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a b s t r a c t

Exoplanet science often involves using the system parameters of real exoplanets for tasks such as
simulations, fitting routines, and target selection for proposals. Several exoplanet catalogues are already
well established but often lack a version history and code friendly interfaces. Software that bridges the
barrier between the catalogues and code enables users to improve the specific repeatability of results
by facilitating the retrieval of exact system parameters used in articles results along with unifying the
equations and software used. As exoplanet science moves towards large data, gone are the days where
researchers can recall the current population from memory. An interface able to query the population
now becomes invaluable for target selection and population analysis.

ExoData is a Python interface and exploratory analysis tool for the Open Exoplanet Catalogue. It
allows the loading of exoplanet systems into Python as objects (Planet, Star, Binary, etc.) from which
common orbital and system equations can be calculated and measured parameters retrieved. This allows
researchers to use tested code of the common equations they require (with units) and provides a large
science input catalogue of planets for easy plotting and use in research. Advanced querying of targets
is possible using the database and Python programming language. ExoData is also able to parse spectral
types and fill in missing parameters according to programmable specifications and equations. Examples
of use cases are integration of equations into data reduction pipelines, selecting planets for observing
proposals and as an input catalogue to large scale simulation and analysis of planets.

ExoData is a Python package available freely onGitHub.1 It’s open source and community contributions
are encouraged. The package can be easily installed using pip install exodata, detailed setup information
is provided within.

Program summary

Program title: ExoData
Catalogue identifier: AFAL_v1_0
Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AFAL_v1_0.html
Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland
Licensing provisions: GNU General Public License, version 3
No. of lines in distributed program, including test data, etc.: 21884
No. of bytes in distributed program, including test data, etc.: 608434
Distribution format: tar.gz
Programming language: Python 2.7, 3.4, 3.5.
Computer: Any.
Operating system: Any.
RAM: Less than 200MB
Classification: 1.7.
External routines: numpy, quantities, matplotlib, requests, astropy, seaborn, pandas, six

✩ This paper and its associated computer program are available via the Computer Physics Communication homepage on ScienceDirect (http://www.sciencedirect.com/
science/journal/00104655).

E-mail address: r.varley@ucl.ac.uk.
1 https://github.com/ryanvarley/exodata.
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Nature of problem: Being able to use exoplanet catalogue values in code including where there may be
incomplete and incorrectly formatted values. Also being able to use the whole catalogue data at once,
both for user querying, visualisation and in large simulation programs.
Solution method: An interface to access the catalogue including filling in missing values and parsing of the
catalogue data. Creating an API useable by both humans and other code, implementation of commonly
used exoplanet equations, a plotting library.
Running time: A few seconds depending on task

© 2016 The Author(s). Published by Elsevier B.V.
This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The field of exoplanets is rapidly expanding with the current population now in the thousands and new measurements published
increasingly frequently. A catalogue of Exoplanets is necessary to keep track of these systems and their parameters, ideally being open and
editable by all with a version history to enable researchers to reproduce results using the exact same values. This is especially important
in large scale simulations and other work on multiple targets where a catalogue version may be more easily given over individual values
and sources.

A second obstacle lies in the interface between the catalogue and the code. Such an interface can add value in its ability to calculate
values using published equations, easily generate plots, estimate parameters, while keeping the catalogue up to date. It can also take into
account all the fringe cases which can trip up a standard loading code (such as certain missing values and planets without a host star). The
ability to replicate the catalogue is further enhanced through quoting both a catalogue and interface version. The exact parameters used
for every target in the catalogue can then be easily obtained including any calculated parameters and estimations by ExoData. This tool
then allows instant access to the exact parameters used in a paper.

1.1. Open Exoplanet Catalogue

The Open Exoplanet Catalogue (OEC, [1]) is an open-source, version controlled catalogue of exoplanets and their system parameters.
It is hierarchical, preserving the format of the system (including binary star layouts). OEC uses git for version control and the catalogue
exists as a series of XML files (one per system). This formatmakes OECmuchmore diverse thanmost other exoplanet catalogues by letting
users create their own ‘forks’ of the catalogue where they can make their own changes and adaptations whilst still able to receive updates
from the original. The advantages of version control include being able to see the exact changes made to each version, easily roll back the
catalogue to any previous state and report the exact version of the catalogue your using to other researchers (using the commit SHA-12).

