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Abstract

Typical adults can track reward probabilities across trials to estimate the volatility of the environment and use this information
to modify their learning rate (Behrens et al., 2007). In a stable environment, it is advantageous to take account of outcomes
over many trials, whereas in a volatile environment, recent experience should be more strongly weighted than distant experience.
Recent predictive coding accounts of autism propose that autistic individuals will demonstrate atypical updating of their
behaviour in response to the statistics of the reward environment. To rigorously test this hypothesis, we administered a
developmentally appropriate version of Behrens et al.’s (2007) task to 34 cognitively able children on the autism spectrum aged
between 6 and 14 years, 32 age- and ability-matched typically developing children and 19 typical adults. Participants were
required to choose between a green and a blue pirate chest, each associated with a randomly determined reward value between 0
and 100 points, with a combined total of 100 points. On each trial, the reward was given for one stimulus only. In the stable
condition, the ratio of the blue or green response being rewarded was fixed at 75:25. In the volatile condition, the ratio
alternated between 80:20 and 20:80 every 20 trials. We estimated the learning rate for each participant by fitting a delta rule
model and compared this rate across conditions and groups. All groups increased their learning rate in the volatile condition
compared to the stable condition. Unexpectedly, there was no effect of group and no interaction between group and condition.
Thus, autistic children used information about the statistics of the reward environment to guide their decisions to a similar extent
as typically developing children and adults. These results help constrain predictive coding accounts of autism by demonstrating
that autism is not characterized by uniform differences in the weighting of prediction error.

Research highlights

• Predictive coding models have recently been pro-
posed to account for the complex autism phenotype.

• Here, we test a key prediction from predictive coding
accounts using a probabilistic learning task.

• Autistic children did not have generally elevated
learning rates compared to typically developing
children, and updated their learning rate in a volatile
reward environment.

• These results suggest that autism is not characterized
by uniformly high and inflexible weighting of predic-
tion errors.

Introduction

The decisions we make in a given moment are informed
by expectations derived from the outcomes of similar
decisions we have made in the past (Behrens, Woolrich,
Walton & Rushworth, 2007; Louie & Glimcher, 2012;
Summerfield & Tsetsos, 2015). Rather than assigning
equal weight to all previous outcomes, neurotypical
adults can track the statistics of the environment in order
to determine how much weight should be given to new
information. When the reward environment is stable,
people take account of previous outcomes over many
trials to guide their decisions (Behrens et al., 2007;
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O’Reilly, 2013). Yet, when the reward environment is
volatile (i.e. fluctuating over blocks of trials), people
weight their recent experience more strongly than their
distant experience (Behrens et al., 2007). The relative
weighting given to recent and distant trials is reflected in
a person’s learning rate (Dayan, Kakade & Montague,
2000). In a stable environment, neurotypical adults
demonstrate a low learning rate (Behrens et al., 2007),
as the history of outcomes is more predictive of the
current state of the environment than the outcomes in
the most recent trials. In a volatile environment, adults
demonstrate an increased learning rate, whereby they
‘take notice’ of the outcomes of more recent trials and
use these to modify their behaviour (Behrens et al.,
2007).
The ability to take account of previous information

has been the focus of recent advances in theories of
autistic perception and cognition (see Brock, 2014, for
review). Applying a Bayesian framework, Pellicano and
Burr (2012a) suggested that autistic1 individuals make
less use of prior information than typical individuals.
Under the Bayesian framework, the percept (or poste-
rior) results from a combination of incoming sensory
information (the likelihood) and previous information
(priors), the weighting of which depends on their
respective precision. Pellicano and Burr suggested that
autistic individuals have attenuated (broader) priors,
meaning that their perception is more dominated by the
incoming sensory information. While the theory initially
focused on perception, the weaker influence of prior
information could potentially account for a range of
aspects of the autism phenotype, such as social func-
tioning (Pellicano & Burr, 2012b).
Elaborations of this account have used the predictive

coding framework, which provides a biologically plausi-
ble implementation of Bayesian inference (see Clark,
2013, for review), replacing priors and sensory evidence
with predictions and prediction errors, respectively.
According to the predictive coding approach, the brain
aims to predict what will happen next and attempts to
minimize prediction error – the discrepancy between the
prediction and reality. Predictions emerging from higher
brain areas are used to attempt to ‘explain away’ the
input from lower brain areas and prediction errors are
passed up the hierarchy to inform higher-level expecta-
tions. The influence of prior beliefs relative to sensory
evidence is controlled by the precision assigned to
prediction errors at each level of the hierarchy (Friston,

