
SplitBox: Toward Efficient Private Network
Function Virtualization∗

Hassan Jameel Asghar
Data61, CSIRO

hassan.asghar@data61.csiro.au

Luca Melis
University College London
luca.melis.14@ucl.ac.uk

Cyril Soldani
University of Liége

cyril.soldani@ulg.ac.be

Emiliano De Cristofaro
University College London
e.decristofaro@ucl.ac.uk

Mohamed Ali Kaafar
Data61, CSIRO

dali.kaafar@data61.csiro.au

Laurent Mathy
University of Liége

laurent.mathy@ulg.ac.be

ABSTRACT
This paper presents SplitBox, a scalable system for privately pro-
cessing network functions that are outsourced as software processes
to the cloud. Specifically, providers processing the network func-
tions do not learn the network policies instructing how the functions
are to be processed. We first propose an abstract model of a generic
network function based on match-action pairs, assuming that this
is processed in a distributed manner by multiple honest-but-curious
providers. Then, we introduce our SplitBox system for private net-
work function virtualization and present a proof-of-concept imple-
mentation on FastClick – an extension of the Click modular router
– using a firewall as a use case. Our experimental results show that
SplitBox achieves a throughput of over 2 Gbps with 1 kB-sized
packets on average, traversing up to 60 firewall rules.

1. INTRODUCTION
Network function virtualization (NFV) is increasingly being

adopted by organizations worldwide, moving network functions
traditionally implemented on hardware middleboxes (MBs) – e.g.,
firewalls, NAT, intrusion detection systems – to flexible and easier
to maintain software processes. Network functions can thus be ex-
ecuted on virtual machines (VMs), with cloud providers process-
ing traffic destined to, or originating from, an enterprise network
(the client) based on a set of policies governing the network func-
tions. This, however, implies that confidential information as well
as sensitive network policies (e.g., the firewall rules) are revealed
to the cloud, whereas in the traditional setting, such policies would
only be known to the client’s network administrators. Disclosing
such policies can reveal sensitive details such as the IP addresses of
hosts, the topology of the client’s private network, and/or important
practices [7, 14].

This motivates the need to allow processing outsourced network
functions without revealing the policies: we denote this problem as
Private Network Function Virtualization (PNFV), as done in [11].
We argue that PNFV solutions should not only provide strong secu-
rity guarantees, but also satisfy compatibility with existing infras-
tructures (e.g., not requiring third parties, sending/receiving traffic,
take part in new protocols) as well as high throughput in order to
match the quality of service expected of network functions. In prac-
tice, this precludes the use of some standard cryptographic tools as
well as other approaches which we review in Section 2.

Several attempts have recently been made to support PNFV
or similar functionalities [7, 9, 11, 14], assuming the cloud to be

∗An earlier version of this paper appeared in the Proceedings of the ACM
SIGCOMM Workshop on Hot Topics in Middleboxes and Network Func-
tion Virtualization (HotMiddleBox 2016).

honest-but-curious (i.e., the cloud processes the network functions
as instructed but may try to learn the underlying policies). How-
ever, none of these simultaneously achieve security, compatibility,
and high throughput, or their coverage of network functions is lim-
ited as they are only applicable to firewall rules that either allow or
drop a packet.

Our intuition is to leverage the distributed nature of cloud VMs:
rather than assuming that a single VM processes a client’s network
function, we distribute the functionality to several VMs residing
on multiple clouds or multiple compute nodes in the same cloud.
Assuming that not all VMs in the cloud are simultaneously under
the control of the adversary (for instance, a passive attacker cannot
gain access to all nodes running the distributed VMs), we are able
to provide a scalable and secure solution. As discussed throughout
the paper, achieving this solution is not straightforward and, in the
process, we overcome several challenges.

We start by presenting an abstract definition of a network func-
tion. Then, we introduce a novel system, which we name SplitBox,
geared to privately and efficiently compute this abstract network
function in such a way that the cloud, comprising of several mid-
dleboxes implemented as VMs, cannot learn the policies. Finally,
we implement and evaluate SplitBox on a firewall test case, show-
ing that it can achieve a throughput of over 2 Gbps with 1 kB-sized
packets, on average, traversing up to 60 rules.

2. RELATED WORK
Khakpour and Liu [7] present a scheme based on Bloom Filters

(BFs) to privately outsource firewalls. Besides only considering
one use case, their solution is not provably secure as BFs are not
one-way. Furthermore BFs inevitably introduce false positives, i.e.,
packets might accidentally be matched against a firewall rule. Pri-
vately outsourcing firewalls is also considered by Shi et al. [14],
who rely on CLT multilinear maps [4], which have been shown
to be insecure [3].More specifically, the isZero routine of CLT
maps, used in [14] to check whether a packet matches a policy,
is not secure. Additionally note that both [7, 14] do not consider
network functions that modify packet contents, whereas, we aim
to cover a broader range of network functions including but not
limited to firewalls. Jagadeesan et al. [6] introduce a secure multi
controller architecture for SDNs based on secure multi-party com-
putation, which can potentially be employed for NFV. They provide
a proof of concept implementation for identifying heavy hitters in
a network consisting of two controllers. However, it takes more
than 13 minutes to execute with 4096 flow table entries. Melis
et al. [11] investigate the feasibility of provably-secure PNFV for
generic network functions: they introduce two constructions based
on fully homomorphic encryption and public-key encryption with

1

ar
X

iv
:1

60
5.

03
77

2v
1

 [
cs

.C
R

]
 1

2
M

ay
 2

01
6

keyword search (PEKS) [2], however, with high computational and
communication overhead (e.g., it takes at least 250ms in their ex-
periments to process 10 firewall rules) which makes it unfeasible
for real-world deployment.