The open nature of the catalogue means that anyone can download the full database and history of the catalogue, contribute their own
changes and set up their own branched versions.

2. Exoplanet background theory

An exoplanet is a planet that orbits a star other than the Sun. We can describe a simple exoplanet system with a planet orbiting a star
with a stellar radius of R⋆, stellar mass ofM⋆, planetary radius Rp, planetary massMp and semi-major axis of the orbit a.

2.1. Describing the star

The stellar luminosity L⋆ is given by the Stefan–Boltzmann equation applied to the surface area of a sphere,

L⋆ = 4πR2
⋆σT 4

⋆ (1)

where σ is the Stefan–Boltzmann constant. Stellar temperature can be estimated using the stellar mass–radius relation described in [2]:

R⋆ = kMx
⋆ (2)

where k and x are constants for each stellar sequence. We can also describe stellar temperature using the main sequence relationship

T⋆ = 5800 × M0.65
⋆ . (3)

The stars luminosity distance d (with negligible extinction) is given by rearranging the absolute magnitude relation

m − M = 5 log10 d − 5 (4)

where m is the apparent magnitude and M is the absolute magnitude. Whilst m is easily measured and commonly known M is often
undefined. We can estimateM for a star using an absolute magnitude lookup table3 based on spectral type.

In cases where we do not have a measured stellar magnitude in the band required but do have a measured value for another band we
can use the conversion factors given in Table A5 of Kenyon and Hartmann [3] to convert betweenmagnitudes based on the stellar spectral
type.

2 In git versions each commit (snapshot) of the code has a SHA-1 hash of the source which is functionally unique and is used to reference that version of the code.
3 http://xoomer.virgilio.it/hrtrace/Sk.htm_SK3 from Schmidt–Kaler (1982).
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2.2. Describing the planet

We can infer the period of the orbit P using Kepler’s third law

P =


4π2a3

G

M⋆ + Mp

 (5)

where G is the gravitational constant. We can rewrite this in terms of the semi-major axis given the stellar mass and period. Note that the
Mp term is often excluded asM⋆ ≫ Mp.

a =


P2GM∗

4 ∗ π2

1/3

. (6)

The semi-major axis can additionally be inferred from the temperature of the planet Tp and host star T⋆ given an albedo for the planet
Ap and a greenhouse constant ϵ [4]:

a =


1 − Ap

ϵ

R⋆

2


T⋆

Tp

2

. (7)

The mean planetary effective temperature can be expressed by evaluating the radiation in and out of the planet with a greenhouse
effect contribution ϵ using a rearranged version of Eq. (7)

Tpl = T⋆


(1 − A)

ϵ

R⋆

2a

1/2

. (8)

From Newton’s law of Gravitation we can calculate the surface gravity of the planet

g =
GM
R2
p

. (9)

This can be expressed as log g , the base 10 log of g in CGS units.
If the mass of a planet is unknown, according to mass–radius relationships of known exoplanets (e.g. Grasset et al. [5]) the mass can be

crudely estimated for a given planetary radius by assuming the density of the planetary class it is likely to be in. For this purpose we infer
super-Earths as Earth density, and Jupiter and Neptune like planets with their respective densities. Assumed values are described later in
Table 2 but are easily programmable (see assumptions module Section 4.4).

The scale height H is the increase in altitude for which the atmospheric pressure decreases by a factor of e.

H =
kTp
µg

(10)

where µ is the mean molecular weight of the planetary atmosphere and g is the planetary surface gravity.

2.3. Transiting exoplanets

An exoplanet transits if it can be observed passing in front of its host star. During a transit the planet occults light from the star with
the change in flux at mid transit known as the transit depth. The transit depth can be estimated as the square of the ratio of the planetary
radius to the stellar radius (however, it is possible for a planet to graze the limb creating a partial transit).

The impact factor b is the projected distance between the planet and star centres during mid transit and it is described as [6]:

b ≡
a
R∗

cos i. (11)

If the orbit is circular, we can calculate the duration of the transit T14 from first to last contact using Eq. (3) from [6]:

T14 =
P
π

arcsin


R⋆

a


(1 + k)2 + b2

sin a


(12)

where k is Rp
Rs
. If the planet has an eccentric orbit where the exact solution is more complex we adopt the approximation described

by Kipping [7]:

T14 =
P
π

ϱ2
c

√
1 − e2

arcsin



1 − a2Rϱ2

c cos2 i

aRϱc sin i

 (13)

where aR = (a/R⋆) and ϱc is the planet–star separation at the moment of mid-transit in units of stellar radii

ϱP,T (fp) =
1 − e2P

1 + eP sin(ω)
(14)

where ω is the argument of pericentre and bP,T is the adjusted impact parameter described by

bP,T = (aP/R⋆)ϱP,T cos i. (15)
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Table 1
Table showing the modules available in ExoData and what they are used for.

