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Abstract

A practical challenge in the precoding design for massive multiuser multiple-input multiple-output (MIMO)

systems is to facilitate hardware-friendly implementation. To achieve this, we propose a low peak-to-average power

ratio (PAPR) precoding based on approximate message passing (AMP) algorithm to minimize multiuser interference

(MUI) in massive multiuser MIMO systems. The proposed approach exhibits fast convergence and low complexity

characteristics. Compared with conventional constant envelope precoding and annulus-constrained precoding, simula-

tion results demonstrate that the proposed AMP precoding is superior both in terms of computational complexity and

the average running time. In addition, the proposed AMP precoding exhibits a much desirable tradeoff between MUI

suppression and PAPR reduction. These findings indicate that the proposed AMP precoding is a suitable candidate for

hardware implementation, which is very appealing for massive MIMO systems.

Index Terms
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I. INTRODUCTION

Massive multiple-input multiple-output (MIMO) antenna systems are regarded as one of the key technolo-

gies for next-generation (i.e., 5G) wireless communications systems due to their potential to improve data rate

and link reliability, as well as to simplify the required signal processing [1, 2]. The distinguishing feature of

such systems is its use of a very large antenna array at the base station (BS) using perhaps tens, even hundreds,

of antenna elements to serve simultaneously a small number of user terminals (UTs). However, equipping

a BS with a large number of antennas will significantly increase hardware cost and power consumption

when highly linear but expensive power amplifiers are installed. Thus, to enable practical implementation

of massive MIMO systems, nonlinear but power-efficient power amplifiers must be used. In this case, the

transmit signals should have low peak-to-average power ratio (PAPR) to alleviate the impact of amplifier

nonlinearities.

Recently, constant envelope (CE) precoding was proposed by Mohammed and Larsson [3–5] to reduce the

PAPR of the transmit signal, thereby enabling the use of cheap and highly power-efficient power amplifiers
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for massive multiuser MIMO systems. In CE precoding, the transmit signals are strictly limited by a fixed

amplitude, and their phases are optimized to minimize multiuser interference (MUI) at all the UTs by solving

a nonlinear least squares (NLS) problem. Nonetheless, the NLS problem is non-convex and difficult to solve

explicitly. To tackle the NLS problem of CE precoding, the work in [4] devised a sequential gradient descent

(SGD) method. Recently, [6] proposed an efficient precoder algorithm for achieving exact phase recovery

while only focusing on single-user systems. Following the same multiuser setting as [4], Chen et al. [7]

handled the NLS precoding problem by applying a cross-entropy optimization technique. This proposed

method can provide better MUI suppression than the algorithm in [4], but requires high computational

complexity, which may not be suitable for practical implementation.

Motivated by the fact that relaxing the lower bound of amplitude constraints in CE precoding does not

distort transmit signals while introducing an additional degree of freedom to improve system performance,

Mollén [8] proposed an annulus-constrained (AC) precoding scheme that allows amplitudes to vary inside

a predefined interval to further improve MUI performance. Building upon the work in [4], Mollén also

developed a similar SGD search method to find the optimal AC precoding weights, but with a larger searching

space than that in CE precoding, which makes the developed method more computationally expensive. Also,

AC precoding will increase the PAPR of the transmit signal due to the relaxation of amplitude constraints.

Moreover, the computational complexity of SGD-based methods adopted in [4, 8] is still very high.

Given that the computational complexity of precoding increases with the number of BS antennas, the

adoption of low-complexity precoding is preferred to facilitate the deployments of massive MIMO systems.

Mathematically, however, the formulated design problems for the CE and AC precodings are non-convex

and thus computationally intractable. The purpose of this work is not to obtain globally optimal solutions

of these non-convex problems in a computationally intractable manner, but to achieve a practical solution

that can reduce computational complexity without much compromise in performance. Based on this, we

propose a low-complexity precoding based on the approximate message passing (AMP)1 algorithm [11, 12]

for massive multiuser MIMO systems. The key results and our contributions are summarized as follows.

• Inspired by the considerable success of the AMP algorithm in performing rapid inference within the

context of compressed sensing, we have transformed the massive multiuser MIMO precoding design

problem into a probabilistic inference problem through a factor graph in this study. The AMP algorithm

exhibits excellent performance in terms of both precision and speed in the compressed sensing problem,

while maintaining low complexity. Through this technique, we propose a low-complexity precoding

scheme for massive multiuser MIMO systems.

