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Abstract. An inverse boundary value problem for a 1+1 dimen-
sional wave equation with wave speed c(x) is considered. We give
a regularisation strategy for inverting the map A : c 7→ Λ, where Λ
is the hyperbolic Neumann-to-Dirichlet map corresponding to the
wave speed c. That is, we consider the case when we are given a
perturbation of the Neumann-to-Dirichlet map Λ̃ = Λ + E , where
E corresponds to the measurement errors, and reconstruct an ap-
proximative wave speed c̃. We emphasize that Λ̃ may not be in the
range of the map A. We show that the reconstructed wave speed c̃
satisfies ‖c̃ − c‖ ≤ C‖E‖1/54. Our regularisation strategy is based
on a new formula to compute c from Λ.
Keywords: Inverse problem, regularization theory, wave equa-
tion.

1. Introduction

We consider an inverse boundary value problem for the wave equation

(
∂2

∂t2
− c(x)2 ∂

2

∂x2
)u(t, x) = 0,

and introduce a regularization strategy to recover the sound speed c(x)

by using the knowledge of perturbed Neumann-to-Dirichlet map Λ̃.
Our approach is based on the Boundary Control method [2, 6, 54].

A variant of the Boundary Control method, called the iterative time-
reversal control method, was introduced in [9]. The method was later
modified in [15] to focus the energy of a wave at a fixed time, and in [47]
to solve an inverse obstacle problem for the wave equation. Here we
introduce yet another modification of the iterative time-reversal control
method that is tailored for the 1+1 dimensional wave equation.

Classical regularization theory is explained in [16]. Iterative regular-
ization of both linear and nonlinear inverse problems and convergence
rates are discussed in Hilbert space setting in [10, 18, 20, 41, 43] and
in Banach space setting in [19, 23, 24, 30, 48, 49, 50]. Our new results
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give a direct regularization method for the nonlinear inverse problem
for the wave equation. The result contains an explicit (but not neces-
sarily optimal) convergence rate.

By direct methods for non-linear problems we mean explicit con-
struction of a non-linear map solving the problem without resorting
to a local optimisation method. In our case the map is given by (63)
below. The advantage of direct approaches is that they do not suffer
from the possibility that the algorithm converges to a local minimum.
In particular, they do not require a priori knowledge that the solution
is in a small neighbourhood of a given function. There are currently
only few regularized direct methods for non-linear inverse problems.
An example is a regularisation algorithm for the inverse problem for
the conductivity equation in [31]. Also, a direct regularized inversion
for blind deconvolution is presented in [21].

1.1. Statement of the results. We define

‖c‖Ck(M) =
k∑
p=0

sup
x∈(0,∞)

| ∂
pc

∂xp
(x)|,(1)

where we denote by M the half axis M = [0,∞) ⊂ R. We denote the
set of bounded Ck(M)-functions by

Ck
b (M) = {c ∈ Ck(M); ‖c‖Ck(M) <∞}.

Let C0, C1, L0, L1,m > 0 and define the space of k times differentiable
velocity functions

Vk ={c ∈ Ck(M);C0 ≤ c(x) ≤ C1,(2)

‖c‖Ck(M) ≤ m, c− 1 ∈ Ck
0 ([L0, L1])}.

Here Ck
0 ([L0, L1]) is the subspace of functions in Ck

b (M) that are sup-
ported on [L0, L1]. Let

T >
L1

C0

.(3)

For c ∈ V2 and f ∈ L2(0, 2T ), the boundary value problem

(
∂2

∂t2
− c(x)2 ∂

2

∂x2
)u(x, t) = 0 in M × (0, 2T ),(4)

∂xu(0, t) = f(t),

u|t=0 = 0, ∂tu|t=0 = 0,
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has a unique solution u = uf ∈ H1(M × (0, 2T )). Using this solution
we define the Neumann-to-Dirichlet operator Λ = Λc,

Λ : L2(0, 2T )→ L2(0, 2T ), Λf = uf |x=0.(5)
We define for a Banach space E

L(E) := {A : E → E;A is linear and continuous}.
Let X = L∞(M), Z = C2

b (M) and Y = L(L2(0, 2T )). We define
D(A) = V2 and the direct map

A : D(A) ⊂ Z → R(A) ⊂ Y, A(c) = Λ.(6)

The notation in (6) means that the range R(A) = A(V2) and the
domainD(A) are equipped with the topologies of Y and Z, respectively.
We show in Appendix A, Theorem 5, that the maps (5) and (6) are
continuous.

We consider the inverse problem to recover the velocity function c
by using the boundary measurements Λ. In our case, it is well-known
that A is invertible, see e.g. [12, 13]. Let us record the following:

Theorem 1. A is invertible, that is, there exist a map

A−1 : A(V2) ⊂ Y → V2 ⊂ Z, A−1(Λ) = c.

For the convenience of the reader we give a proof of Theorem 1 in
Section 2, where we also give a new formula to compute c from Λ. When
we restrict A to the set V3 ⊂ V2, the map A|V3 : V3 ⊂ Z → A(V3) has
a continuous inverse operator in the following sense:

Theorem 2. The inverse map

A−1 : A(V3) ⊂ Y → V3 ⊂ Z, A−1(Λ) = c,

is continuous.

Below, we will prove a result for the continuity modulus of A−1. The
continuity of A−1 in Theorem 2 is abstract in the sense that it does
not contain quantitative estimates. For the convenience of the reader
we give a proof of Theorem 2 in Appendix B.

Our main result concerns perturbations of the Neumann-to-Dirichlet
operator of the form

Λ̃ = Λ + E ,(7)

where E ∈ Y models the measurement error. We assume that ‖E‖Y ≤
ε, where ε > 0 is known. In this situation we can not use the map
A−1 to calculate function c since Λ̃ may not be in the range R(A). We
recall the definition of a regularization strategy, see e.g. [16] and [30].



4 JUSSI KORPELA, MATTI LASSAS AND LAURI OKSANEN

Definition 1. Let Z,Y be Banach spaces and Ω ⊂ Z. Let A : Ω ⊂ Z →
Y be a continuous mapping. Let α0 ∈ (0,∞]. A family of continuous
maps Rα : Y → Z parametrized by 0 < α < α0 is called a regularization
strategy for A : Ω→ Y if

lim
α→0
Rα(A(c)) = c

for every c ∈ Ω. A regularization strategy is called admissible, if the
parameter α is chosen as a function of ε > 0 so that limε→0 α(ε) = 0
and for every c ∈ Ω

lim
ε→0

sup
{∥∥∥Rα(ε)Λ̃− c

∥∥∥
Z

: Λ̃ ∈ Y,
∥∥∥Λ̃−A(c)

∥∥∥
Y
≤ ε
}

= 0.

Below we will use Definition 1 for A given in (6) with Ω = V3. Figure
1 gives a schematic illustration of regularization.

Model space Data space

Z Y

c

A
ε

Rα(ε)

A(c)

A(Ω)Ω

Λ̃

Rα(ε)(Λ̃)

Figure 1. The idea of regularization is to construct a
family Rα(ε) of continuous maps from the data space Y
to the model space Z in such a way that c can be ap-
proximately recovered from noisy data Λ̃. For a smaller
noise level ε the approximation Rα(ε)(Λ̃) is closer to c.
More details can be found in [44, Fig. 11.5].

We are now ready to formulate our main result:

Theorem 3. Let β = 1
54

. For operator A : V 3 ⊂ Z → Y , there exists
an admissible regularization strategy Rα with the choice of parameter

α(ε) = 2
13
9 T

4
9 ε

4
9

that satisfies the following: For every c ∈ V3 there are ε0 and C > 0
such that

sup
{∥∥∥Rα(ε)Λ̃− c

∥∥∥
Z

: Λ̃ ∈ Y,
∥∥∥A(c)− Λ̃

∥∥∥
Y
≤ ε
}
≤ Cεβ,
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for all ε ∈ (0, ε0).