Blindbox [13] considers a setting in which a sender (S) and a
receiver (R) communicate via HTTPS through a middlebox (MB)
which has a set of rules for packet inspection that only it knows.
The MB should not be able to decrypt traffic between S and R,
while S and R should not learn the rules. Although Blindbox
achieves a 166Mbps throughput, it operates in a different setting
than ours, in which R should set and know the rules (policies),
while S and MB should not. Furthermore, the HTTPS connection
setup requires around 1.5 minutes with thousands of rules, which
suggests that BlindBox may not be practical for applications with
short-lived connections. Lin et al. [10] also propose a privacy-
preserving deep packet filtering technique (DPF-ET) where the
packet data is hidden from the network owner and the users do
not learn the filtering rules. Compared to BlindBox, DPF-ET sig-
nificantly reduces the setup overhead and requires a filtering time
for each packet of 5µs for matching a thousand rules with a 32-bit
rule length. Both Blindbox and DPF-ET only consider middlebox
actions that are limited to drop, allow or report to network admin-
istrator, without defining action as modifying packet contents (e.g.,
for a NAT) as is done in our paper.

Finally, Embark [9] enables a cloud provider to support mid-
dlebox outsourcing, such as firewalls and NATs, while maintaining
confidentiality of an enterprise’s network packets and policies. Em-
bark employs the same architecture as APLOMB [12], where the
middlebox functionalities (e.g. firewall) are outsourced to the cloud
by the enterprises without greatly damaging throughput, but it en-
crypts the traffic going to the service provider (SP) in order to pro-
tect privacy. To this end, Embark relies on symmetric-key encryp-
tion and introduces a novel scheme PrefixMatch used to encrypt a
set of rules for a middlebox type. The encrypted rules are generated
by the enterprise(s) and then provided to the SP at setup time. The
cloud middleboxes at SP then process the encrypted traffic against
the encrypted rules, and send back the produced encrypted traffic
to the enterprise who, finally, performs the decryption. When com-
pared to Blindbox, Embark achieves better performance, as it does
not require per-user-connection overhead, and broader functional-
ity. A key difference between Embark and our solution is that we
allow complex actions (on top of allow/block) to be performed on
the packet without revealing them to the cloud, e.g., NAT rules.
Embark can only do so in the clear.

3. PRELIMINARIES

3.1 System and Trust Model
Figure 1 illustrates our PNFV model, consisting of two types of

cloud middleboxes (MBs): an entry MB A and t ≥ 2 cloud MBs
B(t), which collaboratively compute a network function on behalf
of a client. The client has its own MB, denoted C, at the edge of
its internal network. A receives an incoming packet, does some
computations on it, “splits” the result into t parts, and forwards
part j to Bj ∈ B(t). Bj performs local computations and forwards
its part to C, which reconstructs the network function’s final result.
There is also a direct link between A and C.

Assumptions. We assume an honest-but-curious adversary which
can corrupt1 either A or up to t − 1 MBs from B(t), and it cannot
corruptA and any MB in B(t) simultaneously. In practice, one can
1The adversary may change the behavior of a MB from honest to honest-
but-curious.

Cloud A Cloud B

Node 1

Node 2

Internal/Private
 Network

Incoming
traffic

 = Middlebox

 = Compute Node

Legend

A

B1

B2

B3

C

B(t)

Figure 1: Our system model with Cloud A hosting MB A as a VM in one
of its compute nodes. Cloud B hosts the MBs B(t) with t = 3 as VMs
(not all t reside on the same compute node). The client MB C resides at the
edge of the client’s internal network. A and B(t) collaboratively compute
network functions for the client.

assumeA to be running on a different cloud provider than B(t) and
that not all MBs in B(t) reside on the same node. Since C is the
client’s MB, we do not assume it to be adversarial.

3.2 Network Functions
We define a packet x as a binary string of arbitrary length, i.e.,

x ∈ {0, 1}∗. Our network functions will be applicable to the first n
bits of x. If |x| < n, x is prefixed with zeros to make it of length n.
A matching function is a boolean function m : {0, 1}n → {0, 1}.
Its complement, i.e., the function 1−m, is denoted bym. An action
function is a transformation a : {0, 1}n → {0, 1}n. m(x) (resp.,
a(x)) denote evaluating m (resp., a) on the substring x(1, n) (i.e.,
the first n bits of x). If |x| > n, a keeps the part x(n + 1, ∗) of x
unaltered. We also define the identity action function I(x) = x.

Let M and A be finite sets of matching and action functions,
with I ∈ A. A network function ψ = (M,A) is a binary tree with
edge setM and node setA such that each node is an action function
a ∈ A and each edge is either a matching function m ∈ M or a
complement m of a matching function m ∈M . A node is either a
leaf node or a parent node. A parent node has two child nodes. The
left child node is the identity action function I . The edge connect-
ing the right child node is a matching function m ∈ M , whereas
the edge connecting the left child node is its complement m. The
root node is the identity action function I . Examples of network
functions are in Figure 2. Clearly, there exists a binary relation
from M to A, such that for each (m,a) from this relation there ex-
ists a parent node in ψ such that the left child is connected via the
edge m and the right child via the edge m, and the right child is a.

We call each pair (m,a) in ψ a policy. A policy can also be
represented as a subtree of ψ as shown in Figure 2(a). Policies
serve as building blocks of a network function. The set of poli-
cies of ψ is the set of distinct policies (m,a) in ψ. A network
function is evaluated on input x ∈ {0, 1}∗, denoted ψ(x), using
Algorithm 1. Note that the reason to create a separate writeable
copy xw of x is to ensure that the matching functions are applied
on the “unmodified” x, i.e., xr, and not on xw which is modified
by the action functions. When a leaf node is entered, we say that
the network function has terminated. Figure 2(b) shows a network
function with k distinct policies: whenever a match is found, the
corresponding action is performed and the function terminates. The
function in Figure 2(c) has 3 distinct policies, (m1, a1), (m2, a2)
and (m3, a3), and (m2, a2) is repeated twice. This function does
not terminate immediately after a match has been found (e.g., path
m1m2). Since a ◦ I = I ◦ a = a, we can easily “plug” individual
policy trees to construct more complex network functions.