2008). This balance may be atypical in autistic individ-
uals, who may have a low precision of prior information
relative to that of the sensory information (Friston,
Lawson & Frith, 2013; Lawson, Rees & Friston, 2014).
Van de Cruys, Evers, Van der Hallen, Van Eylen, Boets
et al. (2014) made a more specific proposal that the
precision of prediction errors is uniformly high and
inflexible in individuals with autism. Finally, Sinha,
Kjelgaard, Gandhi, Tsourides, Cardinaux et al. (2014)
proposed that autistic individuals have impairments in
estimating the conditional probability of future events or
states given a previous state occurring, particularly when
the relationship between events is probabilistically weak
and/or when events are separated by long temporal
intervals. Yet, autistic individuals may excel at learning
rules, due to heightened learning of novel stimuli (Sinha
et al., 2014).
Atypical deployment of previous experience has been

suggested to relate to a range of autism symptoms, such
as insistence on sameness, repetitive behaviours, and
impaired social functioning (Lawson et al., 2014; Van de
Cruys et al., 2014). Yet, experimental studies are
required to rigorously test the mechanisms proposed by
such approaches. If autistic individuals do not use
previous experience in the same way as typical individ-
uals – either through weakened priors or atypical
predictive mechanisms – they may behave differently in
a task that involves tracking the statistics of the reward
environment, such as that used by Behrens et al. (2007).
No previous studies have assessed whether children on
the autism spectrum increase their learning rate in
response to environmental volatility. Yet, reversal learn-
ing studies give some insight into how individuals with
autism deal with probabilistic information. Most of these
studies suggest that individuals with autism can learn
initial reinforcement probabilities, but demonstrate dif-
ficulties in switching when these probabilities reverse (e.g.
Solomon, Smith, Frank, Ly & Carter, 2011; South,
Newton & Chamberlain, 2012) or in maintaining new
response probabilities (D’Cruz, Ragozzino, Mosconi,
Shrestha, Cook et al., 2013). Such difficulties in reversal
learning may reflect executive functioning difficulties in
autism (Pennington & Ozonoff, 1996; see Pellicano,
2012, for review). Yet, these studies do not address how
higher-order statistics about the environment – such as
volatility – affect autistic individuals’ responses.
Robic, Soni�e, Fonlupt, Henaff, Touil et al. (2015)

presented a cued decision-making task to 14 autistic
adults and 15 neurotypical adults whilst manipulating the
volatility of the environment (stable, unstable). A social
cue (video of a human actor) or non-social cue (arrow)
was presented before participants chose between one of
two options, with both the reliability of the cue and the

1 The term ‘autistic person’ is the preferred language of many people
on the spectrum (see Sinclair, 1999; Kenny, Hattersley, Molins, Buckley,
Povey et al., 2016). In this article, we use this term as well as person-
first language to respect the wishes of all individuals on the spectrum.
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reward probabilities of each option being manipulated
throughout the experiment. The authors recorded the
proportion of correct choices made by participants, and
reported that fewer individualswith autismmet a criterion
of 60% correct than typical individuals when reward
probabilities fluctuated (unstable condition), but not
when reward probabilities were fixed (stable condition),
and that individuals with autism performed particularly
poorly in response to the social cue. The authors
concluded that individuals with autism have particular
difficulties in learning reward probabilities when the
reward environment is unstable and involves a social
aspect. Yet, importantly, half of the participants with
autism did meet a criterion of 60% in the unstable
condition, suggesting considerable individual differences
in this performance metric. In this study, we used a more
fine-grained measure to characterize behavioural
responses to environmental volatility in autism.

We administered a child-friendly version of Behrens
et al.’s (2007) task to 34 cognitively able autistic
children, 32 typically developing children and 19 typical
adults. Participants were required to choose between two
stimuli under two conditions: in the stable condition, the
probability of each stimulus being rewarded was fixed. In
the volatile condition, the probability of each stimulus
being rewarded alternated every 20 trials. A crucial
difference between this paradigm and those used in
previous reversal learning studies in autism (e.g. D’Cruz
et al., 2013; Solomon et al., 2011; South et al., 2012;
Robic et al., 2015) was that each stimulus was associated
with a reward value that varied trial by trial. This
paradigm allowed us to model the learning rates of
participants (cf. Behrens et al., 2007), and in turn to
address specific predictions derived from Bayesian and
predictive coding accounts of autism.

Pellicano and Burr (2012a) suggested that individuals
with autism are less influenced by information presented
in the past, due to reduced priors. Van de Cruys et al.
(2014) suggested that individuals with autism have very
precise prediction errors, which would mean that they
should heavily weight violations to their expectations
and update their behaviour accordingly. Sinha et al.
(2014) also predicted heightened learning to novel
stimuli. Thus, according to these three accounts, children
on the autism spectrum may demonstrate a generally
elevated learning rate, emphasizing the outcomes of
more recent trials (and thus, violations to their predic-
tions) more than typical children. Van de Cruys et al.
also made a further specific proposal that individuals
with autism do not flexibly weight their prediction
errors, which may mean that they do not modify their
learning rate in the volatile condition compared to the
stable condition to the same extent as typical individuals.