We will give explicit choices of Rα and ε0, in formulas (62), (63),
and (64) below. For the convenience of the reader we give a short
summary on the regularization strategy. Assume that we are given
Λ̃ ∈ Y , that is, the Neumann-to-Dirichlet map for the unknown wave
speed c(x) with measurements errors. Then the regularization strategy
is obtainded by doing the following steps:

(1) Using (8) and (24) we calculate the operator H̃r = Pr(RΛ̃RJ −
JΛ̃)Pr for r ∈ [0, T ]. This operator determines approximately
the inner products of the waves by 〈uf1(T ), uf2(T )〉L2(M) ≈
〈H̃rf1, f2〉L2 for all boundary sources f1, f2 ∈ L2(T − r, T ).

(2) Using operator H̃r we construct in (34) a source f̃α,r that ap-
proximates the solution fα,r of the minimization problem (13).
Here, the source fα,r produces a wave such that ufα,r(t, x)|t=T
is close to the indicator function 1M(r)(x) of the domain of in-
fluence M(r), see (11) and Figure 2.

(3) Using sources f̃α,r we compute approximately the volumes V (r) =
Volc(M(r)) of the domains of influences, see (20).

(4) Using finite differeces we compute approximate values of the
derivative of the volume of the domain influences ∂rV (r), see
(44).

(5) We interpolate the obtained values of ∂rV (r). This determines
the approximate values of the wave speed v(r) in the travel time
coordinates, see (21).

(6) Finally, we change coordinates from the travel time coordinates
to the Euclidean coordiantes to obtain the approximate values
of the wave speed c(x) for x ∈M .

1.2. Previous literature. From the point of view of uniqueness ques-
tions, the inverse problem for the 1+1 dimensional wave equation is
equivalent with the one dimensional inverse boundary spectral problem.
The latter problem was thoroughly studied in 1950s [17, 32, 42] and we
refer to [22, pp. 65-67] for a historical overview. In 1960s Blagoveščen-
skĭı [12, 13] developed an approach to solve the inverse problem for the
1+1 dimensional wave equation without reducing the problem to the
inverse boundary spectral problem. This and later dynamical methods
have the advantage over spectral methods that they require data only
on a finite time interval. Applications of 1-dimensional inverse probems
have beed discussed widely in [11, 22, 26]

The method in the present paper is a variant of the Boundary Control
method that was pioneered by M. Belishev [2] and developed by M.
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Belishev and Y. Kurylev [5, 6] in late 80s and early 90s. Of crucial
importance for the method was the result of D. Tataru [54] concerning
a Holmgren-type uniqueness theorem for non-analytic coefficients. The
Boundary Control method for multidimensional inverse problems has
been summarized in [3, 26], and considered for 1+1 dimensional scalar
problems in [4, 7] and for multidimensional scalar problems in [25, 28,
33, 36, 37]. For systems it has been considered in [34, 35]. Stability
results for the method have been considered in [1] and [29].

The inverse problem for the wave equation can be solved also by
using complex geometrical optics solutions. These solutions were de-
veloped in the context of elliptic inverse boundary value problems [53],
and in [45] they were employed to solve an inverse boundary spectral
problem. Local stability results can be proven using (real) geometrical
optics solutions [8, 51, 52], and in [40] a stability result was proved by
using ideas from the Boundary Control method together with complex
geometrical optics solutions. Finally we mention the important method
based on Carleman estimates [14] that can be used to show stability
results when the initial data for the wave equation is non-vanishing.

2. Modification of the iterative time-reversal control
method

In this section we prove Theorem 1 in such a way that we can utilize
the proof to construct a regularization strategy as in Theorem 3. Let
Λ be as defined in (5). Let r ∈ [0, T ]. We define linear operators in Y
by

Jf(t) =
1

2

∫ 2T

0

14(t, s)f(s)ds,(8)

Rf(t) = f(2T − t), K = RΛRJ − JΛ,

Bf(t) = 1(0,T )(t)

∫ T

t

f(s)ds, Prf(t) = 1(T−r,T )(t)f(t),

where

14(t, s) =

{
1, t+ s ≤ 2T and s > t > 0,

0, otherwise

and

1(T−r,T )(t) =

{
1, t ∈ (T − r, T ),

0, otherwise.
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Let f ∈ L2(0, 2T ). Using the solution uf ∈ H1(M × (0, 2T )) of (4) we
define

UT : L2(0, 2T ) 7→ H1(M), UTf = uf |t=T .(9)

We show in Appendix A, Theorem 5, that the map (9) is continuous.
Let us denote dV = c−2dx and uf (T ) = uf |t=T . Let us recall the
Blagovestchenskii identities

〈uf (T ), 1〉L2(M ;dV ) = 〈f,B1〉L2(0,2T ),(10)

〈uf (T ), uh(T )〉L2(M ;dV ) = 〈f,Kh〉L2(0,2T ).

The identities (10) originate from [11], and their proofs can be found
e.g. in [9]. We define the domain of influence

M(r) = {x ∈M ; d(x, 0) ≤ r},(11)

where d(x, 0) =
∫ x

0
1
c(t)
dt is the travel time of the waves from 0 to the

point x. See Figure 2 for a visualization of M(r).

-

6

x

t

t = T

t = T − r

x = χ(r)

M(r)� -

�
�

�
�
�

�
�
�

�
�
�

�
�

Figure 2. When the boundary source f satisfies,
supp(f) ⊂ [T − r, T ], the solution uf (t, x)|t=T at time
T is supported in the domain of influence M(r).

We use the following result that is closely related to [9], [46].
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Theorem 4. Let r ∈ [0, T ] and α > 0. Let K,B, and Pr be as defined
in (8). Let us define

(12) Sr = {f ∈ L2(0, 2T ) : supp(f) ⊂ [T − r, T ]}.
Then the regularized minimization problem

(13) min
f∈Sr

(
〈f,Kf〉L2(0,2T ) − 2〈f,B1〉L2(0,2T ) + α ‖f‖2

L2(0,2T )

)
,

has unique minimizer

(14) fα,r = (PrKPr + α)−1PrB1

and the map r 7→ fα,r is continuous [0, T ] → L2(0, 2T ). Moreover
ufα,r(T ) converges to the indicator function of the domain of influence,

lim
α→0

∥∥ufα,r(T )− 1M(r)

∥∥
L2(M ;dV )

= 0.(15)

For the convenience of the reader we give a proof.

Proof of Theorem 4. Let α > 0 and let f ∈ Sr. We define the energy
function

(16) E(f) := 〈f,Kf〉L2(0,2T ) − 2〈f,B1〉L2(0,2T ) + α ‖f‖2
L2(0,2T ) .

The finite speed of wave propagation implies supp(uf (T )) ⊂ M(r).
Using (10) we can write
(17)
E(f) =

∥∥uf (T )− 1M(r)

∥∥2

L2(M ;dV )
−
∥∥1M(r)

∥∥2

L2(M ;dV )
+ α ‖f‖2

L2(0,2T )) .

Let (fj)
∞
j=1 ⊂ Sr be such that

lim
j→∞

E(fj) = inf
f∈Sr

E(f).

Then
α ‖fj‖L2(0,2T )) ≤ E(fj) +

∥∥1M(r)

∥∥2

L2(M ;dV )
,

and we see that (fj)
∞
j=1 is bounded in Sr. As Sr is a Hilbert space, there

is a subsequence of (fj)
∞
j=1 converging weakly in Sr. Let us denote the

limit by f∞ ∈ Sr and the subsequence still by (fj)
∞
j=1.

The map UT : L2(0, 2T ) → H1(M), as defined in (9), is bounded.
The embedding I : H1(M) ↪→ L2(M) is compact and thus UT : f 7→
uf (T ) is a compact operator

UT : L2(0, 2T )→ L2(M).

