
RESEARCH ARTICLE

The Power of Heterogeneity: Parameter
Relationships from Distributions
Magnus Röding1,2,5*, Siobhan J. Bradley2,4, Nathan H. Williamson2, Melissa R. Dewi2,3,
Thomas Nann2,3,4, Magnus Nydén5

1 SP Food and Bioscience, Soft Materials Science, Göteborg, Sweden, 2 Future Industries Institute,
University of South Australia, Adelaide, Australia, 3 ARC Centre of Excellence in Convergent Bio-Nano
Science and Technology, IanWark Research Institute, University of South Australia, Adelaide, Australia,
4MacDiarmid Institute, Victoria University of Wellington, Wellington, New Zealand, 5 School of Energy and
Resources, UCL Australia, University College London, Adelaide, Australia

*magnus.roding@sp.se

Abstract
Complex scientific data is becoming the norm, many disciplines are growing immensely

data-rich, and higher-dimensional measurements are performed to resolve complex rela-

tionships between parameters. Inherently multi-dimensional measurements can directly

provide information on both the distributions of individual parameters and the relationships

between them, such as in nuclear magnetic resonance and optical spectroscopy. However,

when data originates from different measurements and comes in different forms, resolving

parameter relationships is a matter of data analysis rather than experiment. We present a

method for resolving relationships between parameters that are distributed individually and

also correlated. In two case studies, we model the relationships between diameter and lumi-

nescence properties of quantum dots and the relationship between molecular weight and

diffusion coefficient for polymers. Although it is expected that resolving complicated corre-

lated relationships require inherently multi-dimensional measurements, our method consti-

tutes a useful contribution to the modelling of quantitative relationships between correlated

parameters and measurements. We emphasise the general applicability of the method in

fields where heterogeneity and complex distributions of parameters are obstacles to scien-

tific insight.

Introduction
Increasing the dimensions of an experiment allows the measurement of dependence between
parameters. For example, introducing multi-dimensional nuclear magnetic resonance (NMR)
has opened new possibilities for studying heterogeneous structures and complex phenomena
by correlating different parameters describing transport properties and identifying different
populations based on diffusion and relaxation properties [1, 2]. In optical (electronic) spectros-
copy in the infrared, visible, and ultraviolet ranges, obtaining 2D spectra that describe correla-
tions of excitation and detection wavelengths recently enabled the mapping of energy transfer
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pathways in the light-harvesting mechanism of certain bacterial species [3–5]. The key notion
for both techniques is that a joint probability distribution (or ‘spectrum’ or ‘map’) of different
parameters and their relationships can be estimated, instead of just themarginal (or lower-
dimensional) distributions for individual parameters.

Multi-dimensional intra-modality measurements—within the confines of a single tech-
nique—inherently provide probabilistic relationships between parameters. More often than
not, though, different parameters of systems are studied using different techniques, i.e. a multi-
dimensional inter-modality measurement; revealing parameter relationships then becomes a
matter of data analysis post-experiment, rather than a matter of experiment per se. Unfortu-
nately, individual parameters in almost all real systems are distributed, and heterogeneity is a
major obstacle to data interpretation. One common approach to this problem is to rely on puri-
fication to minimise sample heterogeneity, estimating relationships using standard methods
such as regression by least-squares fitting. Altering samples is typically not viable in the indus-
trial processing of heterogeneous raw materials, and this can be a substantial hurdle even in
controlled laboratory settings.

This dilemma has prompted us to move to a setting where experimental input and output
originate from different measurement techniques and comprise distributions rather than single
values. Combining information from different sources, often called data integration or data
fusion [6], is broadly addressed in computer science, machine learning, and mathematics.
Modelling probabilistic relationships when data is obtained as distributions of individual
parameters is almost unexplored; the closest work has discussed ‘distribution to distribution
regression’ in a different context [7].