• In the proposed framework, a factor graph decomposes the considered estimation problem into several

simple mutually interactive local problems, each of which is handled by a local node. These local

constraints are solved in parallel and interactively among local nodes. The message, which describes

the probability distribution function of the signal component, is then efficiently updated among the local

1The AMP was recently proposed in the context of compressive sensing and has been revealed to be very efficient in terms of both precision

and speed for digital communications and signal processing applications [9, 10].
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nodes via the AMP algorithm to optimize iteratively the precoding design for massive multiuser MIMO

systems.

• The simulation results reveal that the proposed AMP precoding is superior to the CE and AC precodings

in terms of the required number of complex multiplications and the time it takes to solve the problem.

In addition, the proposed AMP precoding can provide a trade-off between MUI suppression and PAPR

reduction with desirable results.

Notations—Throughout the paper, we use R and C to represent the set of real numbers and complex num-

bers, respectively. The superscripts (·)T and (·)∗ denote the transpose and conjugate transpose, respectively.

CN(0, 1) denotes the complex Gaussian distribution with zero mean and unit variance. Re{·} returns the

real part of its input argument. Arg(·) returns the principal argument of its input complex number. Finally,

j ,
√
−1.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We consider the downlink transmission of a massive multiuser MIMO system, where a BS is equipped

with N antennas and communicates with M single-antenna UTs. Let x ∈ CN denote a transmitted vector

whose i-th element, xi , αi e
jθi , is the complex signal/value transmitted from the i-th BS antenna, where

αi ∈ R+ is the amplitude of xi and θi ∈ [−π, π) is the phase of xi. The collectively received vector, denoted

by y ∈ CM , at the M UTs is given as

y = Hx + z, (1)

where H ∈ CM×N contains the flat fading channel coefficients with the (µ, i)-th entry being the complex-

Gaussian channel tap between the i-th BS antenna and the µ-th UT; z ∈ CM is a noise vector, with zµ being

the additive noise at the µ-th UT; and the entries of H and z are independent and identically distributed

(i.i.d.) as CN(0, 1). The received signal yµ ∈ C at the µ-th UT can then be expressed as

yµ =
N∑
i=1

Hµi xi + zµ, for µ = 1, 2, . . . ,M. (2)

B. Problem Formulation

To minimize the MUI at all the UTs while facilitating the use of power-efficient amplifiers at the BS,

Mohammed and Larsson [4] proposed a low-PAPR precoding scheme that uses CE signals for massive

multiuser MIMO systems. The main idea of [4] is to constrain the transmit signal xi = α ejθi of each

antenna to have a CE α = 1√
N

. The objective of the CE precoder at the BS is to find a transmit phase vector

θθθ = [θ1 . . . θN ]T, such that the noiseless signal received at each UT forms a desired information signal.

The degrees of freedom of the CE precoding design problem are clearly N − M . Instead of directly

increasing the number of BS antennas to produce the extra degrees of freedom of the null space to achieve

the desired MUI level, Mollén [8] proposed an AC precoding scheme, which relaxes amplitude constraints

in the CE precoding to improve MUI performance. By allowing the transmit amplitude αi of each antenna
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to vary in the interval Dε , [α−ε, α], the AC precoder needs to simultaneously find a transmit phase vector

θθθ = [θ1 . . . θN ]T and a transmit amplitude vector ααα = [α1 . . . αN ]T to solve the following optimization

problem:
minimize

ααα,θθθ
G (ααα,θθθ)

subject to |θi| ≤ π, for i = 1, 2, . . . , N,

αi ∈ Dε, for i = 1, 2, . . . , N,

(3)

where

G (ααα,θθθ) ,
1

M

M∑
µ=1

∣∣∣∣∣
N∑
i=1

Hµi αi e
jθi − uµ

∣∣∣∣∣
2

(4)

is the average MUI energy over all the UTs, and uµ is the symbol intended for the µ-th UT. For α = 1√
N

and ε = 0, the AC precoding reduces to the CE precoding.