2

I

I a

m m

(a) Policy (m,a) as a tree.

I

I a1

I a2

I

I ak

m1 m1

m2 m2

mk mk

(b) Network function with k distinct
policies.

I

I a1

I a2

m1 m1

m2 m2

I a2

m2 m2

I a3

m3 m3

(c) Network function with 3 distinct policies. Policy
(m2, a2) is repeated twice.

Figure 2: Network functions as binary trees.

Algorithm 1: Traversal
Input: Packet x, network function ψ.

1 Make a read-only copy xr and a writeable copy xw of x.
2 Start from the root node.
3 Compute xw ← a(xw), where a is the current node.
4 if the current node is a leaf node then
5 output xw and stop.
6 else
7 Compute m(xr), where m is the right hand side edge.
8 if m(xr) = 1 then
9 Move to the right child node.

10 else
11 Move to the left child node.
12 Go to step 3.

Coverage. Our abstract definition of network functions captures
many network functions used in practice. These include firewalls,
NAT and load balancers. Such functions usually perform a match-
ing step to inspect some parts of a packet and modify contents of
the packet subsequently. In the case of firewalls, modifications may
also include dropping a packet.
Branching and chaining. Our definitions support branching, i.e.,
network functions that do not necessarily apply all policies on a
packet. This is achieved by including multiple exit points, i.e.,
leaf nodes. In this sense, our definition of network functions is
richer than the one proposed in [11] which does not allow compo-
sition of policies with multiple exit points. Definitions also support
chaining, e.g., ψ1’s output is ψ2’s input, however, in our proposed
privacy-preserving solution chaining is not possible, since outputs
of the MBs in B(t) need to be combined to reconstruct a trans-
formed packet. For chaining to work, network function ψ2 needs
to know the output of network function ψ1. However, if ψ2 only
needs the original input x, instead of the overwritten copy xw, net-
work function chaining can work by giving ψ2 an auxiliary input,
i.e., the share resulting from network function ψ1, on which it can
apply its own actions.

3.3 Policies
We restrict m to substring matching and a to be substring sub-

stitution. We also introduce the don’t care bit denoted by ∗ in our
alphabet. Given strings x ∈ {0, 1}n and y ∈ {0, 1, ∗}n, we say
x = y if x(i) = y(i) for all i ∈ [n] such that y(i) 6= ∗. In

other words, if the two strings match at every position except for
the don’t care positions we consider the two strings to be equal.
Given x ∈ {0, 1}∗, matching function m is defined as

m(x) =

{
1, if x(1, n) = µ

0, otherwise
, (1)

where µ ∈ {0, 1, ∗}n. We call µ the match of m. To define the
action function, we introduce substring replacement. Given x ∈
{0, 1}n and z ∈ {0, 1, ∗}n, x ← z represents replacing each x(i)
with z(i) if z(i) 6= ∗, and leaving x(i) as is if z(i) = ∗, for all
i ∈ [n]. Given x ∈ {0, 1}∗, the action function a is defined as

a(x) = x(1, n)← α, (2)

where α ∈ {0, 1, ∗}n. We call α the action of a. With this
definition, the identity action function I is I(x) = x(1, n) ← α,
where α = ∗n.

Definitions. Throughout the rest of the paper, we use the following
definitions: let z ∈ {0, 1, ∗}n, the projection of z, denoted πz , is
a string ∈ {0, 1}n, s.t. πz(i) = 1 if z(i) ∈ {0, 1} and πz(i) = 0
if z(i) = ∗. The masking of a x ∈ {0, 1, ∗}n using πz ∈
{0, 1}n, denoted ω(πz, x), returns x′ s.t. x′(i) = x(i) if πz(i) = 1
and x′(i) = 0 if πz(i) = 0. Although we have broadly defined
ω(πz, x) for an x ∈ {0, 1, ∗}n, we use it exclusively for an x ∈
{0, 1}n. H : {0, 1}n → {0, 1}q denotes a cryptographic hash
function;⊕ denotes bitwise XOR. The Hamming weight of a string
x ∈ {0, 1}n is wt(x). Finally, x ←$ {0, 1}n means sampling a
binary string of length n uniformly at random.

4. INTRODUCING SPLITBOX

4.1 Privacy Requirements
We start by describing an ideal setting in which a trusted third

party, T , computes a network function ψ for the client. Upon re-
ceiving a packet x, A forwards it to T , which provides the result
of ψ(x) to C. HereA learns x but not ψ(x) and B(t) neither x nor
ψ(x). In this section, we introduce our private NFV solution, Split-
Box, aiming to simulate this ideal setting. However, we fall slightly
short in that the MBs B(t) learn the projection πµ and the output
m(x) for each m ∈ M , however, they do not learn the match µ
for any m ∈ M beyond what is learnable from πµ. Although this
could reveal information such as which field of the packet the cur-
rent matching function corresponds to, we do not consider it to be a

3

Split
Packet

Global SetupSetup
Lookup
Tables

Hide
Match

Split
Action

Private Traversal

Compute
Match

Compute
Action

Merge
Shares

packet in

packet out

Middleboxes

Setup

Packet
Processing

A B(t) C

Figure 3: Breakdown of algorithms executed by each MB in SplitBox.

strong limitation since this might be obvious from the type of NFV
considered anyway. For example, if it is a firewall, then it is com-
mon knowledge that the fields it operates on will include IP address
fields.