Here we develop a widely applicable general-purpose statistical method for estimating prob-
abilistic relationships from distributions of data for individual parameters. Critically, these dis-
tributions can be represented by different types of data, i.e. statistical samples (sets of values),
decay curves, spectra, function curves, and histograms, and therefore involve solving inverse
problems.

Results and Discussion
Consider the probabilistic relationship between an input parameter x and an output parame-
ter y by modelling the joint distribution describing the dependence structure of x and y, based
on measurements from K samples. The data from the kth sample represents marginal distri-
butions px;k(x) and py;k(y) (directly as a statistical sample, or indirectly through an inverse
problem) from the joint distribution for the kth sample, px, y;k(x, y). Generally, nothing can be
said about the dependence structure of x and y from a single measurement alone: finding a
joint distribution from marginal distributions is by itself an inverse problem that requires
assumptions or a priori knowledge. However, assuming that the conditional distribution of y
given x is common to all samples, the joint distribution of x and y for the kth sample can be
written px, y;k(x, y) = py|x(x, y)px;k(x). Hence,

py;kðyÞ ¼
Z 1

0

pyjxðx; yÞpx;kðxÞ dx: ð1Þ

A ‘link’ between the measurements for different samples is provided through the conditional
distribution py|x(x, y), interpreted physically as the distribution of y caused by unobserved
parameters of the system other than x. That it is independent of sample index k corresponds
to assuming that sorting into K samples is conducted solely on the basis of the value of x. The
conditional distribution py|x(x, y) is estimated indirectly by fitting the distributions py;k(y) to
the measurements, yielding an estimate of the probabilistic relationship between x and y.
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Thus, a space of distributions of x is mapped onto a space of distributions of y, in the process
of modelling the relationship. The distribution models may be parametric as well as
nonparametric.

First, we study probabilistic relationships between material parameters for colloidal semicon-
ductor quantum dots (QDs), which are luminescent nanoparticles with applications in imaging
[8–10], catalysis [11], photovoltaics [12–14], and many more fields. QDs comprise a prototypi-
cal complex material with properties dependent on the interaction between multiple parameters.
In particular, the emission spectral profile and excited-state decay dynamics and their relation
to size are vital for understanding the electro-optic and catalytic properties of these materials
[15]. Additionally, QD size polydispersity is often inherent to synthesis and further purification
to reduce the polydispersity is often impractical. A set of four batches of standard ZnS-coated
CdSe QDs are synthesised and diameter distributions estimated from transmission electron
microscopy (TEM) image data. Steady-state emission spectra of the QDs are acquired and inter-
preted as distributions of wavelengths pλ;k(λ) convolved with a Lorentzian line-broadening
function, γ/(π((λ − λ0)2+γ2)). The model for the kth spectrum is therefore of the form

IkðlÞ ¼ I0;k

Z 1

0

pl;kðl0Þ
g=p

ðl� l0Þ2 þ g2
dl0: ð2Þ

The distribution pλ;k(λ) is the marginal distribution of λ from the joint distribution

pd;l;kðd; lÞ ¼ pljdðd; lÞpd;kðdÞ: ð3Þ

This factoring corresponds to assuming that the QDs are sorted only according to size, and
that other variation for a given diameter d is the same regardless of the sample. The distribution
pλ|d(d, λ) constitutes a summary of the influence of all system parameters other than d. If it is
degenerate, pλ|d(d, λ) = δ(λ − λ0), λ is completely determined by d, and thus there is no other rel-
evant parameter in the relationship. Fig 1 shows the spectra, the model fits, and the estimated
joint distributions of diameters and emission wavelengths.