Hence we have a subsequence (fj)
∞
j=1 for which ufj(T ) → uf∞(T ) in

L2(M) as j →∞. Moreover, the weak convergence implies

‖f∞‖L2(0,2T )) ≤ lim inf
j→∞

‖fj‖L2(0,2T ) .
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Hence
E(f∞) = lim

j→∞

∥∥ufj(T )− 1M(r)

∥∥2

L2(M ;dV )
−
∥∥1M(r)

∥∥2

L2(M ;dV )
+ α ‖f∞‖2

L2(0,2T )

≤ lim
j→∞

∥∥ufj(T )− 1M(r)

∥∥2

L2(M ;dV )
−
∥∥1M(r)

∥∥2

L2(M ;dV )
+ α lim inf

j→∞
‖fj‖2

L2(0,2T )

= lim inf
j→∞

E(fj) = inf
f∈Sr

E(f),

and thus f∞ ∈ Sr is a minimizer for (16). We denote by Dh the Fréchet
derivative to direction h. Note that inff∈Sr E(f) = inff∈L2(0,2T ) E(Prf).

If
0 = DhE(f) = 2〈h, PrKPrf〉L2(0,2T )−2〈h, PrB1〉L2(0,2T )+2α〈h, f〉L2(0,2T ),

for all h ∈ Sr ⊂L2(0, 2T ), then
(PrKPr + α)f = PrB1.

Using (10) we have

〈(PrKPr + α)f, f〉L2(0,2T ) = 〈uPrf (T ), uPrf (T )〉L2(M ;dV ) + 〈αf, f〉L2(0,2T ).

Operator PrKPr + α is coercive when α > 0. The Lax-Milgram The-
orem implies that it is invertible, and we have an expression for mini-
mizer

fα,r := f∞ = (PrKPr + α)−1PrB1.

According to [54], see also [27], we know that

{uf (T ) ∈ L2(M(r)); f ∈ Sr}
is dense in L2(M(r)). Let δ > 0. For ε = δ2

2
, let us choose fε ∈ Sr,

fε 6= 0 such that

(18)
∥∥ufε(T )− 1M(r)

∥∥2

L2(M ;dV )
≤ ε.

Using (17) we have∥∥ufα,r(T )− 1M(r)

∥∥2

L2(M ;dV )
≤ E(fα,r) +

∥∥1M(r)

∥∥2

L2(M ;dV )
.

Because E(fα,r) ≤ E(fε) we have∥∥ufα,r(T )− 1M(r)

∥∥2

L2(M ;dV )
≤
∥∥ufε(T )− 1M(r)

∥∥2

L2(M ;dV )
+ α ‖fε‖2 .

≤ ε+ α ‖fε‖2 .

When 0 < α < αr = δ2

2‖fε‖2
, we see that∥∥ufα,r(T )− 1M(r)

∥∥
L2(M ;dV )

≤ (ε+ α ‖fε‖2)
1
2 = δ.

Thus
lim
α→0

∥∥ufα,r(T )− 1M(r)

∥∥
L2(M ;dV )

= 0.
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�

We define the travel time coordinates for x ∈M by

τ : [0,∞)→ [0,∞), τ(x) = d(x, 0).

The function τ is strictly increasing and we denote its inverse by

χ = τ−1 : [0,∞)→ [0,∞).

We have

χ(0) = 0, χ′(t) =
1

τ ′(χ(t))
= c(χ(t)).(19)

Thus denoting v(t) = c(χ(t)) and using V (r) to denote the volume of
M(r) with respect to the measure dV we have

V (r) =
∥∥1M(r)

∥∥2

L2(M ;dV )
=

∫ χ(r)

0

dx

c(x)2
=

∫ r

0

χ′(t)dt

v(t)2
=

∫ r

0

dt

v(t)
.(20)

Note that M(r) = [0, χ(r)]. In particular, V (r) determines the wave
speed in the travel time coordinates,

v(r) =
1

∂rV (r)
,(21)

and also in the original coordinates since

c(x) = v(χ−1(x)), χ(t) =

∫ t

0

v(t′)dt′.(22)

Using Theorem 4 and (10) we have a method to compute the volumes
of the domains of influence

V (r) =
∥∥1M(r)

∥∥2

L2(M ;dV )
= lim

α→0
〈fα,r, B1〉L2(0,2T ),(23)

where r ∈ [0, T ]. We are ready to prove Theorem 1.

Proof of Theorem 1. For a given measurement Λ, Theorem 4 and equa-
tions (21), (22), (23) give us a way to calculate for all x ∈ (0, L) the
value of the velocity function

c(x) = v(χ−1(x)) = A−1(Λ)(x).

As we assumed that outside of the interval (0, L) the function c is
identically one, the proof for the existence of inverse map A−1 is com-
plete. �
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3. Stability of regularized problem

In this section we prove Theorem 3. We will construct the opera-
tor Rα(ε) as a composition of several operators. The construction is
motivated by the proof of Theorem 1. We define for a Banach space E

K(E) = {A ∈ L(E);A is compact}.
Let J , R be as defined in (8). Using (8) we see that J ∈ K(L2(0, 2T )).
We define

K : Y → K(L2(0, 2T )), KΛ̃ = RΛ̃RJ − JΛ̃.(24)

H : Y 7→ C([0, T ], Y ), HΛ̃ = r 7→ Pr(KΛ̃)Pr.

Proposition 1. We have ‖H‖Y→C([0,T ],Y ) ≤ T .

Proof. Let r ∈ [0, T ]. We have estimates ‖Pr‖Y ≤ 1, ‖R‖Y ≤ 1,
‖J‖Y ≤

T
2
, and∥∥∥HΛ̃(r)
∥∥∥
L(L2(0,2T ))

≤ 2 ‖J‖L(L2(0,2T ))

∥∥∥Λ̃
∥∥∥
L(L2(0,2T ))

≤ T
∥∥∥Λ̃
∥∥∥
L(L2(0,2T ))

.

Thus

‖H‖Y→L∞([0,T ],Y ) ≤ T.

It remains to show that r 7→ HΛ̃(r) is continuous. Let us denote
K̃ = KΛ̃. Let r, s ∈ [0, T ]. We use the singular value decomposition
for the compact operator K̃. There are orthonormal bases {φn}∞n=1 ∈
L2(0, 2T ) and {ψn}∞n=1 ∈ L2(0, 2T ) such that

K̃f =
∞∑
n=1

µn〈f, φn〉L2(0,2T )ψn,(25)

for all f ∈ L2(0, 2T ), where µn ∈ R are the singular values of K̃. We
define the family {K̃m}∞m=1 of finite rank operators by the formula

K̃mf =
m∑
n=1

µn〈f, φn〉L2(0,2T )ψn.(26)

Then∥∥∥PrK̃Prf − PsK̃Psf∥∥∥
L2(0,2T )

(27)

≤
∥∥∥PrK̃Prf − PrK̃mPrf

∥∥∥
L2(0,2T )

+
∥∥∥PrK̃mPrf − PsK̃mPrf

∥∥∥
L2(0,2T )

+∥∥∥PsK̃mPrf − PsK̃mPsf
∥∥∥
L2(0,2T )

+
∥∥∥PsK̃mPsf − PsK̃Psf

∥∥∥
L2(0,2T )

.
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Let ε > 0 and let ‖f‖L2(0,2T ) ≤ 1. By choosing m large enough we have∥∥∥PrK̃Prf − PrK̃mPrf
∥∥∥
L2(0,2T )

+
∥∥∥PsK̃mPsf − PsK̃Psf

∥∥∥
L2(0,2T )

≤ ε

2
.

Applying projections to (26) we see that

PsK̃
mPrf =

m∑
n=1

µn〈f, Prφn〉Psψn.

For the second term in the sum (27) we have an estimate∥∥∥PrK̃mPrf − PsK̃mPrf
∥∥∥
L2(0,2T )

=

∥∥∥∥∥
m∑
n=1

µn〈f, Prφn〉(Pr − Ps)ψn

∥∥∥∥∥
L2(0,2T )

≤
m∑
n=1

|µn| ‖(Pr − Ps)ψn‖L2(0,2T ) ≤ C(m)|r − s|
1
2 .

For the third term in the sum we have an analogous estimate∥∥∥PsK̃mPrf − PsK̃mPsf
∥∥∥
L2(0,2T )

≤ C(m)|r − s|
1
2 .