Module Description

Assumptions Holds classification assumptions such as at what mass or radius a planet is defined as a super-Earth.
Astroclasses Classes for the System, Binary, Star and Planet object types.
Astroquantities Expands the Product Quantities Python package with astronomical units like Solar Radius and compound units such as g/cm3 .
Database Holds the database class and the various search methods.
Equations Implementation of exoplanet related equations including orbital equations, planet and star characterisations and estimations.
Example Generate example systems for testing code.
Flags Each object has a flag object attached which lets you know which assumptions have been made such as ‘calculated temperature’.
Plots Plot functions for common plot types that can be used to easily display data from the catalogue.

3. Installation

ExoData is a Python package tested on Python versions 2.7, 3.4 and 3.5. The easiest way to get the package is through the Python
packaging tool pip,
pip install exodata

Alternatively the source code can be downloaded from https://github.com/ryanvarley/exodata. The package can then be installed by
the following from the command line in the package directory.
python setup.py install

The package has a test suite which can be used to verify the package is working as expected. To run the tests use
python setup.py test

You can choose to use the package without downloading your own copy of the catalogue, instead choosing to automatically fetch the
latest version each time. If you want to use your own version you will need to download a version of the Open Exoplanet Catalogue (OEC)4
to your machine. The easiest way to do this and keep the catalogue up to date is through git. Move to the folder you want to store the
catalogue in and then
git clone https://github.com/OpenExoplanetCatalogue/open_exoplanet_catalogue.git

You can then ‘import exodata’ in Python and setup the catalogue.
import exodata
databaseLocation = "/open-exoplanet-catalogue/systems/"
exocat = exodata.OECDatabase(databaseLocation)

where databaseLocation should be the full path to the systems folder in the OEC directory or any other folder that contains OEC style XML
files you want to use.

To update the catalogue move to the folder where you downloaded the catalogue and type
git pull origin master

When using ExoData in publications you should give the commit SHA-1 of the OEC version used and the ExoData version number. This
document was created with the Open Exoplanet Catalogue (dc8c08a4ba0c64dd039e96c801d12f17c82a7ff3, 1st May 2016) using ExoData
Version 2.1.5.

3.1. Dependencies

The following dependencies are required to run ExoData. They are installed automatically by setuptools if required when following the
above installation procedure.
• numpy
• matplotlib
• quantities (Product Quantities)
• requests
• seaborn.

4. Usage

ExoData is split into a series of modules dealing with the exoplanet database, equations, plots and units (see Table 1 for a list with
descriptions).

The code contains 5 main objects types, the database which holds all objects and provides functionality (such as searching) and the
astronomical objects (Systems, Binaries, Stars and Planets). Moons and other types can be easily added when needed.

Like the Open Exoplanet Catalogue (OEC), the full structure of a system is preserved. Planets are children of the star (or binary) they
orbit, stars are grouped in binaries where present and binaries can exist within a binary. This offers a significant structural advantage over
most linear formats.

Note that the examples that follow in this paper display the raw output from the console which means most numbers are displayed
showing 11 decimal places which include any floating point errors and so should not be taken as the true uncertainty in themeasurement.

4 https://github.com/OpenExoplanetCatalogue/open_exoplanet_catalogue.

https://github.com/ryanvarley/exodata
https://github.com/OpenExoplanetCatalogue/open_exoplanet_catalogue
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4.1. As a catalogue interface

The database is initialised by providing the OECDatabase object with the catalogue location on your machine.

import exodata

# Either using your own catalogue version
databaseLocation = "/open_exoplanet_catalogue/systems/"
exocat = exodata.OECDatabase(databaseLocation)

# OR downloading the latest version each time
exocat = exodata.load_db_from_url()

The exocat variable now contains the initialised database which can be accessed in several ways. There are lists for each type
of object (i.e. exocat.planets, exocat.stars, etc.), a dictionary for each object (i.e. exocat.planetDict) and a list of transiting planets
(exocat.transitingPlanets).