Both the CE and AC precoding problems are non-convex and are very difficult to solve. To deal with the

AC precoding problem, Mollén developed a SGD-based search method, which is in fact built on the same

SGD idea used in the search algorithm for the CE precoding [4] while searching the optimal amplitudes

and the optimal phases concurrently. Owing to the relaxation of amplitude constraints, AC precoding can

achieve better MUI performance than CE precoding, but at the cost of computational complexity and the

PAPR performance.

III. PROPOSED ALGORITHM

A. AMP-Based Precoding

In this subsection, we propose to adopt the AMP algorithm [11, 12] to search the optimal x? that minimizes

the MUI power ‖Hx−u‖2 subject to certain PAPR constraints on x, where u = [u1 . . . uM ]T ∈ CM . Because

the AMP algorithm is a tool for probabilistic inference, we have to recast the optimization problem into an

estimation problem. Toward this end, we introduce the following virtual model [13]

u = Hx. (5)

By this virtual model, we can think of the precoding design as an estimate of x based on the received signal

u. Next, we shall describe how x can be estimated based the probabilistic inference approach.

Based on (5), the conditional probability distribution function (pdf) of the unknown signal x given the

measurements u and the knowledge of matrix H can be obtained by using Bayes’ rule as

P(x|H,u) ∝P(u|H,x)P(x) ∝
M∏
µ=1

P(uµ|H,x)︸ ︷︷ ︸
the likelihood function

N∏
i=1

P(xi)︸ ︷︷ ︸
the prior pdf

, (6)

where ∝ denotes the identity after normalization to unity, P(xi) is the prior distribution of the i-th element

of the signal x, and P(uµ|H,x) stands for the µ-th receiver constraint that is given by

P(uµ|H,x) = δ

(
uµ −

N∑
i=1

Hµixi

)
, (7)
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where δ(·) denotes the Dirac delta function. Once the posterior pdf is defined, the Bayes optimal way of

estimating x = {xi}Ni=1 is given by

x̂i =

∫
dxi xiQ(xi), ∀i, (8)

where Q(xi) is the marginal probability distribution of xi, which is defined as

Q(xi) ,
∫ ∏

k 6=i

dxk P(x|H,u). (9)

If P(x) is assumed to be the standard complex Gaussian distribution, i.e., P(x) = 1
πN
e−‖x‖

2 , then the

solution of (8) is x̂ = H∗(HH∗)−1u, which is, in fact, the conventional zero-forcing (ZF) precoding which

has a high PAPR value. Clearly, by adjusting the prior distribution P(x), we can restrict the amplitude

variation of x and thus reduce the PAPR of the transmit signal. In this work, we adopt P(xi = α ejθi) = 1
2π

with θi ∈ (0, 2π], ∀i, which indicates that θi is regarded as independent and uniformly distributed within the

range of (0, 2π]. In this case, xi will be a random point on a circle of radius α in the complex plane. These

conditions are selected to constrain the transmit signal xi = α ejθi of each antenna to achieve a constant

envelope, similar to that in the CE precoding. However, although the argument xi is restricted to the points on

the circle of radius α, the output x̂i in (8), which is a combination of all points on the circle can no longer be

restricted on the circle. Fortunately, based on our observations made through numerical simulations, we find

that most of the x̂i’s remain close to the circle. Thanks to this property2, the PAPR values of the AMP-based

precoding are expected to be lower than the AC precoding but higher than the CE precoding.

Although the precoding design through (8) seems promising, the exact evaluation of (9) involves high-

dimensional integrals that make (8) intractable. Thus, we have to resort to computing approximate marginal

posterior pdfs mi(xi) ≈ Q(xi), called “beliefs,” which provide a practical alternative to the direct computation

of marginal posteriors. By inspecting (6), we observe that the likelihood function is decomposed into a product

of M factors relative to the constraint over each uµ, and the prior pdf is decomposed into a product of N

factors relative to what is expected of each xi. This decomposition can be represented by the factor graph

[14], as shown in Fig. 1. The graph is a bipartite graph that contains N variable nodes and M + N factor

nodes, connected by an edge when the corresponding variable appears in the corresponding factor. As long

as a joint posterior pdf can be represented by a factor graph model, an approximate solution for the posterior

marginals of the variables can be obtained through an iterative message-passing procedure among variable

nodes and factor nodes based on belief propagation (BP) [12, 15].3

BP involves two types of messages: (1) messages from variable nodes to factor nodes, denoted by mi→µ(xi),

and (2) messages from factor nodes to variable nodes, denoted by mµ→i(xi). Here, “messages” are probability

distribution functions. Two message update rules are available, which are described as follows [15]:

2The proposed AMP precoding attempts to find x̂i’s and allow them to remain near the circle. Notably, if all x̂i’s are on the circle, then the

proposed AMP precoding achieves the same PAPR performance as that of the CE precoding.
3For convenience, the similar notations to those in [12] are used.
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• Variable-to-factor message update rule. The messages in BP being passed from variable xi to factor uµ
is given by

mi→µ(xi) =
1

Zi→µ
P(xi)

∏
γ 6=µ

mγ→i(xi), (10)

where Zi→µ is the normalization factor that guarantees
∫

dximi→µ(xi) = 1. That is, the message from

variable node xi to factor node uµ is simply the product of all the incoming messages at variable node

xi excluding the message from target factor node uµ.

• Factor-to-variable message update rule. The messages in BP being passed from factor uµ to variable

xi is updated as

mµ→i(xi) =
1

Zµ→i

∫ ∏
k 6=i

dxk

[
P(uµ|H,x)

∏
k 6=i

mk→µ(xk)

]
, (11)

where Zµ→i is the scale factor to ensures
∫

dximµ→i(xi) = 1. That is, the message from factor node

uµ to variable node xi is given by the integral over the product of the factor function itself and all the

incoming messages excluding the messages from target variable node xi.

According to these two rules, messages are passed iteratively between the variable nodes and the factor nodes.

After messages converge, the approximate marginal distribution or belief at variable node xi is computed as

mi(xi) =
1

Zi
P(xi)

M∏
µ=1

mµ→i(xi), (12)

where Zi is a normalization constant for
∫

dximi(xi) = 1.

However, obtaining an exact evaluation of (11) is still practically intractable due to the high-dimensional

integrals involved. To enhance computational tractability, we have to simplify the expression of (11). First,

we rewrite P(uµ|H,x) in (7) using the following identity4

δ

(
uµ −

N∑
i=1

Hµixi

)
=

1

4π2

∫
dũµ e

−jRe{ũ∗µ(uµ−∑N
i=1 Hµixi)}. (13)

Inserting this identity into (11) yields

mµ→i(xi) =
1

Z̃µ→i

∫
dũµ e

−jRe{ũ∗µ(uµ−Hµixi)}
∫ ∏

k 6=i

dxkmk→µ(xk)e
jRe{ũ∗µHµkxk} (14)

with Z̃µ→i being a normalization factor ensuring that
∫

dximµ→i(xi) = 1. Before proceeding, we introduce

the means and variances of the variable-to-factor messages as

ai→µ =

∫
dxi ximi→µ(xi), (15)

vi→µ =

∫
dxi |xi|2mi→µ(xi)− |ai→µ|2. (16)

4This identity follows the inverse Fourier transform of the Dirac delta function.

December 20, 2016 DRAFT



IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY 7

Using the above definitions, we expand the Taylor series of the last exponential in (14) up to the second

order of jRe
{
ũ∗µHµkxk

}
, which yields

mµ→i(xi) =
1

Zµ→i

∫
dũµ e

−jRe{ũ∗µ(uµ−Hµixi)} × ejRe{ũ∗µ(∑k 6=iHµkak→µ)}−|ũµ|2(
∑
k 6=i |Hµk|2vk→µ). (17)

Performing the integral over ũµ, we obtain

mµ→i(xi) =
1

Z̃µ→i
e−Aµ→i |xi|

2+2Re{Bµ→i xi} (18)

with

Aµ→i ,
|Hµi|2∑

k 6=i |Hµk|2vk→µ
, (19)

Bµ→i ,
H∗µi

(
uµ −

∑
k 6=iHµkak→µ

)
∑

k 6=i |Hµk|2vk→µ
. (20)

Next, substituting (18) into (10), we have

mi→µ(xi) ∝P(xi) e
−|xi|2

∑
γ 6=µ

Aγ→i +2Re

{
xi

∑
γ 6=µ

Bγ→i

}
∝M

(
xi;

∑
γ 6=µBγ→i∑
γ 6=µAγ→i

,
1∑

γ 6=µAγ→i

)
, (21)

in which we define

M (x;R,Σ2) ,
1

Ẑ(R,Σ2)
P(x)