Putting these estimates together and choosing |r − s| ≤ δ(ε) = ε2

4C(m)2
,

we see that ∥∥∥PrK̃Pr − PsK̃Ps∥∥∥
Y
≤ ε. �

Let us define

M1 = sup{‖A(c)‖L(L2(0,2T )) ; c ∈ V2}.(28)

Using the continuity of A, see Theorem 5 below, we see that M1 <∞.
We define M2 = 2TM1. Let c ∈ V2 and denote Λ = A(c). We use
again the notations H = HΛ, H̃ = HΛ̃ and H̃r = HΛ̃(r). Using
Proposition 1 we have

‖H‖C([0,T ],Y ) ≤M2.(29)

We define M3 = M2 + 3 and a family {ΨZ
α}α∈(0,2] ∈ C(R) by

ΨZ
α(s) =

 0, if s > M3 − α
4
,

− 4
α
s+ 4M3

α
− 1, if s ∈ (M3 − α

2
,M3 − α

4
],

1, if s ≤M3 − α
2
.

For α ∈ (0, 2] we define

Zα : C([0, T ], Y )→ C([0, T ], Y ),(30)

Zα

(
H̃
)

= r 7→ ΨZ
α

(∥∥∥M3 − (H̃ + α)
∥∥∥
C([0,T ],Y )

)(
H̃r + α

)−1

.
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Let E be a Banach space and let H ∈ E. Let ε > 0. We denote

BE(H, ε) := {H̃ ∈ E :
∥∥∥H − H̃∥∥∥

E
< ε}.(31)

Proposition 2. Let ε ∈ (0, 1) and let p ∈ (0, 1
2
). Let α = 2εp and

let ‖H‖C([0,T ],Y ) ≤ M2. Let Hr ∈ Y be positive semidefinite. Let us
assume that H̃ ∈ BC([0,T ],Y )(H, ε). Then∥∥∥Zα

(
H
)
−Zα

(
H̃
)∥∥∥

C([0,T ],Y )
≤ 2−1ε1−2p.

Proof. By the definition (30) of ΨZ
α , we see that if

ΨZ
α

(∥∥∥M3 − (H̃ + α)
∥∥∥
C([0,T ],Y )

)
6= 0,

then ∥∥∥M3 − (H̃ + α)
∥∥∥
C([0,T ],Y )

≤M3 −
α

4
< M3

and
(
H̃r + α

)−1

is defined by the formula(
H̃r + α

)−1

=
1

M3

(
I − M3 − (H̃r + α)

M3

)−1

=
1

M3

∞∑
l=1

(M3 − (H̃r + α)

M3

)l
.

This gives that Zα

(
H̃
)
(r) ∈ Y , when r ∈ [0, T ]. Proposition 1 gives

continuity for the map r 7→ H̃r. As
(
H̃r + α

)
7→
(
H̃r + α

)−1

is

continuous operation we see that Zα

(
H̃
)
∈ C([0, T ], Y ). It remains

to show that the norm estimate holds. By assumption, Hr = H(r) is
positive semidefinite, that is, Hr : L2(0, 2T )→ L2(0, 2T ) is selfadjoint
and Hr ≥ 0. Also, ‖Hr‖Y ≤ M2. Thus 0 ≤ Hr ≤ M2 and as M3 =
M2 + 3 and 0 ≤ α ≤ 2, we have 0 ≤M2 −Hr ≤M2. Thus

I ≤M3 − αI −Hr ≤M3 − αI.
Hence ‖(M3 − α)I −H‖C([0,T ],Y ) ≤ M3 − α. As ‖H − H̃‖C([0,T ],Y ) ≤
ε ≤ α

2
, we have ∥∥∥M3 − (H̃ + α)

∥∥∥
C([0,T ],Y )

≤M3 −
α

2
.

Thus ΨZ
α(‖M3 − (H̃ + α)‖C([0,T ],Y )) = 1 and Zα

(
H̃
)
is the map

r 7→
(
H̃r + α

)−1

.

Let r ∈ [0, T ]. We denote

Hα,r = (Hr + α), H̃α,r = (H̃r + α), E = H̃α,r −Hα,r.
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As Hr is positive semidefinite we have

(32)
∥∥H−1

α,r

∥∥
Y
≤ α−1.

Moreover
H̃−1
α,r −H−1

α,r =
([
I +H−1

α,rE
]−1 − I

)
H−1
α,r.

Thus

(33)
∥∥∥(H̃α,r)

−1 − (Hα,r)
−1
∥∥∥
Y
≤

‖(Hα,r)
−1E‖Y

1− ‖(Hα,r)−1E‖Y

∥∥(Hα,r)
−1
∥∥
Y
.

We have 1
2
≥ ε

α
. Using (32) and (33) we have∥∥∥(H̃α,r)

−1 − (Hα,r)
−1
∥∥∥
Y
≤ εα−1

1− 1
2

∥∥(Hα,r)
−1
∥∥
Y
≤ 2

ε

α2
= 2−1ε1−2p. �

Let Pr and B be as defined in (8). We define

S : C([0, T ], Y )→ C([0, T ]),(34)

S
(
Z̃α
)
(r) = 〈Z̃α(r)PrB1, B1〉L2(0,2T ),

f̃α,r = Z̃α(r)PrB1.

Proposition 3. We have ‖S‖C([0,T ]) ≤
T 3

3
.

Proof. As the maps r 7→ PrB1 and r 7→ Zα(r) are continuous, we have
that S

(
Z̃α) ∈ C([0, T ]). Let r ∈ [0, T ]. We have

‖Pr‖Y ≤ 1, ‖B1‖2
L2(0,2T ) =

T 3

3
,

and therefore

|S
(
Z̃α
)
(r)| = |〈Z̃α(r)PrB1, B1〉L2(0,2T )| ≤

T 3

3

∥∥∥Z̃α(r)
∥∥∥
Y
. �

Lemma 1. Let c ∈ V2. There is C > 0 such that for all r > 0
and p ∈ H1(M) satisfying supp(p) ⊂ M(r) there is f ∈ Sr such that
uf (x, T ) = p(x) and

‖f‖L2(0,2T ) ≤ C ‖p‖H1(M) .(35)

We recall that M(r) is defined by (11) and Sr is defined by (12). We
note that in the study of multidimensional inverse problem, estimate
(35) need to be replaced by the Tataru inequality [54], [?] (see also
[?], [?]), that is significantly weaker than (35). This is one of the key
differences between one and multidimensional case.
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Proof. Let us consider the wave equation with time and space having
the exchanged roles

(∂2
x − c(x)−2∂2

t )ũ(x, t) = 0, (x, t) ∈ (0, χ(T ))× (0, T ),(36)
ũ(x, T ) = p(x), x ∈ [0, χ(T )],

ũ(χ(T ), t) = ∂xũ(χ(T ), t) = 0, t ∈ (0, T ).

By [38] and [39] the solution of (36) satisfies

‖ũ(0, · )‖H1(0,T ) 6 C ‖p‖H1(M(T )) .(37)

If supp(p) ⊂ M(r) then supp(ũ(0, · )) ⊂ [T − r, T ] and ũ(x, 0) =
∂tũ(x, 0) = 0, when x ∈ [0, χ(T )], by finite speed of propagation. We
choose f(t) = ũ(0, t). �

Let fα,r be as in (14) and define

sα ∈ C([0, T ]), sα(r) := 〈fα,r, B1〉L2(0,2T ).(38)

Lemma 2. Let α ∈ (0,min(1, 1
χ(T )2

)). Let V be as defined in (20).
Then there is C > 0, independent α, such that

‖sα − V ‖C([0,T ]) ≤ Cα
1
4 .

Proof. Let r ∈ [0, T ] and δ > 0. Let us define wδ ∈ H1(M)

wδ(x) =


1, if x ∈ (0, χ(r)),

1− x−χ(r)
δ

, if x ∈ [χ(r), χ(r) + δ],
0, if x ∈ (χ(r) + δ,∞).