We now acquire fluorescence lifetime distributions of the QDs and interpret them as super-
positions of exponential lifetime distributions, governed by a ‘characteristic’ (average) lifetime
distribution for the kth sample, pτ;k(τ), such that

pt;kðtÞ ¼
Z 1

0

pt;kðtÞ
1

t
exp � t

t

� �
dt: ð4Þ

The distribution pτ;k(τ) is the marginal distribution of τ coming from the joint distribution

pd;t;kðd; tÞ ¼ ptjdðd; tÞpd;kðdÞ: ð5Þ

Otherwise, the analysis is identical to the previous one for wavelengths. Fig 2 shows the fluores-
cence lifetime distributions, the model fits, and the estimated joint distributions of diameters
and characteristic lifetimes. The results show that the larger particles have narrower lifetime
distributions. This may be due to the presence of fewer defects related to a lower surface-to-vol-
ume ratio.

Second, we study the probabilistic relationship between molecular weightM and diffusion
coefficient D for polymers. A well-known empirical scaling law for linear polymer chains states
that

DðMÞ ¼ KM�n , MðDÞ ¼ K1=nD�1=n; ð6Þ

where ν* 0.5 − 0.8 for uncharged polymers in the dilute regime, depending on solvent quality
and temperature [16]. The parameter ν, analogous to the Flory exponent [17], is a measure of
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how polymers spread in space [18, 19]. Knowledge of both parameters K and ν allows determi-
nation of molecular weight distributions from diffusion coefficient distribution measurements
[20]. Polymers comprise a prototypical example of the case where samples are often purified to
minimise heterogeneity, typically estimating the scaling law parameters K and ν by taking loga-
rithms and using linear least-squares on a set of many samples [21]. Considering a polydisperse
sample with marginal distributions p(M) and p(D), the scaling law relationship can be seen as a
degenerate joint distribution with non-zero density only on the line described by Eq 6 because
no other parameter influences the relationship, hence it is a special case of the more general
example above. We use the fact that if p(M) is a lognormal distribution with parameter (μM,
σM), p(D) is also a lognormal distribution with parameter (μD, σD). On a polydisperse polysty-
rene sample, we measure the molecular weight distribution by gel permeation chromatography
(GPC), obtained as a distribution over log10 M. We measure the diffusion coefficient distribu-
tion of the polystyrene, diluted in deuterated chloroform (CDCl3), by nuclear magnetic reso-
nance (NMR), obtaining a signal attenuation described by the Stejskal-Tanner equation [22]

IðbÞ ¼ I0

Z 1

0

pðDÞexpð�bDÞdD ð7Þ

Fig 1. Correlating diameters to emission wavelengths. (A) Diameter histograms (n = 95, 127, 88, and
106) for the four samples (blue, green, yellow, and red) extracted from transmission electron microscopy and
the model fits (solid lines). (B) Steady-state emission spectra (dashed lines) and the model fits (solid lines) for
the four samples (blue, green, yellow, and red). (C) Estimated joint distributions of diameters and
wavelengths with marginal diameter distributions at the top and marginal wavelength distributions at the right.

doi:10.1371/journal.pone.0155718.g001
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for a lognormal distribution p(D) with parameters (μD, σD). From these parameters, the scaling
law parameters K and ν can be obtained by

n ¼ sD

sM

K ¼ expðmD þ nmMÞ:
ð8Þ

As a validation, we use the reported values of Mw from the manufacturer for eight well-defined
monodisperse polystyrene standards and the corresponding values of hDi, measured by NMR
for dilute amounts of the samples in CDCl3, and perform the conventional linear least-squares
fitting to estimate K and ν. Fig 3 shows the molecular weight distribution data, the diffusion
coefficient distribution data, the model fits, and the estimated scaling law relationship. For
dilute polystyrene in CDCl3 at ambient conditions, we obtain K = 2.47 × 10−8 and ν = 0.541
with the conventional method. Using the proposed distribution-based method, we perform
experiments in triplicate and obtain K = 2.35 × 10−8, 2.67 × 10−8, and 2.16 × 10−8, and
ν = 0.534, 0.544, and 0.526. These results are not significantly different from the one obtained