Alongside these primary hypotheses, we were also
interested in examining possible relationships between
task performance and anxiety. Anxiety commonly co-
occurs with autism (White, Oswald, Ollendick & Scahill,
2009), and high levels of trait anxiety have been linked to
reduced updating of behaviour in response to volatility in
an aversive version of Behrens et al.’s task (Browning,
Behrens, Jocham, O’Reilly & Bishop, 2015). This link is
particularly interesting given a suggestion that atypical
predictive mechanisms may give rise to increased anxiety
in autistic individuals (Sinha et al., 2014). To this end,
we investigated relationships between behaviour updat-
ing and parent-reported anxiety in our children with and
without autism.

Materials and methods

Participants

Three groups of participants were tested: 34 autistic
children, 32 typically developing children and 19 typical
adults (see Table 1 for participant characteristics). The

Table 1 Participant characteristics

Children
with autism

Typically
developing
children

Typical
adults

N 34 32 19
Gender (n males:
n females)

29: 5 22: 10 7: 12

Age (years; months)
Mean (SD) 9;11 (2;0) 9;2 (1;10) 24;2 (3;9)
Range 7;0–14;3 6;6–13;2 18;5–33;1

Performance IQ
Mean (SD) 105.44 (14;94) 104.84 (14.11)
Range 79–141 78–131

Verbal IQ
Mean (SD) 100.15 (17.47) 108.03 (11.04)
Range 71–130 86–132

Full-scale IQ
Mean (SD) 102.94 (15.46) 107.28 (10.66)
Range 76–129 89–131

SCQ score
Mean (SD) 23.78 (7.35) 5.77 (4.04)
Range 5–35 1–14

Spence Children’s Anxiety
Mean (SD) 33.52 (20.35) 19.78 (10.67)
Range 6–76 6–43

ADOS total score
Mean (SD) 10.45 (4.64)
Range 2–21

Notes: SCQ = Social Communication Questionnaire (Rutter et al.,
2003). ADOS = Autism Diagnostic Observation Schedule (Lord et al.,
1999, 2012). Verbal, Performance and Full-Scale IQ scores were derived
from the Wechsler Abbreviated Scales of Intelligence (WASI-II;
Wechsler, 2011).

© 2016 The Authors. Developmental Science Published by John Wiley & Sons Ltd.

Response to volatility in autism 3



autistic children had previously received an independent
clinical diagnosis of an autism spectrum condition
according to ICD-10 (World Health Organization,
1993) or DSM-IV (American Psychiatric Association,
2000) criteria. Typically developing children had no
parent-reported diagnoses of developmental conditions
and typical adults reported no previous diagnoses of
developmental conditions. Children’s parents completed
the Social Communication Questionnaire (SCQ; Rutter,
Bailey & Lord, 2003) and children with autism were
administered the Autism Diagnostic Observation Sched-
ule (ADOS-G or ADOS-2; Lord, Rutter, DiLavore &
Risi, 1999; Lord, Rutter, DiLavore, Risi, Gotham et al.,
2012) using the revised algorithm (Gotham, Risi,
Pickles & Lord, 2007; Gotham, Risi, Dawson, Tager-
Flusberg, Joseph et al., 2008). All autistic children
scored above threshold for an autism spectrum condi-
tion on one or both of these measures and all typically
developing children scored below the cut-off for autism
on the SCQ (< 15; Rutter et al., 2003) (see Table 1 for
scores).
The groups of autistic and typical children were

matched in terms of age, t(64)= 1.65, p = .10, performance
IQ, t(64) = .17, p = .87 and full-scale IQ, t(58.78) = 1.33,
p = .19, as assessed by theWechsler Abbreviated Scales of
Intelligence, Second Edition (WASI-II, Wechsler, 2011).
The children with autism had lower verbal IQ scores than
typical children, consistent with their clinical profile,
t(56.17) = 2.21, p = .03. Anxiety was measured using the
parent-report version of the Spence Children’s Anxiety
Scale (SCAS-P; Nauta, Scholing, Rapee, Abbott, Spence
et al., 2004), which was returned by 58 parents. The
children with autism (n = 31) had significantly higher
scores than typical children (n = 27), t(46.58) = 3.28,
p = .002.

Procedure

This study was approved by the UCL Institute of
Education’s Research Ethics Committee and was con-
ducted in accordance with the principles of the Decla-
ration of Helsinki. Parents and adult participants gave
their written informed consent and children provided
their verbal assent prior to participation.
We adapted Behrens et al.’s task into a child-friendly,

pirate-themed game. The task began with an initial
familiarization phase, designed to introduce the partic-
ipants to the task, followed by the experimental phase.
Both phases were completed in a single session lasting
approximately 15 minutes. Adult participants also com-
pleted a longer version of the experiment in a separate
session lasting approximately 25 minutes (see below).
Children and adults were seen individually in a quiet

room. The WASI and ADOS were administered in
further sessions.