Using c(x) > C0 we have

(39)
∥∥wδ − 1M(r)

∥∥2

L2(M ;dV )
≤ δ

3C2
0

.

When δ ∈ (0,min(1, 1
χ(T )

)) we have

(40) ‖wδ‖2
H1(M) ≤ χ(T ) +

δ

3
+

1

δ
≤ 3

δ
.

Below C > 0 denotes a constant that may grow between inequalities,
and that depends only on m,C0, C1, L1. Lemma 1 gives us fδ for which
ufδ(x, T ) = wδ(x). Thus (40) implies

(41) ‖fδ‖L2(0,2T ) ≤ C ‖wδ‖H1(M) ≤
C

δ
1
2

.

Let f ∈ Sr. We define

(42) Gα,r(f) =
∥∥uf (T )− 1M(r)

∥∥2

L2(M ;dV )
+ α ‖f‖2

L2(0,2T ) .
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Using (39) and (41) we have

(43) Gα,r(fδ) =
∥∥wδ − 1M(r)

∥∥2

L2(M ;dV )
+ α ‖fδ‖2

L2(0,2T ) ≤
δ

C
+ α

C

δ
.

Functional (42) and the functional defined in Theorem 4 have the same
minimizer fα,r. Using (10), (23), and (38) we have

‖sα − V ‖2
C([0,T ]) = sup

r∈[0,T ]

∣∣〈fα,r, B1〉L2([0,2T ]) − V (r)
∣∣2.

= sup
r∈[0,T ]

∣∣〈ufα,r(T ), 1〉L2(M ;dV ) − 〈1M(r), 1〉L2(M ;dV )

∣∣2
≤ C sup

r∈[0,T ]

∥∥ufα,r(T )− 1M(r)

∥∥2

L2(M ;dV )
≤ C sup

r∈[0,T ]

Gα,r(fα,r)

≤ C sup
r∈[0,T ]

Gα,r(fδ)

Using (43) and choosing δ = α
1
2 we have

‖sα − V ‖2
C([0,T ]) ≤ Cα

1
2 . �

Lemma 3. There is m̃ > 0 such that following holds: When c ∈ V2,
the functions v and V , defined in (21) and (20), satisfy

‖v‖C2([0,T ]) ≤ m̃ and ‖V ‖C3([0,T ]) ≤ m̃.

Proof. Equations (19), (20), (21), and (22) with the chain rule and the
formula for the derivatives of inverse functions give us the result. �

For small h > 0 we consider the partition

(0, T ) = (0, h) ∪ [h, 2h) ∪ [2h, 3h) ∪ ... ∪ [Nh− h,Nh) ∪ [Nh, T ),

where N ∈ N satisfies T − h ≤ Nh < T . We define a discretized and
regularized approximation of the derivative operator ∂r by

Dh : C([0, T ])→ L∞(0, T ),(44)

Dh(s̃α)(r) =


s̃α(h)
h
, if r ∈ (0, h),

s̃α(jh+h)−s̃α(jh)
h

, if r ∈ [jh, jh+ h),
s̃α(T )−s̃α(Nh)

h
, if r ∈ [Nh, T ).

Proposition 4. Let β > 0 and ε ∈ (0,min( 1

β
1
4
, 1

β
1
4 χ(T )

1
2

). Let α = βε4,

h = ε
1
2 , V be as defined in (20) and let sα be as defined in (38). Let us

assume that s̃α ∈ BC([0,T ])(sα, ε). Then

‖Dh(s̃α)− ∂rV ‖L∞(0,T ) ≤ Cε
1
2 ,

where C is independent of α and s̃α.
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Proof. Let r ∈ [jh, jh+h). Using the definition of Dh(s̃α) (44) we have∣∣∣Dh(s̃α)(r)− ∂rV (r)
∣∣∣ =

∣∣∣ s̃α(jh+ h)− s̃α(jh)

h
− ∂rV (r)

∣∣∣
≤
∣∣∣ s̃α(jh+ h)− sα(jh+ h)

h

∣∣∣+
∣∣∣sα(jh)− s̃α(jh)

h

∣∣∣
+
∣∣∣sα(jh+ h)− V (jh+ h)

h

∣∣∣+
∣∣∣V (jh)− sα(jh)

h

∣∣∣
+
∣∣∣V (jh+ h)− V (jh)

h
− ∂rV (r)

∣∣∣.
Lemma 3 gives us ‖V ‖C3([0,T ]) ≤ m̃. When r ∈ [jh, jh + h) there is
ξ ∈ (jh, jh+ h) such that∣∣∣V (jh+ h)− V (jh)

h
− ∂rV (r)

∣∣∣ =
∣∣∣∂rV (ξ)− ∂rV (r)

∣∣∣ ≤ hm̃.(45)

Using (45) and Lemma 2 with assumption we get∣∣∣Dh(s̃α)(r)− ∂rV (r)
∣∣∣ ≤ 2ε

h
+

2Cα
1
4

h
+ hm̃.

Let us choose h = ε
1
2 and α = βε4. Then∣∣∣Dh(s̃α)(r)− ∂rV (r)

∣∣∣ ≤ Cε
1
2 .(46)

The proof is almost identical when r ∈ (0, h) or r ∈ [Nh, T ). Note that
the right hand side of (46) is independent of r.

�

Let C0 and C1 be as in (2). Let k̃α ∈ L∞(0, T ) and we define

ΨW (k̃α)(r) =


1
C1
, if k̃α(r) < C−1

1 ,
1

k̃α(r)
, if C−1

1 ≤ k̃α(r) ≤ C−1
0 ,

1
C0
, if k̃α(r) > C−1

0 .

We define
(47)

W : L∞(0, T )→ L∞(M), W (k̃α)(r) =

{
ΨW (k̃α)(r), if r ∈ (0, T ),

1, if r ∈ [T,∞).

Proposition 5. Let V be as defined in (20) and v be as defined in
(21). Let us assume that k̃α ∈ BL∞(0,T )(∂rV, ε). Then∥∥∥W (k̃α)− v

∥∥∥
L∞(M)

≤ C2
1ε.
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Proof. For all x ∈ M, we have 0 < C0 ≤ c(x) ≤ C1. Let r ∈ (0, T )

and assume that C−1
1 ≤ k̃α(r) ≤ C−1

0 . Using (21) and (22) we have
0 < 1

C1
≤ ∂rV (r) ≤ 1

C0
. Then∣∣∣ 1

k̃α(r)
− 1

∂rV (r)

∣∣∣ =
∣∣∣ k̃α(r)− ∂rV (r)

k̃α(r)∂rV (r)

∣∣∣ ≤ C2
1ε.(48)

In the case when r ∈ (0, T ) and k̃α(r) < C−1
1 or k̃α(r) > C−1

0 we obtain
similar estimates. Note that the right hand side of (48) is independent
of r. When r ≥ T the left hand side is identically zero. �

For w̃α ∈ L∞(M) we define two operators
(49)

ΨΦ : L∞(M)→ L∞(M), ΨΦ(w̃α)(r) :=

 C0, if w̃α(r) < C0,
w̃α(r), if C0 ≤ w̃α(r) ≤ C1,
C1, if wα(r) > C1.

and

Υ : L∞(M)→ C(M), Υ(w̃α)(t) =

∫ t

0

w̃α(t′)dt′.(50)

Using (49) and (50) we see that Υ ◦ΨΦ(w̃α) : M →M is bijective as a
function of t. Let us denote χ̃ = Υ◦ΨΦ(w̃α) and χ̃−1 = (Υ◦ΨΦ(w̃α))−1.
We define an operator
(51)

Φ : L∞(M)→ L∞(R), Φ(w̃α) =

 1, if x ∈ (−∞, 0),
w̃α ◦ χ̃−1, if x ∈ [0, L1),

1, if x ∈ [L1,∞).