You can retrieve a particular planet either by searching or giving the exact name.

>>> exocat.planetDict["Gliese 1214 b"]
Planet("Gliese 1214 b")

>>> exocat.searchPlanet("gj1214b")
Planet("Gliese 1214 b")

We can then traverse the hierarchy for the planet.

>>> kepler10b = exocat.planetDict["Kepler-10 b"]
>>> kepler10b.parent
Star("Kepler-10")

>>> kepler10 = kepler10b.star
>>> kepler10.planets
Planet("Kepler-10 b"), Planet("Kepler-10 c")]

>>> kepler10b.system
System("Kepler-10")

4.1.1. Retrieving values
With an object selected we can query information from the database.

>>> gj1214b = exocat.planetDict["Gliese 1214 b"]
>>> print gj1214b.R # planetary radius
array(0.2525) * R_j

>>> print gj1214b.a # orbit semi-major axis
array(0.01488) * au

>>> print gj1214b.star.M # stellar mass of host star
array(0.176) * M_s

The returned values are Product Quantities objects that act like floats or more precisely a single value numpy array but with a few extra
features such as unit rescaling and dimensionality checking (see Section 4.2).

>>> import exodata.astroquantities as aq
>>> print gj1214b.R.rescale(aq.R_e) # rescale to earth radii
array(2.770762439177523) * R_e

>>> print gj1214b.M / gj1214b.R # mass / radius ratio
array(0.07722772277227723) * M_j/R_j

In addition to retrieving values straight from the database we can also directly call some equations from the exodata.equations module
with the variables pre-filled (see Appendix B for a full list).

>>> print gj1214b.calcDensity()
array(1.6067887724162309) * g/cm**3

>>> print gj1214b.calcTemperature()
array(606.022512904359) * K
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4.1.2. Querying the database
Querying can be performed on object list in the form of Python for loops or list comprehensions. ExoData will return numpy.nan if

a value is absent to avoid breaking loops and comparisons with exodata.MissingValue exceptions. MissingValue Exceptions will still be
recorded in the logfile and so can be examined if needed. An example of such a query is returning the planets discovered using the radial
velocity method.

>>> detected_by_rv = [planet for planet in exocat.planets
if planet.discoveryMethod =="RV"]

>>> print len(detected_by_rv) # number of planets detected by RV
658

>>> print detected_by_rv[:2] # first 2 planets detected by RV (alphabetical)
[Planet("11 Com b"), Planet("11 UMi b")]

You can use this same method to get a list of every planets radius. Note that some values will return as numpy.nan, we can filter these in
the initial query so a normal numpy.meanwill work.

>>> import numpy as np
>>> radius_list = [planet.R for planet in exocat.planets

if planet.R is not np.nan]
>>> print np.mean(radius_list)
0.454992066547

More advanced querieswith additional if clauses can be used to filter the results further. For example, to display all planetswith a planetary
radius between 1.83 and 1.9 Jupiter radii.

>>> print [planet for planet in exocat.planets
if planet.R is not np.nan
and 1.83*aq.R_j < planet.R < 1.9*aq.R_j]

[Planet("KELT-8 b"), Planet("TrES-4 A b")]

For complicated queries a Python for loop may be clearer. Here we show all planets with a radius between 1.5 and 1.7 Jupiter radii that
were discovered by the transit method and have an orbital eccentricity greater than 0.1.

>>> planet_list = []
>>> for planet in exocat.planets:

if 1.5*aq.R_j < planet.R < 1.7*aq.R_j:
if planet.discoveryMethod == "transit":

if planet.e > 0.1: # eccentric
planet_list.append(planet)

>>> print planet_list
[Planet("HATS-3 b"), Planet("Kepler-447 b"), Planet("WASP-90 b")]

4.2. Units

In exodata, all equations use and require units. This means values can easily be rescaled and all equations are dimensionally checked.
Units are provided through the product quantities package5 which provides all the standard units and constants provided by the National
Institute of Standards and Technology (NIST). Some astronomical units (see Table C.9 for the list of values and sources) are added through
the internal exodata.astroquantities module which imports all Product Quantities units for ease of use. We can then import the units from
both modules using:

>>> import exodata.astroquantites as aq

Product Quantities adds units to numbers as a special numpy array type. A unit is added to a value by multiplying the values by the unit i.e.