Familiarization phase

Participants were initially introduced to images on cards
showing two pirate chests, one green and one blue, each
with a flag displaying a reward value between 0 and 100
points (or ‘coins’), with a combined total of 100 points
(Figure 1). The experimenter explained to participants
that only one chest would contain treasure on each trial
(the rewarded stimulus); the other chest would be empty
(the non-rewarded stimulus). Critically, participants were
told that the chest containing treasure could change
throughout the game. Next, participants viewed 20 trials
in which the chests were opened to reveal which chest
was empty and which contained treasure (Figure 1A).
The ratio of the blue or green chest being rewarded was

Figure 1 Familiarization phase. (A) Example of a trial in the
familiarization phase, where participants passively viewed
stimuli. (B) After viewing 20 trials, participants were asked to
estimate the ratio in which the green or blue chest contained
treasure.
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fixed at 80:20. Whether the blue or green chest was
rewarded most often (i.e. 80% of the time) was random-
ized across participants. The values on the flags were
randomly selected on each trial, with the constraint that
the total number of points was always 100. After viewing
all 20 trials, participants were asked to estimate the ratio
at which the blue and green chests contained treasure, by
moving a yellow indicator along a scale ranging from
‘All green’ to ‘All blue’ (Figure 1B). The familiarization
phase was repeated for participants who misunderstood
the task (two typical children; e.g. those who responded
that the treasure was always in the green chest when it
was mostly blue, and vice versa).

Experimental phase

Immediately following the familiarization phase, partic-
ipants completed the experimental task. As in the
familiarization phase, participants were presented with
a green and a blue pirate chest on each trial. Here,
participants were required to actively choose either the
green or blue pirate chest on each trial using response
pads (Figure 2). If participants chose the correct (re-
warded) stimulus, the chest containing treasure was
revealed and they were awarded the number of points (or
‘coins’) indicated on the flag. Participants were given
visual feedback (‘Well done, you chose correctly!’) and
auditory feedback (the sound of a coin dropping). The

points were added to an accumulated total and displayed
on a bar chart (Figure 2). If participants chose the
incorrect (non-rewarded) stimulus, an empty chest was
revealed and participants did not receive any coins.
Visual feedback was provided (‘Better luck next time!’).
When participants accumulated enough points to exceed
the limits of the bar chart, they were shown a screen that
told them they had reached the next ‘level’ (e.g.
‘Congratulations, you are now a level 1 pirate!’). The
bar chart was then emptied and participants accumu-
lated points to reach the next level.

During the task, the first 80 trials belonged to the
stable condition, where the ratio of the blue or green
response being rewarded was fixed at 75:25. The next 80
trials belonged to the volatile condition, whereby the
ratio alternated between 80:20 and 20:80 every 20 trials.
The conditions followed on from each other without a
break and participants were na€ıve to the reward struc-
ture. At the end of the task, the participant’s total
number of points (or ‘coins’) was displayed, along with
the final ‘level’ s/he had reached in the game (e.g. ‘Wow!
You reached level 10 and collected 1500 coins!’).

Additional experiment for adult participants

The experimental task described above contained fewer
trials than that used by Behrens et al. (2007) to make it
suitable for child participants. To allow direct

Figure 2 Experimental task. Example of a trial in the test phase in which the rewarded stimulus is the blue pirate chest. If the
participant chose the green chest, an empty chest was revealed and no points were awarded. If the participant chose the blue chest,
the treasure was revealed and the participant received the number of points (or ‘coins’) displayed on the flag (i.e. 27).
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comparisons with Behrens et al.’s original paradigm,
adults also completed a longer version of the experiment,
which included the same number of trials as presented by
Behrens et al. The adults completed the longer version in
a separate session after the short version, to ensure that
the adults’ performance on the short version of the task
was directly comparable to that of the children’s
performance. In this longer version, the stable condition
consisted of 120 trials with a fixed ratio of 75:25, and the
volatile condition consisted of 170 trials with a ratio that
switched between 80:20 and 20:80 every 30 or 40 trials
(i.e. 30 – 40 – 30 – 40 – 30). The order of stable and
volatile conditions was counterbalanced in this task to
confirm that the change in learning rate was not
dependent on order of presentation (as originally
demonstrated by Behrens et al.).

Analysis

Prior to testing whether participants modulated their
learning rates as a function of volatility, an initial
analysis was performed to determine whether the
participants’ behaviour could be reliably explained by
the ideal Bayesian observer model, and whether this
model was the best model to explain the participants’
behaviour in each group. We fitted each individual
participant’s choices (green or blue) across all trials with
a logistic generalized linear model. The design matrix
contained a constant term and four different models: (i)
ideal observer, (ii) alternating choices, (iii) win-stay lose-
shift, and (iv) reward value.
The ideal observer regressor was estimated from the

sequence of rewarded stimuli across all trials using the
model described in Behrens et al. (2007). In short,
optimal behaviour requires participants to estimate the
probability of reward for each stimulus and to compute
the expected value as reward probability multiplied by
reward size. Given that the amplitude of the reward was
random across trials, the ideal observer of the underlying
probability of reward success is modelled only by the
reward probabilities. In the task, the reward probability
varies across trials and is dependent upon the volatility,
which changes across the experiment. Therefore, the
optimal observer relies on the parameter estimates of the
reward probability, the volatility and the confidence in
the volatility estimate from the preceding trial, and the
latest trial outcome in order to determine decision and
learning on the next trial.
The alternating choices regressor tested whether par-