Let us define η ∈ C∞(R) by

η(x) =

{
C exp

(
1

x2−1

)
, if x ∈ (−1, 1),

0, if |x| ≥ 1,
(52)

where the constant C > 0 selected so that
∫
R η(x) = 1. For ν > 0 we

define

ην(x) =
1

ν
η
(x
ν

)
.(53)

By using convolution we define a smooth approximation to a given
function Φ(w̃α) ∈ L∞(R) by setting

Γν : L∞(R)→ C∞(R), Γν(Φ(w̃α)) = ην ∗ Φ(w̃α).(54)

Let us denote c̃ν = (Γν ◦ Φ)(w̃α) = ην ∗ Φ(w̃α).
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Proposition 6. Let ε > 0 and ν = ε
1
3 . Let m > 0 as in (2). Let v as

in (21). Let c ∈ V3. Let us assume that w̃α ∈ BL∞(M)(v, ε). Thus we
have

(i) ‖Φ(w̃α)− c‖L∞(M) ≤ Cε,

(ii) ‖c̃ν − c‖C2(M) ≤ Cε
1
3 .

Proof. Let x ∈ [0, L1). Let us denote t = χ−1(x) and t̃ = χ̃−1(x).
Having χ as in (22) and χ̃ as in (51) we see that

|Φ(w̃α)(x)− c(x)| = |w̃α(t̃)− v(t)| ≤ |w̃α(t̃)− v(t̃)|+ |v(t̃)− v(t)|.

Lemma 3 gives us ‖v‖C2(0,T ) ≤ m̃ and we have

|v(t̃)− v(t)| ≤ m̃|t̃− t|.(55)

Using (2) and (22) we see that 0 < C0 ≤ v(t) ≤ C1 and hence

C0|t̃− t| ≤ |
∫ t̃

t

v(t′)dt′| = |χ(t̃)− χ(t)|.(56)

Having χ̃(t̃) = x = χ(t) and using (22) and (50) we see that

|χ(t̃)− χ(t)| = |χ(t̃)− χ̃(t̃)| = |
∫ t̃

0

(
v(t′)−ΨΦ(w̃α)(t′)

)
dt′|.(57)

Using (22) and (50) we see that |v(t′) − ΨΦ(w̃α)(t′)| ≤ |v(t′) − w̃α(t′)|
for all t′ ∈M . Hence

|χ(t̃)− χ(t)| = |
∫ t̃

0

(v(t′)− w̃α(t′))dt′| ≤ χ̃−1(L1)ε.(58)

Using (55),(56), and (58) we have

|Φ(w̃α)(x)− c(x)| ≤
(

1 +
m̃χ̃−1(L1)

C0

)
ε.(59)

Note that the right hand side in (59) does not depend on x. When
x ∈ [L1,∞) the left hand side in identically zero and we have inequality
in case (i).
(ii) Let us define that c(x) = 1, for x ∈ (−∞, 0). Using (1) we have

‖ην ∗ Φ(w̃α)− ην ∗ c)‖C2(R) ≤ ‖ην‖W 2,1(R) ‖Φ(w̃α)− c‖L∞(R) .

Let ν ∈ (0, 1). Using inequality (i) from Proposition 6 and definitions
(51), (53) and (54) we have

‖ην ∗ Φ(w̃α)− ην ∗ c)‖C2(R) ≤ Cν−2ε.(60)
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Using (52) and (53) we see that supp(ην) ⊂ [−ν, ν]. Combining that
with assumption that c ∈ V3 we have

‖ην ∗ c− c‖C2(R) ≤ 2ν ‖c‖C3(R) ≤ 2νm.(61)

By ν = ε
1
3 and using (60) and (61) we have

‖c̃ν − c‖C2(R) ≤ Cν−2ε+ ν2m ≤ (C + 2m)ε
1
3 .

�

Proof of Theorem 3. Let

ε0 = min{1, 1

2T
,

1

2
13
4 T

,
1

2
13
4 Tχ(T )

9
2

,
3928

C18C36
1 T

28
}.(62)

Suppose that Λ̃ ∈ BY (Λ, ε) and ε ∈ (0, ε0). We denote H = HΛ and
H̃ = HΛ̃. Using Proposition 1 we get∥∥∥H − H̃∥∥∥

C([0,T ],Y )
≤ 2Tε.

We denote Zα = Zα

(
H
)
and Z̃α = Zα

(
H̃
)
. We have H̃ ∈ BC([0,T ],Y )(H, 2Tε)

and ε ∈
(
0,min(1, 1

2T
)
)
. Proposition 2 with p = 4

9
gives us∥∥∥Zα − Z̃α∥∥∥

C([0,T ],Y )
≤ 2−

8
9T

1
9 ε

1
9 =: ε1,

since α = 2p+1T pεp = 2
13
9 T

4
9 ε

4
9 .

We denote sα = SZα and s̃α = SZ̃α. We have Z̃α ∈ BC([0,T ],Y )(Zα, ε1).
Proposition 3 gives us

‖sα − s̃α‖C([0,T ]) ≤ 3−1 · 2−
8
9T

28
9 ε

1
9 =: ε2.

We denote k̃α = Dh(s̃α). We have s̃α ∈ BC([0,T ])(sα, ε2) and ε2 ∈(
0,min( 1

β
1
4
, 1

β
1
4 χ(T )

1
2

)
)
. Proposition 4 with β = 3425T−12 gives us∥∥∥k̃α − ∂rV ∥∥∥

L∞(0,T )
≤ C3−

1
2 · 2−

4
9T

14
9 ε

1
18 =: ε3,

where α = β(3−1 · 2− 8
9T

28
9 ε

1
9 )4 = β(3−4 · 2− 32

9 T
112
9 ε

4
9 ) = 2

13
9 T

4
9 ε

4
9 .

We denote w̃α = W (k̃α). We have k̃α ∈ BL∞(0,T )(∂rV, ε3). Proposition
5 gives us

‖w̃α − v‖L∞(M) ≤ C2
1C3−

1
2 · 2−

4
9T

14
9 ε

1
18 =: ε4.

Let ε4 ∈ (0, 1) and ν = ε
1
3
4 . We denote c̃ν = ην ∗ Φ(w̃α). We have

w̃α ∈ BL∞(M)(v, ε4). Let c ∈ V3 and Proposition 6 gives us

‖c̃ν − c‖C2(M) ≤ Cε
1
54 ,
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where ε ∈ (0, ε0). Using (24),(30),(34),(44),(47), (51) and (54) we define

Rα(ε) : Y → Z,(63)
Rα(ε) = Γν◦Φ ◦W ◦Dh ◦ S ◦Zα ◦H ,

and we have an estimate∥∥∥Rα(ε)(Λ̃)− c
∥∥∥
Z
≤ Cε

1
54 .(64)

�

Appendix A: The direct problem

Theorem 5. Let c ∈ V2 and f ∈ L2(0, 2T ). Then the boundary value
problem (4) has a unique solution uf ∈ H1((0, 2T )×M). The operators
Λ and UT , defined in (5) and (9), are bounded, and the direct map
A : V2 ⊂ Z → Y , defined in (6), is continuous, and moreover

M1 = sup{‖A(c)‖L(L2(0,2T )) ; c ∈ V2} <∞.

Proof. Let us consider the wave equation (4). When c = 1 on M we
denote the solution by uf0 and have

uf0(t, x) = h(t− x), h(s) =

{
−
∫ s

0
f(t)dt, t > 0,

0, t ≤ 0.

Notice that f 7→ uf0 is continuous from L2(0, 2T ) to C1([0, 2T ];L2(M))∩
C([0, 2T ];H1(M)).

Let us consider the wave equation

(∂2
t − c(x)2∂2

x)w(t, x) = F (t, x) in (0, 2T )×M,(65)
∂xw(t, 0) = 0,

w|t=0 = ∂tw|t=0 = 0.

For the wave equation (65) the existence and uniqueness of the solutions
and the continuity of the map W : F 7→ w, given by

W : L2((0, 2T )×M)→ C([0, 2T ];H1(M)) ∩ C1([0, 2T ];L2(M)),

follow from the results of [38, Ch. 3, Theorems 8.1 and 8.2], and [39,
p. 93].

