4. Some of the time 
£ 0. None of the time   

 
1.26 During a very hot day in summer, how often did you draw the internal 
curtains/blinds during the daytime? 

£ 1. All of the time   
£ 2. Most of the time 
£ 3. About half of the time 
£ 4. Some of the time 
£ 0. None of the time   

	
  
 
	
  
	
  
	
  
	
  

	
  

	
  

	
  