ticipants simply switched between blue and green options
on every consecutive trial. The win-stay lose-shift
regressor modelled whether the participant’s behaviour
could be explained by them choosing the same option as

the previous trial if that option had been rewarded, and
choosing the opposite option if their response on the
previous trial had not been rewarded. The reward value
regressor was the reward value for the blue option.
The main aim of this study was to test whether the

different participant groups modulated their learning
rate based on the volatility of the environment. To this
end we estimated the learning rate for each participant in
the stable and volatile conditions of the task. For the
shorter version of the task the learning rate was
estimated using the 61 trials from trial 20 to trial 80 in
the stable condition, and the 61 trials from trial 90 to
trial 150 in the volatile condition. For the longer version
of the task, the corresponding windows were the last 81
trials of each of the stable and volatile phases, following
Behrens et al. (2007). A reinforcement-learning model
was fitted to each participant’s decisions in each window.
The model has two parts: a ‘predictor’, which estimates
the current reward rate given past observations, and a
‘selector’, which generates actions on the basis of these
estimates. The predictor is in the form of a simple delta-
learning rule (Rescorla & Wagner, 1972), which has a
single free parameter: the learning rate.

Results

Figure 3 shows the mean choices made by each group
(upper panel) and the ideal observer model (lower
panel). The ideal observer model provided the best fit
to the data in all groups, compared to the alternating
choices, win-stay lose-shift and reward value models
(Figure 4A). The ideal observer model provided a
significant fit (p < .05) to the choices from the majority
of participants in all groups (Figure 4B). We used chi-
squared tests to determine whether the proportion of
participants fit by each model varied (i) between child
participants and adults, and (ii) between autistic and
typically developing children. The only significant dif-
ference was that more child participants were fit by the
win-stay lose-shift model than adults, v2(1) = 5.77,
p = .02. All other comparisons between children and
adult participants were non-significant, ps ≥ .68, and
there were no significant differences in the proportions of
autistic versus typically developing children fit by each
model, ps ≥ .23.
Having demonstrated that the ideal observer model

provided the best fit to the data, we next assessed the
resulting learning rate estimate. First, we analysed the
data from the adult participants on the long version of
the experiment (Figure 5) to ensure that we could
replicate Behrens et al.’s (2007) pattern of results. All
learning rates were log-transformed prior to analysis to
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6 Catherine Manning et al.



meet the assumption of normality required for general
linear models.2 A mixed-design ANOVA with condition
(stable, volatile) as a within-participants factor and order
of presentation (stable first, volatile first) as a between-
participants factor confirmed that participants increased
their learning rate in the volatile condition, F(1, 17) =
51.86, p < .001, ɳp

2 = .75. In line with Behrens et al., the
order of presentation did not have a significant effect
on learning rate estimates, F(1, 17) = .91, p = .35, and
did not interact with condition, F(1, 17) = 2.54, p = .13.
Thus, participants had a higher learning rate in the
volatile condition than the stable condition even when
the volatile condition was presented first.

Next, we compared the adults’ learning rates in the
short and long versions of the experiment (Figure 5)
using a within-participants ANOVA with condition
(stable, volatile) and length of session (short, long) as
factors. Again, we found an overall effect of condition,

F(1, 18) = 54.81, p < .001, ɳp
2 = .75, whereby participants

increased their learning rate in the volatile condition. In
addition, there was an effect of length, with higher
learning rates obtained in the long version of the
experiment than the short version, F(1, 18) = 24.87,
p < .001, ɳp

2 = .58. These effects were qualified with an
interaction between condition and length, F(1, 18) =
19.21, p < .001, ɳp

2 = .52. While the increase in learning
rate was more pronounced in the long version, post hoc
t-tests confirmed that the learning rate increased in both
the short, t(18) = 3.40, p = .003, and long version of the
experiment, t(18) = 8.04, p < .001. While it is not
possible to determine whether the elevated learning rates
in the long condition are a result of the increased number
of trials, or increased familiarity with the task (as the
long condition was presented after the short version), we
have established that a clear effect of volatility is present
with a reduced number of trials in adult participants.

Next, we aimed to assess whether typically developing
children and autistic children increased their learning
rate as a function of volatility, in the same way as adults.
Learning rates for the three groups are shown in

Figure 3 Mean performance of ideal and real observers. The upper panel shows the mean choices �1 standard error of the mean
made by autistic children (green), typically developing (TD) children (red) and adults (blue). The lower panel shows mean ideal
observer performance �1 SEM based on the reward probabilities and values presented to all participants. The dotted lines represent
the underlying reward probabilities. Trials 1–80 belong to the stable condition, in which the reward probability is fixed at 75:25.
Trials 81–160 belong to the volatile condition, in which the reward probability fluctuates between 80:20 and 20:80 every 20 trials.
The probability of choice refers to the probability of choosing the option that was most frequently rewarded in the initial stable
condition (which was counterbalanced among participants to be either the blue or green pirate chest). Boxes represent the window
of trials over which learning rates were estimated for each individual.