4.2 The System
Design Aims. We consider the following design aims, i.e., the so-
lution should: (a) be secure; (b) be computationally fast; (c) limit
MB-to-MB communication complexity.

High-Level Overview. In a nutshell, if we assume that ψ includes
a single policy (m,a), our strategy to hide m is to let C blind µ
by XORing it with a random binary string s and sending the hash
of the result to each MB in B(t); whereas, to hide a, C computes
t shares of the action α using a t-out-of-t secret sharing scheme
and sends share j to Bj . In addition, A encrypts the contents of a
packet x by XORing it with the blind s, and sends it to the MBs
in B(t), which can then compute matches and actions on this en-
crypted packet. We present the details of SplitBox using a set of
algorithms, grouped based on the MB executing them. Figure 3
shows a high-level overview of all the algorithms computed by each
MB. We assume ψpriv to be the private version of the network func-
tion ψ whose matching and action functions are replaced by unique
identifiers.

Middlebox C. The initial setup is performed by C via Algo-
rithm 2. This includes creating lookup tables (Algorithm 3), hiding
the matching functions (Algorithm 4), and splitting the action func-
tions (Algorithm 5). There are two lookup tables in Algorithm 3:
S forA and S̃ for B(t). Table S contains l “blinds” which are ran-
dom binary strings used to encrypt a packet by XORing. For each
blind s ∈ S and for each m ∈ M , the portion of the blind cor-
responding to the projection of the match µ is extracted and then
XORed with µ. Finally this value is hashed using H and stored in
the corresponding row of S̃. The Hide Match algorithm simply
sends the projection πµ of each match µ to B(t). This tells B(t)
which locations of the incoming packet are relevant for the current
match. The Split Action algorithm computes t shares of the
action α and action projection πα, for each a ∈ A and sends them
to B(t). C uses one more algorithm, Algorithm 6 to reconstruct the
transformed packet. This algorithm XORs the cumulative action
shares α′j and cumulative action projection shares β′j from Bj to
compute the final action α′ and action projection β′. It also XORs
the encrypted packet received from A with the current blind s in

Algorithm 2: Global Setup (C)
Input: Parameters n and l, network function ψ = (M,A).

1 for j = 1 to t do
2 Send ψpriv to Bj .
3 Run Setup Lookup Tables with parameter l, M .
4 for each m ∈M do
5 Run Hide Match algorithm.
6 for each a ∈ A do
7 Run Split Action algorithm.

Algorithm 3: Setup Lookup Tables (C)
Input: Parameter l, set M .

1 Initialize empty table S with l cells.
2 Initialize empty table S̃ with l × |M | cells.
3 for i = 1 to l do
4 Sample si ←$ {0, 1}n.
5 Insert si in cell i of S.
6 for j = 1 to |M | do
7 Compute s̃i,j = ω(πµj , si), where µj is the match of

mj .
8 Compute H(µj ⊕ s̃i,j).
9 Insert H(µj ⊕ s̃i,j) in cell (i, j) of S̃.

10 Send S to A.
11 Send S̃ to B(t).

the lookup table S, in order to reconstruct the final packet. Note
that we have modelled dropping a packet as setting x(1, n) to 0n.

MiddleboxA. This MB only runs Algorithm 7, which maintains a
counter initially set to 0 and incremented every time a new packet
x arrives. The value of the counter corresponds to a blind in the
lookup table S. Therefore its range is [l] (barring the initial value
of 0). The algorithm makes two copies of an incoming packet x,
xr (read-only copy) for matching to be sent to B(t), and xw (write-
able copy) for action functions to be sent to C. Both xr and xw
are XORed with the blind in S corresponding to the counter. The
current counter value is also given to B(t) and C.

Middleboxes B(t). Each MB Bj performs a private version of
the Traversal algorithm as shown in Algorithm 8. Bj first ini-
tializes cumulative action strings α′j and cumulative action pro-
jection strings β′j as strings of all zeros. Within the Private
Traversal algorithm, Bj executes the action functions using
Algorithm 9 and matching functions using Algorithm 10. The
Compute Action algorithm essentially updates α′j and β′j by
XORing with the action share and action projection share of the
current action. The Compute Match algorithm uses the read-
only copy xr. It extracts the bits of xr corresponding to the current
match projection πµ. It then looks up the counter value i (sent by
A) and the index of the matching function in the lookup table S̃ and
extracts the hashed match. This is then compared with the hash of
the relevant bits of xr.

5. ANALYSIS

5.1 Correctness
Given ψ = (M,A), for a matching function m ∈ M , as long

as m can be represented as substring matching, SplitBox correctly
computes the match. That is, ifm is an equality test or range test for
powers of 2 in binary (e.g., IP addresses in the range 127. ∗ . ∗ .32

4

Algorithm 4: Hide Match (C)
Input: Matching function m ∈M with match µ.

1 Send πµ to B(t).

Algorithm 5: Split Action (C)
Input: Action function a ∈ A with action α.

1 Sample α1, α2, . . . , αt−1 ←$ {0, 1}n.
2 Let α̃ = ω(πα, α). Compute αt = α̃⊕ α1 ⊕ · · · ⊕ αt−1.
3 Sample β1, β2, . . . , βt−1 ←$ {0, 1}n.
4 Compute βt = πα ⊕ β1 ⊕ · · · ⊕ βt−1.
5 for j = 1 to t do
6 Give αj , βj to Bj .

to 127. ∗ . ∗ .64), then it can be successfully computed by Split-
Box. Our model also allows for arbitrary ranges by dividingm into
smaller matches that check equality matching of individual bits.
However, such a representation can potentially make ψ very large.
We can correctly compute action functions as long as they satisfy
two properties: (a) they are applied to the initial packet x only, and
not on its transformed versions; (b) any two action projections βi
and βj do not overlap on their non-zero bits. Note that this does not
restrict the number of times the identity function I can be applied,
as its action projection is 0n.

