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Abstract—The analysis of adaptive carrier phase estimation is
investigated in long-haul high speed n-level phase shift keying
(n-PSK) optical fiber communication systems based on the one-
tap normalized least-mean-square (LMS) algorithm. The close-
form expressions for the estimated carrier phase and the bit-
error-rate floor have been derived in the n-PSK coherent
optical transmission systems. The results show that the one-tap
normalized LMS algorithm performs pretty well in the carrier
phase estimation, but will be less effective with the increment
of modulation levels, in the compensation of both intrinsic
laser phase noise and equalization enhanced phase noise.
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L INTRODUCTION

More than 90% of the digital data is transmitted over
optical fibers, to constitute the great part of the national and
international communication infrastructures [1-6]. The
performance of long-haul high speed optical fiber
communication systems can be significantly degraded by the
transmission impairments, such as chromatic dispersion
(CD), polarization mode dispersion (PMD), laser phase noise
(PN) and fiber nonlinearities (FNLs) [7-12]. With the full
capture of the amplitude and the phase of optical signals,
coherent optical detection and digital signal processing
(DSP) allow the powerful equalization and mitigation of the
communication system impairments in the electrical domain,
and thus have become one of the most promising techniques
for the next-generation optical fiber transmission networks
[13-36]. Recently, some feed-forward and feed-back carrier
phase estimation (CPE) algorithms have been proposed to
compensate the phase noise from the laser sources [22-34].
Among these reported carrier phase estimation methods, the
one-tap normalized least-mean-square (LMS) algorithm has
been validated for compensating the laser phase noise

effectively in the high speed coherent optical transmission
systems [24-26].

Meanwhile, due to the interplay between the electronic
dispersion equalization (EDC) and the laser phase noise, an
effect of equalization enhanced phase noise (EEPN) has been
generated and will seriously degrade the performance of
long-haul optical fiber communication systems [37-42].
Some investigations regarding the equalization enhanced
phase noise have been carried out in the single-channel, the
wavelength division multiplexing (WDM), the orthogonal
frequency division multiplexing (OFDM), the dispersion pre-
distorted, and the multi-mode optical transmission systems
[43-48]. The EEPN will distort the optical communication
systems more severely with the increment of fiber
dispersion, laser linewidths, modulation formats, and symbol
rates [37,38,45]. Considering the impact of EEPN, the
traditional analysis of the carrier phase estimation is not
suitable any longer for the design of long-haul optical fiber
transmission networks. Meanwhile, the requirement on laser
linewidths will not be relaxed with the increment of signal
symbol rates in communication systems. Therefore, it will be
interesting to investigate the bit-error-rate  (BER)
performance in the one-tap normalized LMS carrier phase
estimation algorithm, when the equalization enhanced phase
noise is taken into account.

In our previous work, the analytical derivation for the
one-tap normalized LMS carrier phase estimation method
has been carried out based on the quadrature phase shift
keying (QPSK) coherent optical transmission system [25,40].
It has been found that the one-tap normalized LMS equalizer
behaves similar as the traditional differential detection in the
carrier phase estimation for compensating both intrinsic laser
phase noise and equalization enhanced phase noise in the
QPSK coherent optical systems [25,40]. However, with the
development of the optical fiber networks, and the increment
of transmission data capacity, the QPSK modulation format
cannot satisfy the demand of the high speed optical fiber
communication systems any more. Therefore, the analysis on



the carrier phase estimation approaches should also be
updated correspondingly for the optical fiber transmission
systems using higher-level modulation formats, such as n-
level phase shift keying (n-PSK).

In this paper, a theoretical assessment for the carrier
phase recovery using the one-tap normalized LMS algorithm
in the n-PSK coherent optical transmission systems has been
presented in detail. The analysis of the one-tap normalized
LMS algorithm has been discussed, and the close-form
expressions to predict the estimated carrier phase and the
BER performance, such as the BER floor in the carrier phase
recovery process, have also been described. It can be found
that for the n-PSK optical transmission systems, the one-tap
normalized LMS algorithm still shows a similar performance
as the traditional differential carrier phase recovery. It can
also be seen that the one-tap normalized LMS algorithm
works very well in the carrier phase estimation in n-PSK
optical fiber communication systems, but will be less
effective with the increment of modulation levels, for

compensating both intrinsic laser phase noise and
equalization enhanced phase noise.
1I. LASER PHASE NOISE AND EQUALIZATION

ENHANCED PHASE NOISE IN N-PSK TRANSMISSION SYSTEMS

In n-PSK coherent optical communication systems, the
variance of the intrinsic phase noise from the transmitter
(Tx) laser and the local oscillator (LO) laser can be
expressed as follows [7,8],

O-T2x_LO = 27[(Af7x +AfL0)‘Ts’ ey

where Afy, and Af; are the 3-dB linewidths of the Tx laser
and the LO laser respectively, and T is the signal symbol
period of the coherent transmission system. It can be found
that the phase noise variance decreases with increment of
the signal symbol rate Rg=1/ T.

However, due to the interaction between the dispersion
and the LO laser phase noise, the noise variance of the
equalization enhanced phase noise in the EDC based optical
transmission systems can be expressed as follows, see in
[37,40]
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where f; is the LO laser central frequency, which is usually
equal to the Tx laser central frequency fr,, D is the CD
coefficient of the transmission fiber, L is the transmission
fiber length, and A=c/fr,=c/fio is the central wavelength of
the optical carrier wave. It can be seen that the EEPN noise
variance increases with the increment of symbol rate, which
has an opposite feature compared to the laser phase noise.