2 Note that the same pattern of results was obtained without
transformation.
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Figure 6. As above, log-transformed learning rates were
used in the analysis. A mixed-design ANOVA was
conducted on learning rate estimates with condition
(stable, volatile) as a within-participants variable and
group (children with autism, typical children, and typical
adults) as a between-participants variable. As expected,
there was a main effect of condition, with higher learning
rates in the volatile condition than the stable condition,
F(1, 82) = 32.52, p < .001, ɳp

2 = .28. Unexpectedly,

however, there was neither a significant effect of group,
F(2, 82) = .02, p = .98, ɳp

2 < .001, nor a significant
interaction between group and condition, F(2, 82) = .22,
p = .81, ɳp

2 = .005. Thus, all groups increased their
learning rate in the volatile condition to a similar extent.
In order to judge the extent of a potential undetected
effect, we compared the difference in log learning rates in
the stable and volatile conditions between autistic and
typical children, and found that the 95% confidence

Figure 4 Results of model fitting to participant data. (A) Mean t-statistic of fit for four models to the data of autistic children (green),
typically developing (TD) children (red), and typical adults (blue): (1) an ideal observer model, (2) a model which alternates between
responses trial-by-trial, (3) a win-stay lose-shift model (maintaining responses after successes and switching responses after failures),
and (4) a model based on the reward value. Error bars represent �1 standard error of the mean. (B) Proportion of participants in each
group whose data were significantly fit with each of the four models (p < .05).

Figure 5 Learning rates of adult observers. Estimated learning rates of adult observers as a function of the order in which stable and
volatile conditions were presented (left panel) and the length of the testing session (right panel). Error bars represent �1 standard
error of the mean.
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intervals of the group difference were tightly distributed
around zero [�.03, .02]. Learning rates were not related
to age, performance IQ or verbal IQ (all ps ≥ .39).
Similarly, the difference in learning rates between the
conditions was unrelated to age and ability (ps ≥ .58).

To investigate whether increased anxiety (as rated by
parents) is related to reduced updating in the volatile
condition (cf. Browning et al., 2015), we investigated the
relationship between scores on the SCAS-P and the
difference in learning rates between the volatile and
stable conditions for each participant. Parent ratings
were not related to difference scores, r = .12, p = .35, nor
to learning rates in either the stable or the volatile
condition (ps ≥ .15).

In order to align our paradigm with previous studies
of reversal learning in autism (cf. D’Cruz et al., 2013;
Solomon et al., 2011; Robic et al., 2015), we investigated
whether the autistic children could learn new reward
probabilities as quickly as typically developing individ-
uals. We calculated a running average of choices made by
each participant over four consecutive trials, and fitted
regression lines to the first ten running averages after the
reward probabilities switched (i.e. trials 101–110, 121–
130, and 141–150). The mean regression slopes for each
group are shown in Figure 7.

We applied a square-root transformation to the
absolute slope coefficients in each condition in order to
meet the normality assumption required for an ANOVA
(Shapiro-Wilk test, ps ≥ .06).2 Next, we conducted a
mixed-design ANOVA on the transformed absolute slope
coefficients with trial interval (101–110, 121–130, 141–

150) as the within-participants factor, and group (autism,
TD, adult) as the between-participants factor. Mauchly’s
test demonstrated that sphericity could be assumed,
v2(2) = 3.91, p = .14. There was a significant within-
participants effect of trial interval on slope coefficients,
F(2, 164) = 8.57, p < .001, ɳp

2 = .10.3 Repeated contrasts
revealed that the slopes in the first interval (trials 101–
110) were approximately as steep as slopes in the second
interval (trials 121–130), F(1, 82) = 3.54, p = .06, ɳp

2 =
.04, while slopes in the third interval (trials 141–150)
were significantly steeper than those in the second
interval, F(1, 82) = 16.16, p < .001, ɳp

2 = .17. Impor-
tantly, however, there was no overall group difference
in slope coefficients, F(2, 82) = 2.82, p = .07, ɳp

2 = .06,
nor an interaction between trial interval and group,
F(4, 164) = .52, p = .72.

Discussion

In this study, children with autism, typical children and
typical adults completed a decision-making task under

Figure 6 Learning rates in the stable and volatile conditions.
Estimated learning rates in the stable and volatile conditions
for autistic children (green), typically developing (TD) children
(red) and typical adults (blue). Error bars represent �1 standard
error of the mean.

Figure 7 Gradients of regression lines fitted to participant
choices after a switch in reward values. Mean regression slopes
(�1 standard error of the mean) for the running average of four
consecutive choices made by autistic children (green),
typically developing (TD) children (red) and adults (blue) in the
first 10 trials after the reward probabilities switched. For
example, if the reward probability for the blue to the green
chest switched from 80:20 to 20:80 at trial 100, participants
became less likely to choose the blue chest (i.e. a negative
slope). When the reward probability reversed again at trial
120, the participants became more likely to choose the blue
chest (i.e. a positive slope).