5.2 Security
The proof of security of our construction is shown in Ap-

pendix A. Here, we mention two important points: if SplitBox is
used for match projections whose Hamming weight is low, then the
B(t) can brute-force H to find its pre-image. This reveals µ⊕ s for
some blind s, which allows the adversary to learn more than simply
looking at the output of m. Namely, if m(x) = 0, the adversary
learns which relevant bits of an incoming packet x do not match
with the stored match. This is the reason why we use the hash func-
tion H. It does not allow B(t) to learn more than the output of m.
The second point relates to the length of the look-up table l: ideally
l should be large enough so that the same blind is not re-used before
a long period of time. However, high throughput would require a
prohibitively large value of l. Therefore, we propose the following
mitigation strategy: with probability 0 < 1 − ρ < 1, A, sends a
uniform random string from {0, 1}n (dummy packet), rather than
the next packet in the queue. Thus, any middlebox in B(t), that at-
tempts to compare two packets using the same blind (according to
the value of the counter i ∈ [l]) does not know for certain whether
the result corresponds to two actual packets (the probability is ρ2)
or not. The downside is that this reduces the (effective) throughput
by a factor of ρ. Nevertheless, with this strategy we can use a fea-
sible value of l. Of course A has to indicate to C which packet is a
dummy packet. This can be done by sending a bit through B(t) to
C by once again using a t-out-of-t secret sharing scheme (XORing
with random bits).

6. IMPLEMENTATION
In this section, we discuss our proof-of-concept implementation

of SplitBox inside FastClick [1], an extension of the Click modular
router [8] which provides fast user-space packet I/O and easy con-
figuration via automatic handling of multi-threading and multiple
hardware queues. We also use Intel DPDK [5] as the underlying
packet I/O framework. We implemented three main FastClick el-
ements: element Entry corresponding to MB A, Processor
corresponding to MBs B, and Client to C. Client implements

Algorithm 6: Merge Shares (C)

Input: Index i, packet copy xw, α′j and β′j from Bj for j ∈ [t].
1 Compute α′ ← α′1 ⊕ · · · ⊕ α′t.
2 Compute β′ ← β′1 ⊕ · · · ⊕ β′t.
3 Compute x← xw ⊕ si, where si ∈ S.
4 for i = 1 to n do
5 if β′(i) = 1 then
6 x(i)← α′(i)

7 if x(1, n) = 0n then
8 Drop x.
9 else

10 Forward x.

Algorithm 7: Split Packet (A)
Input: Packet x, lookup table S.

1 Get the index i ∈ [l] corresponding to the current value of the
counter.

2 Let xw ← x⊕ si (writeable copy), where si ∈ S.
3 Compute xr ← x(1, n)⊕ si (read-only copy), where si ∈ S.
4 for j = 1 to t do
5 Send xr, i to Bj .
6 Send xw, i to C.

the Merge Shares algorithm. An element Entry corresponds
to MB A. This element is responsible for the Split Packet
algorithm. An element Processor is used for the Bj MBs. It is
responsible for the Private Traversal, Compute Match
and Compute Action algorithms. Finally, an Client element
corresponds to C and is responsible for the Merge Shares algo-
rithm. The other algorithms of C are executed outside the FastClick
elements, and used to configure the above three elements. The
hash function H is implemented using OpenSSL’s SHA-1, aiming
to achieve a compromise between security, digest length, and com-
putation speed. While faster hashing functions are available, they
are not cryptographic hash functions, thus they might be invertible
and/or lead to larger amount of collisions. On the other hand, we
do not want hash functions which have very large message digests
(leading to overly large lookup tables), or which are more compu-
tationally expensive (as discussed in Section 7, the hashing speed is
an important factor of the performance of our solution). Client
uses a circular buffer to collect packet shares until all have been re-
ceived and the final packet can be reconstructed. For communica-
tion between our elements, we use UDP packets: UDP and L2 pro-
cessing relies on standard Click elements such as UDPIPEncap.
Finally, we also add a few elements to help in our delay measure-
ments, as explained below.

To evaluate our implementation, we focus on a firewall use case,
using a network function tree similar to that in Figure 2(b). A single
action is applied, either the identity action, if the packet is allowed,
or marking the packet with a drop message (0n), if it should be
dropped. We use three commodity PCs for our experiments (8-core
Intel Xeon E5-2630 with 2.4GHz CPU and 16 GB of RAM): one
for both Entry and Client, in order to use the same clock for
delay measurements, and the other two as two Processors. The
four nodes (including the two on the same machine) are connected
through Intel X520 NICs, with 10-Gbps SFP+ cables. The topol-
ogy is thus very similar to the one in Figure 1, except that we only
have t = 2 in B(t), and that A and C share the same physical
machine. Another difference is that our machines are connected di-
rectly, without intermediate routers between them. We use a trace

5

Algorithm 8: Private Traversal (B(t))
Input: Index i, read-only copy xr, network function ψpriv.

1 Initialize empty strings α′j ← 0n and β′j ← 0n.
2 Start from the root node.
3 Update α′j and β′j by running the Compute Action

algorithm on the current node a.
4 if the current node is a leaf node then
5 Send i, α′j and β′j to party C and stop.
6 else
7 Run Compute Match algorithm on i, m and xr, where

m is the right hand side edge.
8 if Compute Match outputs 1 then
9 Go to the right child node.

10 else
11 Go to the left child node.
12 Go to step 3.

Algorithm 9: Compute Action (B(t))
Input: Pair of cumulative action and cumulative action

projection shares (α′j , β
′
j) of Bj , pair of action and

action projection shares (αj , βj) of action function
a ∈ A of Bj .