>>> planetRadius = 10 * aq.R_j

Product Quantities provides several methods for dealing with values with a unit. Rescaling can be done using the .rescale method e.g. to
rescale solar mass to units of Earth’s mass.

>>> print (1.99e+30 * aq.kg).rescale(aq.M_e)
array(333211.10011570295) * M_e

Units can be converted to their unit-less counterparts (i.e. for passing to code without unit support) by wrapping them in a float() or
np.array() argument. You should always remove units with a rescale to ensure the value is in the unit you expect.

>>> value = 100 * pq.cm
>>> print float(value.rescale(pq.m))
1.0

5 See http://pythonhosted.org/quantities/.

http://pythonhosted.org/quantities/


R. Varley / Computer Physics Communications ( ) – 7

Table 2
Default assumptions of planet values per classification. We use the mass to classify
a planet first, if the mass is missing we then use the radius. Densities are Jupiter,
Neptune and Earth densities. All these values can be changed in the program (see
text).

Jupiter Neptune Super-Earth

Mass (M⊕) >20 >10 <10
Radius (R⊕) >6 >4 <1.8
Density (g/cm3) 1.3 1.6 4
Mean Molecular Weight (a.m.u) 2.0 2.3 18

4.3. Equations

The equations module implements the equations described in Section 2 as Python classes. The classes take input of every variable bar
one and will output the variable left out. They therefore implement all permutations of the equation with respect to the variables.

As an example we choose the equation Kepler’s Third Law (Eq. (5)), a full list of implemented equation classes and the equation they
draw from are given in Appendix A. The function is called KeplersThirdLaw and taking the values for GJ 1214 b we can calculate the period.
>>> from exodata.equations import KeplersThirdLaw
>>> KeplersThirdLaw(a=0.01488*aq.au, M_s=0.176*aq.M_s).P
array(1.579696141940911) * d

Similarly, given the other two values we can calculate the missing one.
>>> KeplersThirdLaw(a=0.015*aq.au, P=1.58*aq.d).M_s
array(0.18022315673929146) * M_s

>>> KeplersThirdLaw(M_s=0.176*aq.M_s, P=1.58*aq.d).a
array(0.01488190807285067) * au

4.4. Assumptions

The assumptions module handles how non universally defined parameters are set along with how some missing values may be filled.
This includes how planets are categorised (i.e. super-Earth) and allows researchers to use their own definitions for these planet classes
along with adding new classes.

By default ExoData sets these to commonly assumed values. Table 2 shows how a planet is classified as being a Jupiter, Neptune or
super-Earth along with the assumptions of mean molecular weight and density for these planet types. For the mass limits we use the
classification boundaries adopted by Tinetti et al. [8].

Assumptions are implemented to make it easy to change these limits and also add more by editing the assumptions dictionary located
at exodata.assumptions.planetAssumptions.

This dictionary has the keys ‘masstype’, ‘radiusType’ and ‘tempType’ which define how a planet is classified. Each key is a list of rules
defining a separate type of planet in the format (upperlimit, name). For example we have defined the following for ‘massType’
[(10 * aq.M_e, "Super-Earth"),
(20 * aq.M_e, "Neptune"),
(float("inf"), "Jupiter")]

Setting the last rule to infinity defines the last rule having no upper limit. The first rule is assumed to have no lower limit. The rules should
be listed in descending order of magnitude and can be added to, modified or removed as necessary.

The dictionary also has keys defining certain value assumptions based upon the classifications set previously. These are ‘mu’, ‘albedo’
and ‘density’. These are fed into the planet classes and can be used in calculations if needed. Instead of containing a list they contain a
dictionary which takes a classification ‘name’ defined previously and provides a value for that class. Both the ‘mu’ and ‘density’ keys are
defined by mass and radius types, for example:
{"Super-Earth": 18 * aq.atomic_mass_unit,
"Neptune" : 2.3 * aq.atomic_mass_unit,
"Jupiter" : 2 * aq.atomic_mass_unit}

Again these values can be changed and modified as needed and new rules added for any new classes added to the previous set of rules.

4.5. Flags

When a catalogue value is missing it is calculated or estimated using an appropriate equation in exodata.equations if possible. While
this is in many cases desirable some assumptions are more accurate than others and it is useful to knowwhen a parameter has been filled.
To this end we raise a flag in an object if a certain actions have occurred. The list of flags and the functions that raise them is shown in
Table 3.