Fig 2. Correlating diameters to characteristic fluorescence lifetimes. (A) Diameter histograms (n = 95,
127, 88, and 106) for the four samples (blue, green, yellow, and red) extracted from transmission electron
microscopy and the model fits (solid lines). (B) Fluorescence lifetime measurements and the model fits (black
solid lines, overlayed on top of the experimental data) for the four samples (blue, green, yellow, and red,
vertical rescaling has been performed to avoid occlusion). (C) Estimated joint distributions of diameters and
characteristic lifetimes with marginal diameter distributions at the top and marginal characteristic lifetime
distributions at the right.

doi:10.1371/journal.pone.0155718.g002
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with the conventional method based on a 95% nonparametric confidence interval of the latter.
That K and ν can be determined from a single sample has been suggested before [23], but is
here performed for the first time.

We emphasise that instead of needing to perform a painstakingly large number of measure-
ments on monodisperse samples (and possibly needing to perform purification steps to obtain
those samples), we can obtain a very similar result by different and simpler means, based on
performing a single measurement on a polydisperse sample in this case when the functional
form of the relationship is known.

Conclusions
We demonstrate a general-purpose mathematical method for estimating probabilistic relation-
ships frommeasured distributions of individual parameters. The distributions can be represented
directly by statistical samples, or indirectly through an inverse problem by decay curves, spectra,

Fig 3. Correlating molecular weights to diffusion coefficients. (A) Molecular weight distribution
measured by gel permeation chromatography (dashed black line) and the model fit (solid blue line). (B)
Nuclear magnetic resonance attenuation data and the model fit. (C) Estimated joint distribution, degenerating
to a distribution on a line, of molecular weight and diffusion coefficient, with the data points for the
monodisperse samples (black disks) and the relationship estimated with the conventional method from these
samples (dashed red line, with error bounds), relationship estimated with the proposed distribution-based
method (solid blue line), and with marginal molecular weight distribution at the top and marginal diffusion
coefficient distribution at the right for the polydisperse sample.

doi:10.1371/journal.pone.0155718.g003
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function curves, and histograms. The result is an estimate of a joint probability distribution of
parameters that describes relationships and correlations. In the applications to quantum dots,
measurements frommultiple heterogeneous samples are utilized, allowing for joint probability
distributions (Figs 1 and 2) for which the effects of diameter are observed through the depen-
dence of both the mean and the variance of the conditional distribution on diameter. In the
application to polymers, using measurements on a single polydisperse polymer sample, the
parameters K and ν of the scaling law relationship in Eq 6 are estimated, and this gives rise to a
joint probability distribution (Fig 3) (with conditional distributions being in fact delta functions).

In a world ever more data-rich, with a plethora of measurement techniques and sensors
used in the minerals, pharmaceutical, food, and chemical industries, as well as in fundamental
science, we urgently need to improve the ways in which we analyse the complex data sets that
are becoming the norm. This trend will only continue, in particular because natural raw mate-
rials need to be used to their full potential to meet future sustainability and cost demands—
materials that are naturally heterogeneous, complex, and challenging to master. We expect our
general-purpose mathematical method to be applicable in many fields where heterogeneity and
complex distributions of parameters are obstacles to scientific insight. Single values of parame-
ters can be replaced by distributions, taking advantage of the heterogeneity and letting it work
for us, not against us. Naturally, multi-dimensional experiments deliver a wealth of informa-
tion which is literally impossible to access with lower-dimensional experiments. Though more
complicated parameter relationships, involving e.g. non-monotonicity, discontinuity, or multi-
modal conditional distributions, cannot be resolved with our method, we expect the method to
be useful for the understanding of many heterogeneous systems.

Materials and Methods

Preparation of quantum dots
Four samples of ZnS-coated CdSe core-shell quantum dots (QDs) with different nominal
diameters in the range d� 2 − 5 nm are synthesized using a previously published method [24]
and dissolved in toluene.