1 Compute α′j ← α′j ⊕ αj .
2 Compute β′j ← β′j ⊕ βj .
3 Output α′j , β

′
j .

captured at one of our campus border router (pre-loaded into mem-
ory) as input for the Entry element, which executes the Split
Packet algorithm on a single core. Then, each output of Entry
(one for C and one per Bj) is encapsulated inside an UDP packet
and sent to the corresponding output device, using one core per
device.

On each Bj machine, the packets are read from the input device,
decapsulated, and then passed to a Processor element which
does the actual filtering. The resulting action packets are then re-
encapsulated and sent through the NIC towards the client. This op-
eration is done on a single core, but several cores can easily be used
in parallel.With FastClick, it suffices to launch Click with more
cores, and the system will automatically create the corresponding
number of hardware queues on the NICS, and assign a core to each
queue. On the client side, each of the three input NICs has an asso-
ciated core. Incoming packets are decapsulated, and then passed to
the Client element, which reconstructs the final packets (on its
own core). Reconstructed packets which are not marked as dropped
are then passed to a receiver pipeline, which computes the entry-to-
exit delay, counts packets and measures reception bandwidth. To
measure delays, the packets in the in-memory list are tagged with a
sequence number in the packet payload, before the transmission be-
gins. This number allows to match the exit timestamp with an entry
timestamp, which is kept in memory. This allows to avoid storing
the timestamp itself in the packet, which would increase the delay
measured. To store the sequence number, we need to extend very
small packets (e.g. TCP ACKs). We prefer that to not accounting
for small packets in our delay measurements.

The SplitBox setup is compared against a simpler setup using a
IPFilter element, with the same filtering rules, to act as a non-
private firewall. In that configuration, a single machine is used.
The IPFilter element replaces the Entry element and sends
only the non-dropped packets (without encapsulation) directly to

Algorithm 10: Compute Match (B(t))

Input: Read-only copy xr, index i ∈ [l], lookup table S̃, index
j ∈ [|M |] of mj ∈M with match µj .

1 Lookup table S̃ at index (i, j) to obtain H(s̃i,j).
2 Extract x̃r ← ω(πµj , xr).
3 Compute H(x̃r).
4 if H(x̃r) = H(µj ⊕ s̃i,j) then // m(x) = 1
5 Output 1.
6 else // m(x) = 0
7 Output 0.

an output device, which is connected to an input device feeding the
receiver pipeline.

7. PERFORMANCE EVALUATION
We now present the results of the experiment described above,

with various input bit-rates and different number of rules, while
measuring loss rate and delays. While we have to forward all pack-
ets to the client, a non-private outsourced firewall can drop the re-
jected packets immediately. Thus, its achievable bit-rate will de-
pend on a combination of the input traffic and the ruleset. To nor-
malize results in our analysis, we craft rulesets such that all pack-
ets are accepted. While it changes nothing for SplitBox, it is a
worst-case for the IPFilter-based testcase. At the same time,
we tightly control the number of match attempts per packet, in or-
der to evaluate the impact of the average number of rules traversed
by a packet before it matches.

Figure 4 illustrates the evolution of the maximum achievable
bandwidth (taken as inducing less than 0.001% losses), as a func-
tion of the number of traversed rules (i.e., the number of match
attempts per packet). Our trace packets are about 1 kB on average,
so that 8 Gbps corresponds to about 1 Mpps. We observe that the
bandwidth decreases significantly with more traversed rules with
SplitBox (PNFV), mainly due to the hashing function, which is
called on the packet header once per match attempt. Not only is
this more computationally expensive than simpler comparisons, but
it is also done each time on different data (as we need to first XOR
packet header with match projection), taking no advantage of the
cache. IPFilter is also sensitive to the number of match at-
tempts, but much less so thanks to cheaper comparisons on a hot
cache. Fortunately, the Processor operation is inherently paral-
lelizable, thus, allocating more cores speeds things up. Note that
the average number of traversed rules in a real firewall is signifi-
cantly lower than the total number of rules. Therefore, it is particu-
larly important to choose the order of match attempts according to
the traffic distribution, and/or to use a more complex tree structure
minimizing the number of match attempts.

Finally, in Figure 5, we plot the delays as a function of firewall
load (i.e., current input bandwidth over maximum achievable band-
width). Note that the delays do not follow the same dependency
w.r.t. the number of match attempts per packet. Although these in-
crease slightly with the number of traversed rules, they are mostly
governed by queuing delays in the system (in NICs rings, or in-
memory rings exchanging packets between the different process-
ing cores). The number of blinds l seems to have little impact on
the performance: with l ranging from 64 to 65,536, we observe no
noticeable difference, except for additional memory consumption.

In conclusion, our SplitBox proof-of-concept implementation
for a firewall use case achieves comparable performance to a non-
private version, providing acceptable throughput and delays for

6

 0

 2

 4

 6

 8

 10

 0 10 20 30 40 50 60 70

M
a
x
 a

ch
ie

v
a
b

le
 b

a
n
d

w
id

th
 w

/o
 l
o
ss

 (
/

G
b

p
s)

Number of traversed rules

IPFilter
SplitBox 4 cores
SplitBox 3 cores
SplitBox 2 cores
SplitBox 1 core

Figure 4: Achievable bandwidth drops sharply with the number of tra-
versed rules.

 0

 100

 200

 300

 400

 500

 20 30 40 50 60 70 80 90 100

D
e
la

y
 (

µ
s)

Firewall load (%)

IPFilter
SplitBox 4 Cores
SplitBox 3 Cores
SplitBox 2 Cores
SplitBox 1 Core

Figure 5: Delay increases with the firewall load.

small rulesets. Larger rulesets should be carefully laid out in or-
der to minimize the number of match attempts per packet.