3 Note that this effect remained significant (p < .001) after applying a
Greenhouse-Geisser correction.
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two probabilistic reward schedules: a stable condition
where the reward probabilities were fixed, and a volatile
condition where the reward probabilities fluctuated.
Based on recent Bayesian and predictive coding accounts
of autism, we predicted that autistic children would
assign more weighting to the outcome of recent trials
than typical children and adults, and that they would not
flexibly update their behaviour in response to volatility.
In our task, these predictions would be manifest,
respectively, as an increased learning rate compared to
typical children, and a reduced tendency to increase their
learning rate in the volatile condition. Contrary to these
predictions, we found that children with autism had a
similar learning rate to typical children and adults
overall, and that they modified their learning rate to a
similar extent as typical children and adults.
These results appear to be at odds with Bayesian and

predictive coding accounts of autism. Children with
autism employed the recent history of trial outcomes in a
similar way to typical children, contrasting both Pelli-
cano and Burr’s (2012a) hypothesis of reduced use of
priors in autism, and Van de Cruys et al.’s (2014)
suggestion of highly precise prediction errors in autism,
meaning that violations to expectations should be heavily
weighted (see also Sinha et al., 2014). Furthermore, the
children with autism were able to flexibly weight their
prediction errors in order to update their learning rate in
response to environmental volatility (cf. Van de Cruys
et al., 2014). Why, then, do we find no differences in
performance?
To date, Bayesian predictive models have arguably had

most success in explaining how individuals with autism
process sensory information. For example, these
accounts have been linked to reports of reduced adap-
tation to high-level sensory attributes, such as faces
(Ewing, Pellicano & Rhodes, 2013; Fiorentini, Gray,
Rhodes, Jeffery & Pellicano, 2012; Pellicano, Jeffery,
Burr & Rhodes, 2007; Pellicano, Rhodes & Calder, 2013;
Rutherford, Troubridg & Walsh, 2012; but see also
Cook, Brewer, Shah & Bird, 2014) and numerosity (Turi,
Burr, Igliozzi, Aagten-Murphy, Muratori et al., 2015), as
well as reduced use of contextual information in the
rubber-hand illusion (Palmer, Paton, Kirkovski, Enticott
& Hohwy, 2015) and reduced filtering of signal-from-
noise in motion displays (Manning, Tibber, Charman,
Dakin & Pellicano, 2015; Zaidel, Goin-Kochel & Ange-
laki, 2015). Thus, it is conceivable that atypical predictive
mechanisms account for perception in autism, but may
not extend to learning tasks, as in the current study. This
proposal may not be too surprising, given that sensory
symptoms are a core feature of the autistic phenotype
(American Psychiatric Association, 2013), while general
difficulties in learning have not been established (see

Dawson, Mottron & Gernsbacher, 2008, for review).
Indeed, previous research has suggested that individuals
with autism learn reward probabilities as well as typical
individuals in simple learning tasks (D’Cruz et al., 2013;
Faja, Murias, Beauchaine & Dawson, 2013; Solomon
et al., 2011), perform successfully in implicit learning
tasks (Brown, Aczel, Jim�enez, Kaufman & Plaisted-
Grant, 2010; Nemeth, Janacsek, Balogh, Londe, Min-
gesz et al., 2010; Foti, De Crescenzo, Vivanti, Menghini
& Vicari, 2015), and even demonstrate enhanced visual
statistical learning (Roser, Aslin, McKenzie, Zahra &
Fiser, 2015).
Yet, differences between children with autism and

typical children may become apparent using more
complex learning tasks. For example, Pellicano, Smith,
Cristino, Hood, Briscoe et al. (2011) showed that chil-
dren with autism were slower than typical children to
learn reward probabilities in a large-scale foraging task,
which required children to continuously update their
spatial representations while remembering what loca-
tions they had already searched. Social situations may
also pose particularly pronounced predictive processing
challenges for autistic people (Gomot & Wicker, 2012;
Lawson et al., 2014), as there is no simple one-to-one
mapping between a cause and the sensory input. Thus,
differences may well arise in a social version of our
learning task (Behrens, Hunt, Woolrich & Rushworth,
2008). In such a task, autistic children may demonstrate
difficulties in tracking the probability that a confederate
would give the correct advice. Preliminary support for
this suggestion comes from a recent study demonstrating
reduced use of social information during a similar
decision-making task in typical people with high levels
of autistic traits (Sevgi, Diaconescu, Tittgemeyer &
Schilbach, 2016), although this will require replication in
participants with a clinical diagnosis of autism. Predic-
tive coding accounts have been proposed to explain a
range of high-level social abilities that may be affected in
autism, such as theory of mind (Koster-Hale & Saxe,
2013), interpersonal inference (Moutoussis, Fearon, El-
Deredy, Dolan & Friston, 2014) and interoception
(Quattrocki & Friston, 2014; Seth, Suzuki & Critchley,
2011). Thus, further studies are required to probe the
limits of atypical predictive processing in autism, and
theoretical accounts will need to be updated to account
for these. In particular, differences between children with
autism and typical children may be manifest in more
complex situations where the one-to-one mapping
between events is even less clear, when higher levels of
the predictive coding hierarchy are required (see also
Qian & Lipkin, 2011). While our task was the ideal
candidate for assessing decision-making in an uncertain
environment (Van de Cruys et al., 2014), it might not
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have been sufficiently challenging to reveal differences
between children with and without autism.