Let ψ ∈ C∞(M) be such that ψ = 1 near x = 0 and ψ = 0 when x >
L0

2
. Note that c = 1 in the support of ψ. The commutator A = [∂2

x, ψ]

is a first order differential operator, whence Auf0 ∈ L2((0, 2T )×M) for
f ∈ L2(0, 2T ). Let us choose F (t, x) = Auf0(t, x) in (65) and define
uf = ψuf0 + w. Then

(∂2
t − c2∂2

x)u
f = ψ(∂2

t − ∂2
x)u

f
0 + Auf0 − Au

f
0 = 0,
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where uf := ψuf0 + w ∈ C1([0, 2T ];L2(M)) ∩ C([0, 2T ];H1(M)) is the
solution of (4). As ψ = 1 near x = 0, we see that u satisfies also the
boundary conditions in (4). In particular, uf ∈ H1((0, 2T )×M). The
above shows that f 7→ uf is continuous operator from L2(0, 2T ) to uf ∈
C1([0, 2T ];L2(M)) ∩ C([0, 2T ];H1(M)), and hence UT : L2(0, 2T ) →
H1(M) is continuous. Using Trace theorem, we see that the map Λ is
continuous from L2(0, 2T ) to H

1
2 (0, 2T ).

Let us now suppose that f ∈ C∞0 (0, 2T ). Let uf be solution for the
boundary value problem in (4) and c(x) be as defined in (2). Let x ∈M
and we define

k ∈ C2(M), k(x) = c(x)1/2(66)

and

G : C2(M × (0, 2T ))→ C(M × (0, 2T )),

(67)

G(u) = k−1
(
∂2
t − c2∂2

x

)
ku =

(
∂2
t − c2∂2

x − 2c2k−1(∂xk)∂x − c2k−1(∂2
xk)
)
u.

Let x ∈M and define

φ(x) =

∫ x

0

c(x′)−1dx′.(68)

Let us denote x̃ = φ(x) and define

ũf (x̃, t) = ũf (φ(x), t) :=
uf (x, t)

k(x)
.(69)

Using (3), (66), (67), (68), (69) and the property of finite speed of
propagation we see that ũf (x̃, t) is a solution of the boundary value
problem

(∂2
t − ∂2

x̃ + q(x̃))ũf (x̃, t) = 0, (x̃, t) ∈ (0, 2T )× (0, 2T ),(70)

∂x̃ũ
f (0, t) = f(t), ∂xũ

f (2T , t) = 0, t ∈ (0, 2T ),

ũf (x, 0) = ∂tũ
f (x, 0) = 0, x̃ ∈ [0, 2T ],

where

q(x̃) = −c2(φ−1(x̃))k−1(φ−1(x̃))∂2
xk(φ−1(x̃)).(71)

Let x̃ ∈ [0, T ]. Using (2), (3), (66), (68), (71) we see that for every q
that corresponds to some c ∈ V2 via formula (71) there is a constant
C3 = C3(C0, C1, L1,m, T ) for which

|q(x)| ≤ C3.(72)

Let x̃ ≥ T . Using (2) we have c(x) = 1 and thus by using (71) we see
that q(x̃) = 0.
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We define Λqf = ũ|x̃=0. Let us consider two velocity functions c1 and
c2, and let q1 and q2 be the potentials corresponding to c1 and c2 via
formula (71). Using (69) and property that C∞0 (0, 2T ) ⊂ L2(0, 2T ) is
dense we have

‖A(c1)−A(c2)‖L(L2(0,2T )) ≤ ‖Λq1 − Λq2‖L(L2(0,2T )) .(73)

Let us denote by ufq1 and u
f
q2
the two solutions with respect to potentials

q1 and q2 for the problem (70). Let us define w(x̃, t) = ũfq1(x̃, t) −
ũfq2(x̃, t). Then w is the solution of

(∂2
t − ∂2

x + q1(x̃))w(x̃, t) = F (x̃, t), (x̃, t) ∈ (0, 2T )× (0, 2T ),(74)
∂x̃w(0, t) = 0, ∂x̃w(2T , t) = 0, t ∈ (0, 2T ),

w(x̃, 0) = ∂tw(x̃, 0) = 0, x ∈ [0, 2T ],

where

F (x̃, t) = (q1(x̃)− q2(x̃))ũfq2(x̃, t).(75)

Using results of [38, Ch. 3], or alternatively, the same proof that is
in [27], Lemma 1.9 for initial boundary value problem with Diriclet
boundary condition, we see for (74), we see that there is a constant
C4 = C4(C0, C1, C3, L1,m, T ) such that for all potentials q satisfying
(72) the solution of the wave equation satisfies

‖w‖H1((0,2T )×(0,2T )) ≤ C4 ‖F‖L2((0,2T )×(0,2T )) .(76)

Using (69) we see that ufq2 ∈ H
1((0, 2T )× (0, 2T )). That with (72) and

(75) imply

‖F‖L2((0,2T )×(0,2T )) ≤ ‖q1 − q2‖L∞(0,2T )

∥∥ufq2∥∥H1((0,2T )×(0,2T ))
.(77)

When q = 0, we can construct an explicit solution of (70), see [27],
formula (1.34). Similarly to the estimate (76), we see using results of
[38, Ch. 3] or [27] that there is a constant C5 that depends only on
C0, C1, L1,m, T such that∥∥ũfq2∥∥H1((0,2T )×(0,2T ))

≤ C5 ‖f‖L2(0,2T ) .(78)

Using Trace Theorem we have

‖Λq1f − Λq2f‖L2(0,2T ) ≤ C(T )
∥∥ufq1 − ufq2∥∥H1((0,2T )×(0,2T ))

.(79)

Havinq q(x̃) = 0, when x̃ ≥ T , and using (76), (77), (78), and (79) we
have

‖Λq1 − Λq2‖L(L2(0,2T )) ≤ C7 ‖q1 − q2‖L∞(0,2T ) =C7 ‖q1 − q2‖L∞(0,T ) ,
(80)

where C7 depends only on C0, C1, L1,m, and T .



24 JUSSI KORPELA, MATTI LASSAS AND LAURI OKSANEN

Let c1, c2 ∈ V2, where c1 ∈ V2 is fixed. Let ‖c1 − c2‖C2(M) ≤ ε. Let
x̃ ∈ (0, T ). Using (68) and (71) we have

q1(x̃) = −c2
1(x)k−1

1 (x)∂2
xk1(x)|x=φ−1

1 (x̃),

q2(x̃) = −c2
2(x)k−1

2 (x)∂2
xk2(x)|x=φ−1

2 (x̃).

Let us denote y = φ−1
1 (x̃) and x = φ−1

2 (x̃). Note that for all c1, c2 ∈ V2

and x̃ ∈ (0, T ) we have x, y ∈ [0, TC1]. Let x ∈M and define

h1(x) = −c2
1(x)k−1

1 (x)∂2
xk1(x), h2(x) = −c2

2(x)k−1
2 (x)∂2

xk2(x).