8. CONCLUSION & FUTURE WORK
This paper presented SplitBox, a novel scalable system that al-

lows a cloud service provider to privately compute network func-
tions on behalf of a client, in such a way that the cloud does not
learn the network policies. It provides strong security guarantees in
the honest-but-curious model, based on cryptographic secret shar-
ing. We experiment with our implementation using firewall as a test
case, and achieve a throughput in the order of 2 Gbps, with pack-
ets of average size 1 kB traversing about 60 firewall rules. In future
work, we plan to consider more diverse types of matches (that allow
matching on arbitrary ranges) and actions (that allow overlapping
non-zero bits), as well as using k-out-of-t secret sharing schemes
rather than t-out-of-t.

9. REFERENCES
[1] T. Barbette, C. Soldani, and L. Mathy. Fast userspace packet

processing. In ANCS, 2015.
[2] D. Boneh, G. Di Crescenzo, R. Ostrovsky, and G. Persiano.

Public key encryption with keyword search. In Eurocrypt,
2004.

[3] J. H. Cheon, K. Han, C. Lee, H. Ryu, and D. Stehle.
Cryptanalysis of the Multilinear Map over the Integers. In
Eurocrypt, 2015.

[4] J.-S. Coron, T. Lepoint, and M. Tibouchi. Practical
Multilinear Maps over the Integers. In CRYPTO, 2013.

[5] Intel. Intel Data Plane Development Kit. http://dpdk.org/.
[6] N. A. Jagadeesan, R. Pal, K. Nadikuditi, Y. Huang, E. Shi,

and M. Yu. A Secure Computation Framework for SDNs. In
HotSDN ’14, 2014.

[7] A. R. Khakpour and A. X. Liu. First Step Toward
Cloud-Based Firewalling. In SRDS, 2012.

[8] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F.
Kaashoek. The click modular router. ACM Trans. Comput.
Syst., 18(3), 2000.

[9] C. Lan, J. Sherry, R. A. Popa, S. Ratnasamy, and Z. Liu.
Embark: Securely Outsourcing Middleboxes to the Cloud. In
NSDI, 2016.

[10] Y.-H. Lin, S.-H. Shen, M.-H. Yang, D.-N. Yang, and W. T.
Chen. Privacy-Preserving Deep Packet Filtering over
Encrypted Traffic in Software-Defined Networks. In ICC
’16, 2016.

[11] L. Melis, H. J. Asghar, E. De Cristofaro, and M. A. Kaafar.
Private Processing of Outsourced Network Functions:
Feasibility and Constructions. In ACM Workshop on
SDN-NFV Security, 2016.

[12] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy,
S. Ratnasamy, and V. Sekar. Making Middleboxes Someone
Else’s Problem: Network Processing as a Cloud Service. In
SIGCOMM, 2012.

[13] J. Sherry, C. Lan, R. A. Popa, and S. Ratnasamy. BlindBox:
Deep Packet Inspection over Encrypted Traffic. In
SIGCOMM, 2015.

[14] J. Shi, Y. Zhang, and S. Zhong. Privacy-preserving Network
Functionality Outsourcing. http://arxiv.org/abs/1502.00389,
2015.

APPENDIX
A. SECURITY PROOFS

We assume a passive (honest-but-curious) adversary E which can
either corrupt A, or up to t − 1 parties (MBs) from B(t).2 Let
Π denote our PNFV scheme (SplitBox). Before a formal security
analysis, we first discuss the assumptions and privacy requirements
of the scheme Π.

– The parameter n is public.
– A should not know the network function ψ = (M,A) (not

even |M | or |A|). It does however see x in clear.
– Each Bj ∈ B(t) knows the projection πµ of the match µ of

each matching functionm ∈M . It should not, however, learn
the match µ of any matching function m ∈ M (beyond what
is learnable through πµ). It also knows the result of all the
of matching functions. Note that this may include matching
functions that are not necessary to compute ψ(x) for each
packet x, i.e., the subset of matching functions that are in
the path that exit the graph ψ given x. Since Bj can always
access the hash function H offline, it can check all matching
functions m ∈M for their output (not necessarily in the path
of ψ). We therefore need to make this explicit.

– Each party Bj ∈ B(t) should not know x. Furthermore, for
any two packets x1 and x2, it should not know which bits of
x1 and x2 are the same, beyond what is learn-able through the
result of the subset of the matching functions used in ψ(x1)
and ψ(x2). In particular, if a matching function m has pro-
jection πµ for its match µ, it should only learn that the bits
corresponding to πµ are the same if m(x1) = m(x2) = 1. If
m(x1) 6= m(x2), Bj should not learn whether individual bits
corresponding to πµ are the same or different (except when
wt(πµ) = 1). That is the reason for using the hash function
H in the scheme.

2We will use the word ‘party’ instead of middlebox or MB in this section.

7

http://dpdk.org/
http://arxiv.org/abs/1502.00389

– Any coalition of t − 1 parties in B(t) should not be able to
learn the action α and the action projection β of every action
a ∈ A.

Let us denote random variables I and O denoting the input and
output of a party (or a subset of parties) corrupted by E .3 Further
denote the random variable X representing the packet x, and D
representing the description of the network function ψ. The output
of the network function ψ on input from X is denoted ψ(X). We
first describe the ideal functionality, denoted IDEAL, followed by
the real setting, denoted REAL.