For example when we ask for the semi-major axis of a planet (planet.a) and a value is not recorded in the catalogue the interface will
attempt to calculate it using Kepler’s Third Law. If it is successful the value will be returned and the flag ‘Calculated SMA’ will be raised. A
list of flags that have been raised in an object can be seen by looking at the flags object of planet or star class (i.e planet.flags).

If instead you want only raw catalogue values with no attempt at filling in missing values you can turn off this behaviour by setting
params.estimateMissingValues=False.
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Table 3
List of flags and the functions that raise themwhen a parameter is missing and is calculated or
estimated instead.

Flag Calculated using

Estimated Mass estimateDistance()
Calculated SMA calcSMA()
Fake Any planet that is in the ‘Fake Planets’ list in the xml files
Estimated Distance estimateDistance()
Estimated magV magV (V magnitude)
Calculated Period calcPeriod()
Calculated Temperature calcTemperature()

Fig. 1. Example plot that can be generated with DiscoveryMethodByYear in the ExoData plotting module. See text for description.

4.6. Plotting with ExoData

ExoData includes some graphing functions for easily displaying catalogue data. The main types of plots available are parameter against
parameter and the number of planets per parameter bin. The general format is setting up the plot class with a list of objects to plot and
then calling a plot function of the type you want with any other visual arguments. The plot style can be changed using standardmatplotlib
styles. In our examples we used the ‘whitegrid’ style by the Seaborn module.6 In order for plots to be visible in the command line you may
need to importmatplotlib7 and use the plt.show() after calling a plot function.

4.6.1. Number of planets by discovery method
This plots the number of planets discovered by each type of discovery method per year as a stacked bar chart. The format is

exodata.plots.DiscoveryMethodByYear(planet_list, methods_to_plot
).plot(method_labels)

where planet_list is a list of planet objects to plot,methods_to_plot is the discovery methods to include (in OEC syntax) andmethod_labels
are the labels to use in the legend for each discovery method. We can create a plot of the radial velocity and transit discovery methods
with the following (shown in Fig. 1).

exodata.plots.DiscoveryMethodByYear(
exocat.planets,
methods_to_plot=("RV", "transit", "Other")

).plot(
method_labels=("Radial Velocity", "Transit Method", "Other"))

By specifying ‘Other’ as a discovery method ExoData will group all methods not specified into this category on the plot.

4.6.2. Plotting a parameter against another
This type of plot takes a measured or calculated parameter of the planet, star, binary or system and displays it against another. The

format is

exodata.plots.GeneralPlotter(list_of_objects,
x_param, y_param).plot(*plot_arguments)

where list_of_objects is a list of planets, stars or binaries you want to be plotted and the x and y parameters refer to the string of the
parameter you want. For example, to plot planet mass against radius (Fig. 2(A))

6 See http://stanford.edu/~mwaskom/software/seaborn/ for more information.
7 import matplotlib.pyplot as plt.

http://stanford.edu/%7Emwaskom/software/seaborn/
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Fig. 2. Example plots that can be generated with GeneralPlotter in the ExoData plotting module. See text for descriptions. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)

Fig. 3. Example plots that can be generated with DataPerParameterBin in the ExoData plotting module. See text for description.

exodata.plots.GeneralPlotter(
exocat.planets, "R", "M", yaxislog=True).plot()

plt.xlim(-0.1, 2.1)

where Rwould retrieve the planetary radius (planet.R) andM the planetary mass. Extra options are available to change the plot including
log scale, changing the unit used (conversion is performed on the fly), marker colour and size and using parameters from a related object
such as the parent star. Some more examples are shown in Fig. 2.

4.6.3. Number of planets per parameter bin
These plots take input of the object list, the parameter to plot and the bin limits to produce a histogram-like plot or pie chart. The format

is

exodata.plots.DataPerParameterBin(
list_of_objects, parameter, bin_limit
).plotBarChart(*plot_arguments)

Less than/greater than limits can bemade by setting the first or last limit to float(‘-inf’) or float(‘inf’) i.e. the following generates Fig. 3(A).

exodata.plots.DataPerParameterBin(
exocat.planets, "e",
(0, 0, 0.05, 0.1, 0.2, 0.4, float("inf"))
).plotBarChart(label_rotation=45)
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Table A.4
List of equations in the equations module.