Transmission electron microscopy measurements
Diameters of QDs are estimated using transmission electron microscopy (TEM). The analysis
is performed on a JEOL 2100F microscope operated at 200 kV. All experiments are carried out
at room temperature. The spatial resolutions (physical pixel sizes) are Δx = 0.05 − 0.17 nm for
the image data. Particle contours (n = 95, 127, 88, and 106) for the four samples are identified
manually from raw TEM images.

Luminescence measurements
Steady-state emission spectra of the QDs are acquired in the range 450–650 nm with resolution
Δλ = 1 nm using an Edinburgh Photonics FLS 980 time-resolved photoluminescence spectrom-
eter. At each respective emission intensity maxima, fluorescence lifetime measurements by
time-correlated single photon counting (TCSPC) are performed using the same instrument.
Excitation lifetimes are recorded in a 500 ns range using 8192 channels.

Nuclear magnetic resonance measurements
Polydisperse polystyrene (PS) (190,000 Mw, Sigma-Aldrich) is mixed to 0.02% w/w in CDCl3
(99.8 atom% deuterium, Sigma-Aldrich). Monodisperse PS standards (2,430 Mw, 3,680 Mw,
13,700 Mw, 18,700 Mw, 29,300 Mw, 44,000 Mw, 212,400 Mw, and 382,100 Mw, Sigma-Aldrich)
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are each mixed to 0.1% w/w, also in CDCl3. These concentrations are chosen in order to be
within the dilute polymer regime (18) and to avoid microscopic averaging effects [25]. NMR
tubes are filled with the PS solutions and flame-sealed to avoid convection due to solvent evapo-
ration. Pulsed Gradient Stimulated Echo (PGSTE) measurements of 1H self-diffusion [26] are
performed at ambient conditions using a Bruker Avance III HD NMR spectrometer with an
Ascend 600 MHz superconducting magnet, a micro5 probe, and a diff30 gradient coil. The
PGSTE parameters for all measurements are repetition time TR = 10 s, gradient pulse duration
δ = 1.576 ms, observation time Δ = 50 ms, and τ = 2.6 ms. The PGSTE measurements on the
0.02% w/w 190,000 Mw polydisperse PS sample, performed in triplicate, use 192 averages and 32
linearly spaced gradient steps with maximum gradient value 10 T/m. The PGSTE measurements
on the PS standard samples use 16 averages and 16 linearly spaced gradient steps with maximum
gradient values chosen to attenuate 30% of the PS signals. The spectrally resolved PS signal
attenuations are analysed using the Stejskal-Tanner equation, Eq 7, with attenuation factor

b ¼ ðggdÞ2 4

p2
D� d

4

� �
; ð9Þ

for a sinusoidal gradient pulse shape.

Gel permeation chromatography measurements
Gel permeation chromatography (GPC) molecular weight distribution measurements of the
190,000 Mw polydisperse PS are performed on an Agilent PL-GPC 220 system flowing trichlor-
obenzene at 1 ml/min through three PLgel 10 μmmixed-B columns at 150°C. Measurements
are performed in triplicate on 1.5 mg/ml samples using a 200 μl injection volume and conven-
tional calibration with Agilent EasiVial PS-H standards. The data is obtained as 400–500 points
equidistant in log10 M.

Data analysis for quantum dots
All particle contours identified from the TEM images are near-circular, and an equivalent
diameter is computed by

d ¼ 4A
p

� �1=2

¼ 2
N
p

� �1=2

Dx; ð10Þ

where A is area and N is number of pixels within the contour. We make parametric model
assumptions and fit lognormal distributions,

pd;kðdÞ ¼
1

dsd;k

ffiffiffiffiffiffi
2p

p exp �ðlogðdÞ � md;kÞ2
2s2

d;k

 !
; ð11Þ

to the diameters using maximum likelihood [27], resulting in parameter estimates

md;k ¼ 1

n

X
i

logðdiÞ

sd;k ¼ 1

n

X
i

ðlogðdiÞ � md;kÞ2:
ð12Þ

Steady-state emission spectra are interpreted as probability distribution of wavelengths con-
volved with a Lorentzian curve (Cauchy distribution with parameter γ, corresponding to a
FWHM of 2γ.), accounting for line broadening. All spectra are fit simultaneously using
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nonlinear least-squares, thus simultaneously estimating pλ|d(d, λ) and pλ;k(λ) for fixed pd;k(d)
by minimizing the global sum of squares