111 ONE-TAP NORMALIZED LMS CARRIER PHASE
ESTIMATION IN N-PSK TRANSMISSION SYSTEMS

A. Analysis of one-tap normalized LMS carrier phase
estimation

As an adaptive feed-back algorithm, the transfer function
of one-tap normalized LMS carrier phase estimation can be
expressed as follows,

y(k) = wlk)x(k). 3)

e(k)=d(k)-y(k). 5)

where k is the symbol index, and x(k) is the input symbol,
y(k) is the output symbol, and w(k) is the tap weight of the
one-tap normalized LMS equalizer, e(k) is the carrier phase
estimation error.

According to our previous work [40], the carrier phase
estimation error can be expressed as the follows:

Ap= ¢k+1 - ¢k . (6)

Therefore, for the n-PSK coherent optical transmission
systems, the demodulation part will not cause any errors,
when we have
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It is known that, for the Lorentzian distributed laser phase
noise, @,,, —¢@, follows a Gaussian distribution as the
following expression:

flx)= \/%G exp{— 2’; _ j ®)

where O % is the variance of the laser phase noise, which
can be calculated from (1).

Therefore, the symbol-error-rate (SER) in the n-PSK
optical fiber transmission systems considering the laser
phase noise can be calculated as follows:
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Therefore, the BER floor induced by the one-tap
normalized LMS carrier phase recovery in the n-PSK optical
fiber communication systems can be derived accordingly,
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where the noise variance O~ =27 (Afo +Af,, )- T .

when only the intrinsic laser phase noise is considered.

It can be found that, for the n-PSK transmission systems,
the close-form prediction for the BER floors in the one-tap
normalized LMS carrier phase recovery algorithm also gives
the same expression as the differential carrier phase recovery
[7,40]. It means that the one-tap normalized least-mean-
square carrier phase recovery in the n-PSK systems also
behaves similar as the traditional differential carrier phase
recovery.

B. Influence of EEPN in the one-tap normalized LMS
carrier phase estimation
When the EEPN is taken into account in the one-tap
normalized LMS carrier phase estimation, we have the total
noise variance in the optical fiber transmission system as the
following expression,
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Therefore, considering the equalization enhanced phase
noise, the BER floor in the one-tap LMS carrier phase
recovery in n-PSK coherent optical communication systems
can be evaluated as,

BERPN+EEPN —

floor (12)

erfc il
log, n n\/EO'T

IV. RESULTS AND DISCUSSIONS

The results based on the above theoretical analyses for
the one-tap normalized LMS carrier phase estimation is
discussed in this section, by considering the influence from
the laser phase noise and the EEPN.

The BER floors for different phase noise variances in the
n-PSK coherent optical transmission systems are shown in
Fig. 1, where the one-tap normalized LMS algorithm is
employed for the carrier phase estimation.
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Fig. 1. BER floors versus different noise variances in the n-PSK coherent
optical transmission systems using the one-tap normalized LMS carrier
phase estimation.

It can be seen in Fig. 1 that the performance of coherent
optical communication systems is degraded seriously by the
phase noise (including the intrinsic phase noise and the
equalization enhanced phase noise) with the increment of the
phase noise variance. The effect is more significant for
higher-level modulation formats.

As shown in Fig. 2, the BER floors for different laser
linewidths in the n-PSK coherent optical fiber transmission
systems have also been investigated using the one-tap
normalized LMS algorithm for the carrier phase recovery. It
can be found that the performance of optical communication
systems is also degraded by the phase noise (in this case only
intrinsic laser phase noise is considered) more seriously with
the increment of the laser linewidths and the modulation
levels.

Considering the influence of equalization enhanced phase
noise, the BER floors for different transmission distances in
the one-tap normalized LMS carrier phase estimation in the
n-PSK coherent optical transmission systems are shown in
Fig. 3, where both the Tx and the LO laser linewidths are set
to 2 MHz. It can be seen that the performance of the optical
fiber communication systems is degraded by the equalization
enhanced phase noise significantly with the increment of the
transmission distances, and the effect is more serious for
higher-level modulation formats.
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Fig. 2. BER floors versus laser linewidths in the n-PSK coherent optical
transmission systems using the one-tap normalized LMS carrier phase
estimation. The indicated linewidth value is the 3-dB linewidth for both
the Tx and the LO lasers.
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Fig. 3. BER floors versus transmission distances in the n-PSK coherent
optical transmission systems using the one-tap normalized LMS carrier
phase estimation, when equalization enhanced phase noise is considered.
Both the Tx and the LO laser linewidths are 2 MHz.

V. CONCLUSION

The theoretical evaluation of the carrier phase estimation
using the one-tap normalized LMS algorithm in the n-PSK
coherent optical transmission systems has been investigated.
The close-form expressions for predicting the estimated
carrier phase and the BER performance in the one-tap
normalized LMS carrier phase estimation method have been
presented in detail. For the n-PSK optical transmission
systems, the one-tap normalized LMS algorithm still behaves
similar as the traditional differential carrier phase recovery. It
can be found that the one-tap normalized LMS algorithm
works pretty well for the carrier phase estimation in the
coherent n-PSK optical fiber communication systems, but
will be less effective with the increment of modulation
levels, in compensating both the intrinsic laser phase noise
and the equalization enhanced phase noise.
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