We have

|q1(x̃)− q2(x̃)| ≤ |h1(φ−1
1 (x̃))− h1(φ−1

2 (x̃))|+ |h1(φ−1
2 (x̃))− h2(φ−1

2 (x̃))|
(81)

For the second term on the right hand side of (81) we have

|h1(x)− h2(x)| = |c2
2(x)k−1

2 (x)∂2
xk2(x)− c2

1(x)k−1
1 (x)∂2

xk1(x)|
≤ |c2

1(x)− c2
2(x)||k−1

1 (x)||∂2
xk1(x)|

+ |k−1
1 (x)− k−1

2 (x)||c2
2(x)||∂2

xk1(x)|
+ |∂2

xk1(x)− ∂2
xk2(x)||c2

2(x)||k−1
2 (x)|,

where x = φ−1
2 (x̃). Having x ∈ [0, TC1] and using (2), (68), (66) we

can bound each of these three terms and get

|h1(x)− h2(x)| ≤ C8 ‖c1 − c2‖C2(M) ,(82)

where C8 depends only on C0, C1, L1,m, T . As h1 is continuous on
M and zero on [0, L0) ∪ (L1,∞), h1 is uniformly continuous on M .
Moreover, we have a function ω : M → M , the continuity modulus of
h1, for which

|h1(x)− h1(y)| ≤ ω(ε),(83)

for x, y ∈M satisfying |x− y| ≤ ε. Thus for the first term on the right
hand side of (81) we have

|h1(φ−1
1 (x̃))− h1(φ−1

2 (x̃))| ≤ ω(|φ−1
1 (x̃)− φ−1

2 (x̃)|).(84)

Having x ∈ [0, TC1] and using (2) and (68) we have

|φ1(x)− φ2(x)| ≤
∫ x

0

|c1(x′)− c2(x′)|
c1(x′)c2(x′)

dx ≤
TC0 ‖c1 − c2‖C2(M)

C2
0

.(85)

As 1
C1
≤ dφ1

dx
(x) ≤ 1

C0
, we have

1

C1

|x− y| ≤ |φ1(x)− φ1(y)| ≤ 1

C0

|x− y|.(86)
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Using (85) and (86) we have

|φ−1
1 (x̃)− φ−1

2 (x̃)| ≤ C1|φ1(φ−1
1 (x̃))− φ1(φ−1

2 (x̃))|(87)

≤ C1

(
φ1(φ−1

1 (x̃))− φ2(φ−1
2 (x̃))|+ |φ2(φ−1

2 (x̃))− φ1(φ−1
2 (x̃))|

)
≤ C1

(
0 +

TC0 ‖c1 − c2‖C2(M)

C2
0

)
≤ C0C1T ‖c1 − c2‖C2(M) .

Using (81), (82), (84), and (87) we have

|q1(x̃)− q2(x̃)| ≤ ω(C ‖c1 − c2‖C2(M)) + C ‖c1 − c2‖C2(M) ,(88)

where x̃ ∈ (0, T ). As ω is continuous at zero, we see that when c2 → c1

in V2 ⊂ C2
b (M) we get by using (88) that q2 → q1 in L∞(0, T ). Using

this with (73) and (80) we obtain A(c1)→ A(c2) in L(L2(0, 2T )) when
c2 → c1 in V2 ⊂ C2

b (M).

Choosing c2(x) = 1 for all x ∈ M , we see that A(c2)f = 0 for all
f ∈ L2(0, 2T ). Using this with (73) we have

‖A(c1)‖L(L2(0,2T )) = ‖A(c1)−A(c2)‖L(L2(0,2T )) ≤ C9 ‖q1 − q2‖L∞(0,T ) ,
(89)

where C9 depends only on C0, C1, L1,m, T . When c2(x) = 1 for all x ∈
M , q2 is zero on M. This with (72) and (80) imply ‖q1 − q2‖L∞(0,T ) ≤
C3, for all c1 ∈ V2. Using this and (89) we see that

M1 = sup{‖A(c)‖L(L2(0,2T )) ; c ∈ V2} <∞.
�

Appendix B: The proof of theorem (2)

Proof. Let Vk as defined in (2). By Theorem 5, the map

A : V2 ⊂ X → Y, A(c) = Λ,

is continuous. Also by Theorem 1, A : V2 → A(V2) is one-to-one.
By Arzela-Ascoli Theorem clC2(M)(V3) = V3 is a compact subset of
C2
b (M). Let U ⊂ V3 is open. Thus V3\U is closed and compact. Using

continuity of A we see that A(V3 \U) = A(V3) \A(U) is compact. As
Y is a Hausdorff space, A(V3) \ A(U) is closed. Thus A(U) ⊂ A(V3)
is open and

A : V3 → A(V3), A(c) = Λ,

is a homomorphism. Note that V3 has the relative topology determined
by the norm ‖·‖Ck(M) and A(V3) has the relative topology induced from
Y . �
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[11] A. S. Blagoveščenskĭı. The inverse problem of the theory of seismic wave prop-
agation. In Problems of mathematical physics, No. 1: Spectral theory and
wave processes (Russian), pages 68–81. (errata insert). Izdat. Leningrad. Univ.,
Leningrad, 1966.
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[14] A. L. Bukhgĕım and M. V. Klibanov. Uniqueness in the large of a class of
multidimensional inverse problems. Dokl. Akad. Nauk SSSR, 260(2):269–272,
1981.

[15] M. F. Dahl, A. Kirpichnikova, and M. Lassas. Focusing waves in unknown
media by modified time reversal iteration. SIAM J. Control Optim., 48(2):839–
858, 2009.

[16] H. W. Engl, M. Hanke, and A. Neubauer. Regularization of inverse problems,
volume 375 of Mathematics and its Applications. Kluwer Academic Publishers
Group, Dordrecht, 1996.

[17] I. M. Gel′fand and B. M. Levitan. On the determination of a differential equa-
tion from its spectral function. Izvestiya Akad. Nauk SSSR. Ser. Mat., 15:309–
360, 1951.

[18] M. Hanke. Regularizing properties of a truncated Newton-CG algorithm for
nonlinear inverse problems. Numer. Funct. Anal. Optim., 18(9-10):971–993,
1997.

[19] B. Hofmann, B. Kaltenbacher, C. Pöschl, and O. Scherzer. A convergence
rates result for Tikhonov regularization in Banach spaces with non-smooth
operators. Inverse Problems, 23(3):987–1010, 2007.

[20] T. Hohage and M. Pricop. Nonlinear Tikhonov regularization in Hilbert scales
for inverse boundary value problems with random noise. Inverse Probl. Imag-
ing, 2(2):271–290, 2008.

[21] L. Justen and R. Ramlau. A non-iterative regularization approach to blind
deconvolution. Inverse Problems, 22(3):771–800, 2006.

[22] S. I. Kabanikhin, A. D. Satybaev, and M. A. Shishlenin. Direct methods of solv-
ing multidimensional inverse hyperbolic problems. Inverse and Ill-posed Prob-
lems Series. VSP, Utrecht, 2005.

[23] B. Kaltenbacher and A. Neubauer. Convergence of projected iterative regular-
ization methods for nonlinear problems with smooth solutions. Inverse Prob-
lems, 22(3):1105–1119, 2006.

[24] B. Kaltenbacher, A. Neubauer, and O. Scherzer. Iterative regularization meth-
ods for nonlinear ill-posed problems, volume 6 of Radon Series on Computa-
tional and Applied Mathematics. Walter de Gruyter GmbH & Co. KG, Berlin,
2008.

[25] A. Katchalov and Y. Kurylev. Multidimensional inverse problem with incom-
plete boundary spectral data. Comm. Partial Differential Equations, 23(1-
2):55–95, 1998.

[26] A. Katchalov, Y. Kurylev, and M. Lassas. Inverse boundary spectral problems,
volume 123 of Chapman & Hall/CRC Monographs and Surveys in Pure and
Applied Mathematics. Chapman & Hall/CRC, Boca Raton, FL, 2001.

[27] A. Katchalov, Y. Kurylev, and M. Lassas. Inverse boundary spectral problems,
volume 123 of Chapman & Hall/CRC Monographs and Surveys in Pure and
Applied Mathematics. Chapman & Hall/CRC, Boca Raton, FL, 2001.

[28] A. Katchalov, Y. Kurylev, M. Lassas, and N. Mandache. Equivalence of time-
domain inverse problems and boundary spectral problems. Inverse Problems,
20(2):419–436, 2004.

[29] A. Katsuda, Y. Kurylev, and M. Lassas. Stability of boundary distance repre-
sentation and reconstruction of Riemannian manifolds. Inverse Probl. Imaging,
1(1):135–157, 2007.



28 JUSSI KORPELA, MATTI LASSAS AND LAURI OKSANEN

[30] A. Kirsch. An Introduction to the Mathematical Theory of Inverse Problems.
Springer-Verlag New York, Inc., New York, NY, USA, 1996.

[31] K. Knudsen, M. Lassas, J. L. Mueller, and S. Siltanen. Regularized D-bar
method for the inverse conductivity problem. Inverse Probl. Imaging, 3(4):599–
624, 2009.
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