SS ¼
X
k

X
l

IkðllÞ � Iexpk ðllÞð Þ2; ð13Þ

summed over all spectra and all wavelengths. For fluorescence lifetime measurements by
TCSPC, time zero is determined by finding the channel with the highest photon count. The
lifetime distributions are interpreted as superpositions of exponential distributions,

pt;kðtÞ ¼
Z 1

0

pt;kðtÞ
1

t
exp � t

t

� �
dt: ð14Þ

governed by ‘characteristic’ (average) lifetime distributions pτ;k(τ). Data is acquired in discrete
time, as a histogram, and fitting of the discrete-time counterpart of Eq 14 with an additional
baseline (dark photon count) probability is performed using maximum likelihood and ‘discre-
tized’ channel probabilities, corresponding to the histogram binning, qk, l for bin l. For further
details on fitting refer to Röding (2014) [28]. Because the photon counts differ between lifetime
measurements (between N = 2.6 × 105 − 2.1 × 106), weighted maximum likelihood is employed.
All lifetime distributions are fit simultaneously using weighted maximum likelihood, thus
simultaneously estimating pτ|d(d, τ) and pτ;k(τ) for fixed pd;k(d) by maximizing the weighted
global loglikelihood function

log L ¼
X
k

X
l

nk;l

Nk

log qk;l; ð15Þ

summed over all lifetime distributions and all bins, and where nk, l is the number of photons in
bin l of distribution k, and Nk is the total number of photons in distribution k. Integrals in (d,
λ) and (d, τ) space are computed using monte carlo integration with nmc = 104 quasi-random
samples [29]. As a model for pλ|d(d, λ) we choose a lognormal distribution with diameter-
dependent meanmλ(d) and standard deviation sλ(d). We let bothmλ(d) and sλ(d) be power-
law type functions,

mlðdÞ ¼ m1 þm2d
m3 ð16Þ

and

slðdÞ ¼ s1 þ s2d
s3 : ð17Þ

Data analysis is performed using Matlab R2015a (Mathworks, Natick, MA, US).

Data analysis for polymers
Molecular weight distributions measured by GPC are fit using a normal distribution in log10 M
space with parameters (μM/log10, σM/log10), using nonlinear least-squares and minimizing

SS ¼
X

i

pGPC log10Mi

� �� pNormal log10Mi;
mM

log10
;
sM

log10

� �� �2

: ð18Þ

By a well-known scaling property of the lognormal distribution family, the scaling law in Eq
(6) implies that D is also lognormal distributed with parameters

mD ¼ logK � nmM

sD ¼ nsM:
ð19Þ
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This derivation is fairly straightforward by use of the standard change-of-variables technique
for probability distributions. Hence, a lognormal distribution model for p(D) is used in the
Stejskal-Tanner equation in Eq (7), using numerical integration with ngrid = 103 grid points to
compute the values of the signal attenuation. The model is fit to the experimental NMR signal
attenuation using nonlinear least-squares [20].

Bootstrapping [30] is used for obtaining confidence bounds for the conventionally esti-
mated scaling law relationship. The eight measurement points are resampled with replacement
nboot = 105 times, and 2.5% and 97.5% percentiles are computed pointwise along theM axis to
yield a 95% nonparametric confidence interval.

Data analysis is performed using Matlab R2015a (Mathworks, Natick, MA, US).

Supporting Information
S1 Code and Data Sets. Matlab programs and data sets used in this study.
(ZIP)
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