1

πΣ
e−
|x−R|2

Σ2 (22)

with Ẑ(R,Σ2) =
∫

dxP(x) 1
πΣ
e−
|x−R|2

Σ2 being the normalization constant. To simplify the notation, we also

define the mean and the variance of (22) by the functions fa and fc, respectively, as

fa(R,Σ
2) ,

∫
dx xM (x;R,Σ2) = α ej Arg(R)

I1

(
2α|R|

Σ2

)
I0

(
2α|R|

Σ2

)
 , (23)

fc(R,Σ
2) ,

∫
dx |x|2 M (x;R,Σ2)−

∣∣fa(R,Σ2)
∣∣2 = α2 −

∣∣fa(R,Σ2)
∣∣2 , (24)

where Iν(·) is the ν-th order modified Bessel function of the first kind. In addition, the expressions (23) and

(24) that are used to approximately compute the functions fa and fc are based on the derivations of [16]

with a slightly modification.

With these definitions, the equations for the mean ai→µ (15) and variance vi→µ (16) can be expressed as

ai→µ = fa

(∑
γ 6=µBγ→i∑
γ 6=µAγ→i

,
1∑

γ 6=µAγ→i

)
, (25)

vi→µ = fc

(∑
γ 6=µBγ→i∑
γ 6=µAγ→i

,
1∑

γ 6=µAγ→i

)
. (26)

Then (19) and (20) together with (25) and (26) lead to closed iterative message-passing equations, which

are referred to as relaxed BP (r-BP) equations. The message passing procedures are repeated until some

termination conditions are satisfied. When a fixed point of this iteration is reached, the mean ai and variance
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vi of mi(xi) should be computed. These can be obtained by simply adding back the µ dependent part to

(25) and (26) as

ai = fa
(
Ri,Σ

2
i

)
, (27)

vi = fc
(
Ri,Σ

2
i

)
, (28)

where

Ri ,

∑
µBµ→i∑
µAµ→i

and Σ2
i ,

1∑
µAµ→i

. (29)

The above description clearly indicates that even when only the two first moments of all messages are

kept in the r-BP equations, the number of messages that needs to be tracked for r-BP is 2M × N per

iteration. However, this poses a problem if we want to scale an application to a large M and N . To further

reduce the number of messages, we omit the negligible terms in the large N limit, and then rewrite the

r-BP equations on quantities that correspond to the variables and factors nodes. As a result, the number of

r-BP messages to be tracked is reduced to only M +N for each iteration. This leads to the so-called AMP

(approximated message passing) [11, 12]. To this end, we first define two auxiliary variables, ωµ and Vµ, for

every measurement component µ to ease notation:

ωµ ,
∑
i

Hµiai→µ, (30)

Vµ ,
∑
i

|Hµi|2vi→µ ≈
∑
i

|Hµi|2vi. (31)

These two quantities, in conjunction with (29), yield

Ri =

∑
µ

H∗µi(uµ−ωµ+Hµiai→µ)

Vµ−|Hµi|2vi→µ∑
µ

|Hµi|2
Vµ−|Hµi|2vi→µ

(a)
≈ ai +

∑
µH

∗
µi

(uµ−ωµ)

Vµ∑
µ
|Hµi|2
Vµ

, (32)

Σ2
i =

1∑
µ

|Hµi|2
Vµ−|Hµi|2vi→µ

(a)
≈

[∑
µ

|Hµi|2

Vµ

]−1

. (33)

In (a) above, we assume that Ri and Σ2
i are O(1), i.e., the magnitudes of these quantities stay finite as

N → ∞ (see [12] for details). We now turn to approximate ai→µ by applying Taylor’s expansion to (25)

around Ri as

ai→µ = fa

(∑
γ Bγ→i −Bµ→i∑
γ Aγ→i − Aµ→i

,
1∑

γ Aγ→i − Aµ→i

)
' ai −Bµ→iΣ

2
i

∂fa(Ri,Σ
2
i )

∂Ri

= ai −Bµ→i vi, (34)

where the last equality follows from the fact that Σ2 ∂fa(R,Σ2)
∂R

= fc(R,Σ
2). Finally, multiplying (34) by Hµi

and summing the resultant expressions over i yields

ωµ =
∑
i

Hµiai −
(uµ − ωµ)