Function name Function arguments Description

ScaleHeight T_eff, mu, g, H Eq. (10)
MeanPlanetTemp A, T_s, R_s, a, epsilon, T_p Eq. (7)
StellarLuminosity R, T, L Eq. (1)
KeplersThirdLaw a, M_s, P, M_p Eq. (5)
SurfaceGravity M, R, g Eq. (9)
Logg M, R, logg Base 10 log of SurfaceGravity
TransitDepth R_s, R_p, depth Square of the ratio of the planetary radius to the stellar radius
Density M, R, Density Density = Mass/Volume
TransitDuration P, a, Rp, Rs, i, e, w Eq. (13)
ImpactParameter a, R_s, i, b Eq. (11)
transitDurationCircular P, R_s, R_p, a, i Eq. (12)
estimateStellarTemperature M_s Eq. (3)
estimateStellarRadius M_s Eq. (2)
estimateDistance m, M, Av Eq. (4)
estimateAbsoluteMagnitude spectralType Eq. (4)

Table B.5
List of System methods and attributes.

Name Description Method/Attribute

Right Ascension .ra
Declination .dec
Distance To the system (parsecs) .d
Child Stars and Binaries List of stars and binaries within the system .stars
Epoch Epoch for the orbital elements (BJD) .epoch
Name Name of the system .name
Child objects All objects that are children of the system, i.e. stars and/or binaries .children
Flags Flags object (see Section 4.5) .flags
Parameters Dictionary holding all parameters loaded from the Open Exoplanet Catalogue .params

Table B.6
List of Binary methods and attributes.

Name Description Method/Attribute

Right Ascension .ra
Declination .dec
Distance To the system (parsecs) .d
Name Name of the binary .name
Child objects All objects that are children of the binary, i.e. stars, binaries and planets .children

(continued on next page)

You can alternatively plot bar charts by typing .plotPieChart() instead of .plotBarChart() (see Fig. 3(B)).

5. Conclusion

ExoData provides a rounded tool for researchers wishing to use parameters of an exoplanet or exoplanetary system in code. Uses of the
module include querying the exoplanet database for targets for observing proposals, running planets through a simulator and easy access
to the catalogue for population statistics.

By using a version controlled catalogue like the Open Exoplanet Catalogue and the ExoData interface researchers canmore easily verify
published results by easily obtaining the exact same planet and system parameters used by quoting both the catalogue and interface
version. This is different frommost catalogues which only show the latest version of whichmany unknown values may have changed. The
interface builds upon the catalogue by making it easier to access parameters, calculate values and query the database.
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Appendix A. List of equations

See Table A.4.

Appendix B. List of methods provided per object in the astroclasses module

The following tables (Tables B.5–B.8) list the methods (functions) and attributes (variables) accessible from each object. Note that
objects are nested and so while the planet object has a ‘ra’ method this is actually passed to the system object.

Appendix C. List of additional units

See Table C.9.
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Table B.6 (continued)

Name Description Method/Attribute

Parent object Object above this one, i.e a system or a binary .parent
Flags Flags object (see Section 4.5) .flags
Parameters Dictionary holding all parameters loaded from the Open Exoplanet Catalogue .params
System The system this object is in .system
Child Stars and Binaries List of stars and binaries within the Binary (list) .stars
Inclination Orbital inclination .i
Eccentricity Orbital eccentricity .e
Period Orbital period .P
Semi-Major Axis Orbital semi-major axis .a
Separation The projected separation from one component to the other .separation
Transit Time Time of the mid-point of a transit (BJD) .transittime
Periastron Longitude of periastron (degree) .periastron
Longitude Mean longitude at a given Epoch (degree) .longitude
Ascending node Longitude of the ascending node (degree) .ascendingnode
U Magnitude .magU
B Magnitude .magB
H Magnitude .magH
I Magnitude .magI
J Magnitude .magJ
K Magnitude .magK
V Magnitude .magV
L Magnitude .magL
MMagnitude .magM
NMagnitude .magN

Table B.7
List of Star methods and attributes.