A previous study with adults showed that anxious traits
were related to reduced updating of behaviour in an
aversive version of the task, in which incorrect responses
were followed by electric shocks (Browning et al., 2015).
In this study, we did not find a relationship between levels
of parent-reported trait anxiety and task performance.
Yet, the children with autism were reported by their
parents to have elevated levels of anxiety overall. Thus,
even those children with high levels of anxiety were able to
update their behaviour to environmental volatility in a
typical fashion. The lackof the predicted relationshipmay
have been because we did not use an aversive reinforcer in
this task, unlike Browning et al. Future research could
investigate relationships between task performance and
child-reported anxiety, or measures of state anxiety (e.g.
heart rate, saliva cortisol levels).

As well as addressing specific proposals from Bayesian
predictive coding models, our results add more generally
to the reward learning literature in autism. Previous
studies have revealed subtle differences in reversal
learning between individuals with and without autism.
For example, D’Cruz et al. (2013) reported that individ-
uals with autism needed more trials to achieve a criterion
of 8 correct out of 10 consecutive responses after a
switch, and were more likely to return to the previously
reinforced response after having selected the new correct
choice. Robic et al. (2015) reported that fewer autistic
individuals reached a criterion of 60% correct than
typical individuals when reward probabilities fluctuated,
and that autistic individuals were more likely to maintain
their response after a failure than typical individuals.
Furthermore, Solomon et al. (2011) reported that indi-
viduals with autism were less likely to maintain their
response after a success, and Solomon, Frank, Ragland,
Smith, Niendam et al. (2015) reported selective difficul-
ties with learning high-probability pairings but not
lower-probability pairings. The participants involved in
the current study differed substantially from those tested
by Robic et al. (2015) and Solomon et al. (2011, 2015),
who tested adult participants, and D’Cruz et al. (2013),
who tested participants of a wide age range (between 8
and 44 years). However, it is worth noting that the
current paradigm is not directly comparable to these
previous studies which did not manipulate the reward
value. It does not make sense to assess the proportion
correct in this study in the same way as in these previous
studies, as on a given trial, the optimal choice may not
have been the same as the most frequently rewarded
choice. However, the children with autism appeared to
change their behaviour just as quickly as typical children
and adults after a switch in the current experiment.

The discrepancy between the current study and
previous studies of reversal learning raise the intriguing
possibility that a certain amount of environmental
volatility may actually help children to adapt to new
situations. Previous studies of reversal learning in autism
have been unable to dissociate whether difficulties
changing responses after a switch result from slower
switching per se, or from individuals with autism
building a more stable state prior to the switch. When
there is no reward value information, the optimal
strategy is to consistently choose the option with the
highest reward probability. Under these conditions,
individuals with autism may reach a very stable state,
which means that they will need more evidence to reject
their current model and shift to a new model. Yet, the
addition of randomly fluctuating reward value informa-
tion, as in our paradigm, may prevent children with
autism getting into such a stable initial state. Thus, it is
possible that reward value fluctuations in the stable
condition help children with autism to deal with the
bigger change that occurs when they move into the
volatile phase of the experiment. While speculative, this
may suggest that some divergence from routines may be
beneficial to autistic children in adapting to everyday
situations. To investigate this possibility further, it will be
important to compare different learning paradigms in
the same samples of participants.

In sum, our study shows that children with and
without autism can learn about the statistics of the
reward environment in a similar way to typical adults, by
updating their learning rate when the environment
becomes volatile. The typical performance of children
with autism contrasts hypotheses emerging from recent
Bayesian and predictive coding accounts of autism.
While we believe that there is much mileage in these
approaches, they need to be explicitly laid out in order to
make clear predictions from behavioural studies. Van de
Cruys et al. (2014) made one such prediction: ‘We
predict that things will go awry in ASD [autism spectrum
disorder] when the probabilistic structure changes during
the experiment, for instance when the predictability of a
cue changes across blocks’ (p. 655). Our results do not
support this prediction and argue against the suggestion
that precision is set uniformly high in individuals with
autism. Bayesian and predictive coding accounts may be
best suited to explaining atypical sensation and percep-
tion in autism, and may not generalize to learning tasks.
Yet, future research is needed in order to determine
whether atypical predictive processing may be apparent
for more complex learning tasks, such as those requiring
individuals with autism to learn about social aspects of
the environment. Further insights into learning mecha-
nisms in autism may be gleaned by using implicit
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measures (e.g. eyetracking or neuroimaging) in conjunc-
tion with our behavioural task.
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