Vµ
Vµ, (35)

which allows us to close the equations on the set of ai, vi, Ri, Σi, Vµ, and ωµ.
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Specifically, the AMP algorithm works as follows. We begin by initializing {a(0)
i }Ni=1, {v(0)

i }Ni=1, {V (0)
µ }Mµ=1,

and {ω(0)
µ }Mµ=1 to certain values,5 where the superindex denotes the iteration index. Next, these values are

inserted into (31) and (35) to give {V (1)
µ }Mµ=1 and {ω(1)

µ }Mµ=1, respectively. The corresponding values are then

further inserted into (33) and (32) to yield {(Σ(1)
i )2}Ni=1 and {R(1)

i }Ni=1. Finally, the first iteration is completed

by substituting the corresponding values into (27) and (28) to offer {a(1)
i }Ni=1 and {v(1)

i }Ni=1. We continue to

iterate in this way (i.e., updating all V , ω’s, then Σ, R’s, and then a, v’s) until convergence (i.e., the quantities

no longer change). The estimate of the signal component xi is a(l)
i . The pseudocode for the evolution of Vµ,

ωµ, Σi, Ri, ai, and vi is summarized in Algorithm 1.

B. Complexity Analysis

The computational complexities are compared in terms of the number of complex multiplications of CE

[4], AC [8] and AMP. First, we analyze the computational complexity of Algorithm 1. For factor nodes,

Line 9 of Algorithm 1 involves 2N complex multiplications. Line 10 of Algorithm 1 needs N + 2 complex

multiplications. Therefore, Lines 8 to 10 require 3MN + 2M complex multiplications for each iteration.

One the other hand, for variable nodes, Lines 12 and 13 both need 2M + 1 complex multiplications. Lines

14 and 15 require 5 and 2 complex multiplications for the expressions (23) and (24) that are used to

approximately compute the functions fa and fc, respectively. Hence, Lines 12 to 15 require 4MN + 9N

complex multiplications for each iteration. Then the AMP method requires a total of 7MN + 9N + 2M

complex multiplications for each iteration. However, CE and AC need N2M −NM and 2N2M −NM
complex multiplications for each iteration, respectively. Fig. 2 illustrates the variation of the number of

complex multiplications of the three precodings as a function of the number of BS antennas for M = 35

and M = 50. It is observed that the proposed method not only has the lowest complexity among the three,

but also is less sensitive to N and M . In particular, for the case of (N,M) = (90, 35), the number of

complex multiplications required in AMP is only 8.18% and 4.07%, respectively, to that required in the

CE and AC precodings. For the system configuration with (N,M) = (130, 50), the proposed method needs

approximately 5.88% and 2.78% of the computational complexity of the CE and AC precodings. Note that

the system configurations with (N,M) = (90, 35) and (N,M) = (130, 50) are enough to achieve the desired

MUI level, as will be demonstrated in the following section. Finally, we note that in contrast to the CE

and AC precodings, which are found by sequential methods, the AMP precoding exhibits a parallel nature

and low computational complexity, and requires low arithmetic precision, which makes it well-suited for

hardware implementation [17].

IV. SIMULATION RESULTS AND DISCUSSION

In this section, we evaluate the performance of the proposed AMP-based precoding design for different

system configurations. The performance measures6 used are the average MUI energy over all the UTs (e.g.,

5The initial conditions of these values are specified in Lines 2 to 5 of Algorithm 1.
6Given that the amplitude constraints of the AC and AMP precodings are relaxed, we empirically found that the throughput behaviors of

these two precodings are very similar. A detailed comparison of the throughputs of the AC, CE, and ZF precodings can be found in [8].
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performance at the receiver side) and the PAPR statistics (e.g., performance at the transmitter side). The

average MUI energy over all the UTs is given by E{ 1
M
‖Hx̂− u‖2}, where the expectations are computed

as averages of 10, 000 independent channel realizations in the simulations unless explicitly stated otherwise.