Name Description Method/Attribute

Right Ascension .ra
Declination .dec
Distance To the system (parsecs) .d
Name Name of the star .name
Child objects All objects that are children of the star, i.e planets .children
Parent object Object above this one, i.e a system or a binary .parent
Flags Flags object (see Section 4.5) .flags
Parameters Dictionary holding all parameters loaded from the Open Exoplanet Catalogue .params
System The system this object is in .system
Child Planets List of orbiting planets .stars
Radius .R
Mass .M
Temperature Temperature of the star in the catalogue. If absent calculates using .calcTemperature() and

sets ‘Calculated Temperature’ flag.
.T

Age Age of the planet (Gyr) .age
Calculate Temperature Uses equations.estimateStellarTemperature .calcTemperature()
Calculate Surface Gravity Uses equations.SurfaceGravity .calcSurfaceGravity()
Calculate log(g) Uses equations.Logg .calcLogg()
Metalicity .Z
U Magnitude .magU
B Magnitude .magB
H Magnitude .magH
I Magnitude .magI
J Magnitude .magJ
K Magnitude .magK
V Magnitude .magV
L Magnitude .magL
MMagnitude .magM
NMagnitude .magN
Spectral Type .spectralType
Calculate Density Uses equations.Density to estimate density from mass and radius .calcDensity()
Calculate Luminosity Uses equations.StellarLuminosity to estimate stellar luminosity from R and T .calcLuminosity()
Estimate Absolute Magnitude Uses equations.estimateAbsoluteMagnitude and the spectral type to estimate the stars

absolute magnitude
.estimateAbsoluteMagnitude()

Estimate Distance Uses equations.estimateDistance to estimate the distance from Earth to the star from the
absolute magnitude and V magnitude

.estimateDistance()

Table B.8
List of Planet methods and attributes.

Name Description Method/Attribute

Right Ascension .ra
Declination .dec
Distance To the system (parsecs) .d
Name Name of the planet .name
Parent object Object above this one, i.e binary or star .parent

(continued on next page)
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Table B.8 (continued)

Name Description Method/Attribute

Flags Flags object (see Section 4.5) .flags
Parent Star Host star of the planet (if present) .star
Parameters Dictionary holding all parameters loaded from the Open Exoplanet Catalogue .params
System The system this object is in .system
Radius .R
Mass .M
Inclination Orbital Inclination .i
Eccentricity .e
Period Orbital Period .P
Semi-Major Axis Semi-Major Axis .a
Separation The projected separation of planet from its host .seperation
Age Age of the planet (Gyr) .age
Transit Time Time of mid-point of a transit (BJD) .transittime
Periastron Longitude of periastron (degree) .periastron
Longitude Mean longitude at a given Epoch (degree) .longitude
Ascending node Longitude of the ascending node (degree) .ascendingnode
Discovery Method .discoveryMethod
Discovery Year .discoveryYear
Description Open Exoplanet Catalogue description of this planet .description
Temperature Temperature of the star in the catalogue. If absent calculates using.calcTemperature() and sets ’Calculated

Temperature’ flag.
.T

Calculate Temperature Uses equations.MeanPlanetTemp .calcTemperature()
Calculate Surface Gravity Uses equations.SurfaceGravity .calcSurfaceGravity()
Calculate log(g) Uses equations.logg .calcLogg()
Calculate Density Uses equations.Density .calcDensity()
Calculate Period Uses equations.calcPeriod .calcPeriod()
Calculate Semi-Major axis uses equations.KeplersThirdLaw .calcSMA()
Calculate Semi-Major axis
from Planet temperature

Uses equations.MeanPlanetTemp .calcSMAfromT()

Transiting Planet? Returns true if the planet transits .isTransiting
Transit Duration Uses equations.TransitDuration or transitDurationCircular if circular=True .calcTransitDuration()
Transit Depth Uses equations.TransitDepth .calcTransitDepth()
Planet Type The type of planet (i.e. super-Earth) as defined in assumptions. Uses assumptions.planetType which

prioritises mass type
.type()

Table C.9
List of astronomical units.

Unit Value Description

L_s 3.839 × 1026 W Solar Luminosity (L⊙)
R_s 6.995 × 108 m Solar Radius (R⊙)
R_e 6.371 × 106 m Earth’s Radius (R⊕)
R_j 6.9911 × 107 m Jupiter’s Radius (Rj)
M_s 1.99 × 1030 kg Solar Mass (M⊙)
M_e 3.839 × 1026 kg Earth’s Mass (M⊕)
M_j 1.8986 × 1027 kg Jupiter’s Mass (Mj)
Gyear 109 years Gigayear
JulianDay 1 day JD
ModifiedJulianDate 1 day MJD
gcm3 g/cm3 g/cm3

kgm3 kg/m3 kg/m3

ms2 m/s2 m/s2
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