IDEAL(ψ,S). We assume a trusted third party T , which commu-
nicates with each of the parties via a secure and private link. T is
given the network function ψ = (M,A). Parties B(t) are given the
“index set” ofM (i.e., {1, 2, . . . , |M |}) together with the matching
projections πµ, for the match µ of each matching functionm ∈M .
Notice that, since in our protocol, we leak this information, we need
to make this explicit. PartyA receives a packet x and hands it over
to T . T computes x′ = ψ(x). It hands over x′ to C. Since in our
protocol, we leak the information about the output of the matching
functions, T also hands over the result of each matching function
m ∈ M to the parties B(t). The simulator S serves as the ad-
versary in the IDEAL setting. Succinctly, IDEAL(ψ,S) is the tuple
(I,O,X, ψ(X), D), where the random variables correspond to the
party (or subset of parties) controlled by S.

REAL(Π, E). Our real setting is simply the execution of our
scheme in the presence of the adversary E . It again represents
the tuple (I,O,X, ψ(X), D) where each random variable corre-
sponds to the party (or subset of parties) corrupted by E . Naturally,
depending on whether E corrupts party A or upto t − 1 parties in
B(t), the simulator S in the ideal setting will be different (and so
will be the random variables in the tuple (I,O,X, ψ(X), D)).

With these two settings, we want to show that for every prob-
abilistic polynomial time adversary E there exists a probabilistic
polynomial time adversary S, such that

REAL(Π, E) ≈c IDEAL(ψ,S),

where ≈c denotes computational indistinguishability. If the above
holds, we say that Π privately processes ψ. In our proofs, we im-
plicitly use the assumption that given binary strings c and c1, . . . , ct
such that c1, . . . , ct−1 are random binary strings in {0, 1}n, and
ct = c1⊕· · ·⊕ct−1⊕c, then any subset of strings from c1, . . . , ct,
denoted C(t − 1), with cardinality ≤ t − 1, the following holds:
P[c|C(t−1)] = P[c] = 2−n. The proof of this assumption is stan-
dard. We use this result whenever we talk about t-out-of-t shares
in our proposed PNFV solution.

Our main results are as follows.

THEOREM 1. The PNFV scheme Π privately processes ψ
against an honest-but-curious E = A.

PROOF. Before receiving any packet, the simulator S samples
l uniformly random strings si ∈ {0, 1}n to construct the lookup
table S and gives it to E . It initializes its counter to 0. Upon re-
ceiving a packet x, S forwards it to T . For E , S first gets the
current value of the counter i ∈ [l]. It further samples a uniformly
random r ∈ {0, 1}n and constructs xw ← x ⊕ r. It computes t
shares of r, the jth share of which is denoted rj . Finally it obtains
xr ← x(1, n) ⊕ si by looking up the counter value i in the table
S. Finally S gives xr, i, xw and the t shares of r to E . Once the
counter i reaches l, S resets it to 0.

Since the input to party A is the same as the input packet x, we
have that I = X (which holds both in the ideal and real setting).
3Somewhat abusing notation, in this section, we use the same symbol I for
input that was previously reserved for the identity action function.

The output O is distributed in the exact same manner in the two
worlds. Since the output is generated without any knowledge of
the network function ψ, we have that D is the same in the ideal
and real world. Finally, the output of ψ is not revealed in the two
worlds. Hence REAL(Π, E) = IDEAL(ψ,S) ⇒ REAL(Π, E) ≈c
IDEAL(ψ,S).

As discussed in Section 5.2, if the match of a matching function
is small, the adversary can brute-force the hash function H to find
its pre-image. Thus, our security proof for E ⊂ B(t) requires that
the minimum Hamming weight of a match µ in the set of matching
functions M should be large enough for brute-force to be infeasi-
ble. Furthermore, our security proof applies only when the blinds
are used once, i.e., for counter values ≤ l without reset. See Sec-
tion 5.2 for our proposed mitigation strategy for security, when the
counter completes its cycle.

THEOREM 2. Suppose δ = minµ wt(πµ), for all matching
functions m ∈ M . The PNFV scheme Π privately processes ψ,
up to l inputs (packets), against an honest-but-curious E ⊂ B(t) in
the random oracle model.

PROOF. Let R : {0, 1}∗ → {0, 1}q denote the random oracle.
Before receiving any packet, the simulator S simulates the lookup
table S̃ as follows. For each m ∈ M , given the projection πµ of
its match µ, it generates l binary strings by sampling a random bit
where πµ(i) = 1 and placing a 0 otherwise. For each such string,
S samples a uniform random binary string of length q. S creates
two tables. One is the lookup table S̃, and the other its personal
table Ŝ. The table Ŝ contains the pre-images of the entries in S̃.
It hands over S̃ to each party in E . For each policy (m,a) ∈ ψ,
it generates |E| random binary strings αj and βj of length n, for
1 ≤ j ≤ |E|, and gives each pair (αj , βj) to a separate player in E .
S initiates a counter i initially set to 0.

Upon receiving the result of the matching functions in M from
T , indicating the arrival of a new packet, S first generates a ran-
dom binary string as xw and |E| random binary strings of length n
(to simulate the rj’s). S initializes an empty string xr. For each
matching function m that outputs 1, S looks up its table Ŝ and the
projection πµ, where µ is the match of the matching function, and
replaces the corresponding bits of xr with the corresponding bits of
the input string to the lookup table Ŝ. Finally, for all bits of xr that
are not set, S replaces them with uniform random bits. It hands
over xw, xr and rj to each party in E , together with the current
counter value i.

For any oracle query from a party Bj ∈ E , S first looks at its
table Ŝ and sees if an entry exists. If an entry exists, S outputs the
corresponding output from the table Ŝ. If an entry does not exist,
E outputs a uniform random string of length q, and stores the input
and the output by appending it to the table Ŝ.

It is easy to see that the distribution of the variables
(I,O,X, ψ(X), D) for each party in E is the same as in the real
setting, for any E , such that |E| < t, for any value of the counter
i ≤ l, and for a polynomial in δ number of oracle queries. There-
fore REAL(Π, E) ≈c IDEAL(ψ,S).

8