For the AMP-based precoding, we adopt P(xi) being a uniform ring distribution with radius α = 1.07√
N

in the complex plane.7 For comparison, the CE [4] and AC [8] precodings are tested, where the transmit

signals of the AC precoding are constrained to a disk in the complex plane with radius α = 1√
N

(i.e.,

ε = α). In addition, the channel gains between the BS and each UT follow a circular Gaussian distribution

CN(0, 1) in an i.i.d. manner. The message symbol intended for each UT is chosen to be uµ = 16-QAM for

µ = 1, 2, . . . ,M .

Given that the aforementioned three precodings are iterative-based algorithms, two important aspects of

any iterative method are to check if the algorithm truly converges to a fixed point and to determine when

the iterations should be stopped. Therefore, we first fix the system configuration at (N,M) = (100, 35) and

determine how the average MUI performance of various precodings are affected by the number of iterations.

Fig. 3 shows the average MUI energy over all the UTs against the number of iterations for these precodings.

Both the AMP and AC precodings clearly provide much faster convergence and perform noticeably better

compared to the CE precoding. This finding is expected because the amplitude constraint of the AMP and

AC precodings are relaxed, thereby providing extra degrees of freedom compared to the CE precoding.

Additionally, the AMP precoding slightly outperforms the AC precoding at the initial stage, but eventually

the AC precoding catches up and performs slightly better than the AMP precoding. This is because for AMP,

we adopt the uniform ring distribution for P(xi), which imposes certain constraints on its outputs {x̂i}, so

that most of {x̂i} are still closed to the ring while the AC precoding can be any points inside the ring. Also

because of this restriction, we shall see later that the PAPR value of the AMP precoding is better than that

of the AC precoding. In addition, the number of complex multiplications required in the AMP precoding is

less than that required in the AC precoding. From the figure, we can also observe that both AMP and AC

precodings converge within 200 iterations. Therefore, in the following simulations, the maximum number of

iterations of these precodings is set to be 200 for the sake of fairness.

To gauge the computational complexity of these three precodings, their running times are provided for

the system configuration (N,M) = (100, 35). Fig. 4 compares the average running time required for

200 iterations for the three precodings. The AMP precoding clearly outperforms the rest in running time.

Specifically, it runs about 0.4651
0.0448

≈ 10.38 times and 0.6103
0.0448

≈ 13.62 times faster than the CE precoding and the

AC precoding respectively. This result verifies the significant computational efficiency of the AMP precoding.

Note that although the core idea used in the iterative search algorithm for the AC and CE precodings is

the same, the running time for the AC precoding is about 0.6103
0.4651

≈ 1.31 times longer than that for the CE

precoding. This finding is intuitive because the iterative search algorithm for the AC precoding needs to

simultaneously find a transmit phase vector and a transmit amplitude vector to minimize the MUI at all

7Based on our numerical results, we find that slightly enlarging the radius from α = 1√
N

to α = 1.07√
N

can greatly reduce the MUI while

maintaining a good PAPR property.

December 20, 2016 DRAFT



IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY 11

UTs. In comparison, the iterative search algorithm for the CE precoding only has to search a transmit phase

vector to achieve the same goal.

To investigate the robustness of the three precodings, we now examine the performance of the three

precodings in different system configurations. Fig. 5 shows the average MUI energy over all the UTs for

three different precodings, plotted as functions of BS antenna number N , for M = 35 and M = 50.

We observe that increasing N significantly improves MUI performance for all the precoding methods. In

addition, for a fixed N , say N = 110, as M increases, the performance degrades. This result is expected

because increasing M will result in the decrease of the degrees of freedom for MUI suppression. The AC

and AMP precodings also outperform the CE precoding, and their performance gains gradually enlarge with

the increase of N . Meanwhile, the performance of the proposed AMP precoding is degraded slightly relative

to that of the AC precoding. This phenomenon, as observed in Fig. 3, is due to the fact that the uniform ring

distribution for the AMP precoding imposes certain constraints on its precoding so the its corresponding

MUI is degenerated.

Finally, we compare the performance of different precoding schemes at the transmitter side in terms of

continuous-time PAPR reduction capabilities. To calculate the PAPR value for the continuous-time signals,8

the discrete-time signals are shaped with a root-raised-cosine filter with a roll-off factor of 0.3, as was done in

[8]. The performance metrics are the complementary cumulative distribution function (CCDF) of the PAPR

statistics, which is defined as the probability that the PAPR exceeds a threshold level PAPR0, i.e.,

CCDF , Pr(PAPR > PAPR0). (36)

Given that a −30 dB MUI performance is reliable enough for practical application, the considered precodings

require approximately N = 90 and N = 130 to achieve this target MUI performance for M = 35 and

M = 50 respectively, as shown in Fig. 5. Based on this, the system configurations with (N,M) = (90, 35)

and (N,M) = (130, 50) are adopted to evaluate the PAPR performance of different precoding schemes. Fig. 6

shows the PAPR-performance characteristics for all considered precoding schemes. As expected, owing to

the relaxation of amplitude constraints, the PAPR reduction performance of the AC and AMP precodings is

worse than that of the CE precoding. From a detailed inspection, when CCDF = 10−3, for (N,M) = (90, 35)

and (N,M) = (130, 50), the PAPR of the CE precoding is 5.43 and 5.41 dB respectively.9 In addition, we

see that the performance loss of the proposed AMP precoding relative to that of the CE precoding is 1.05

and 1.06 dB at CCDF = 10−3, when (N,M) = (90, 35) and (N,M) = (130, 50) respectively. However,

8We denote the discrete-time estimated signal x̂i after pulse-shape filtering by x̂i(t). For the continuous-time signal x̂i(t), defined for t ∈ [0, T ],

PAPR is the ratio between the maximum power and the average power of x̂i(t), which can be express as

PAPR ,
max |x̂i(t)|2

1
T

∫ T
0
|x̂i(t)|2 dt

.

9It should be noted that although the PAPR of the discrete-time constant envelope precoded signal is zero, the constant-envelope property

does not hold true for the signals after pulse-shape filtering.
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compared with the AC precoding at the same level of CCDF, the proposed AMP precoding offers about

0.36 and 0.33 dB PAPR reduction when (N,M) = (90, 35) and (N,M) = (130, 50) respectively.

V. CONCLUSION

To suppress the MUI at all the UTs while enabling the use of cheap but highly power-efficient amplifiers

at the BS, a computationally efficient precoding using AMP algorithm was proposed for massive multiuser

MIMO systems. Simulation results indicated that the proposed AMP precoding can offer a tradeoff between

MUI suppression and PAPR reduction with desirable characteristics. Another attraction of AMP is that it

has parallel nature and much lower computational complexity but no significant performance degradation.

These findings may render it suitable for practical implementation.
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Algorithm 1: AMP-based precoding
1 begin
2 a(0) = {a(0)

i }
N
i=1 ← {0}

3 v(0) = {v(0)
i }

N
i=1 ← {1}

4 V(0) = {V (0)
µ }Mµ=1 ← {1}

5 ω(0) = {ω(0)
µ }Mµ=1 ← {uµ}

6 l← 1

7 while Predefined number of iterations is met do
8 for µ = 1 to M do
9 V

(l)
µ ←

∑N
i=1 |Hµi|

2 v
(l−1)
i

10 ω
(l)
µ ←

∑N
i=1 Hµia

(l−1)
i − uµ−ω

(l−1)
µ

V
(l−1)
µ

V
(l)
µ

11 for i = 1 to N do

12 (Σ
(l)
i )2 ←

[∑M
µ=1

|Hµi|2
V

(l)
µ

]−1

13 R
(l)
i ← a

(l−1)
i + (Σ

(l)
i )2∑M

µ=1 H
∗
µi
uµ−ω

(l)
µ

V
(l)
µ

14 a
(l)
i ← fa

(
(R

(l)
i , (Σ

(l)
i )2

)
15 v

(l)
i ← fc

(
(R

(l)
i , (Σ

(l)
i )2

)
16 l← l + 1

17 return {a(l)
i }

N
i=1

N

2

1

mi!¹(xi)

m¹! i(xi)

... ... ...

(uMjH;x)

(xN)

(x2)

(x1)

(u2jH;x)

(u1jH;x)

...

Fig. 1. Factor graph for the considered problem defined in (6). The factor nodes are shown by filled rectangles and variable nodes are depicted

as circles.

December 20, 2016 DRAFT



IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY 14

70 80 90 100 110 120 130 140
10

4

10
5

10
6

10
7

N

8.18%

4.07%
7.35%

3.66%

5.88%

2.78%

M =50
M =35

Fig. 2. Number of complex multiplications versus number of BS antennas N for M = 35, 50.
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Fig. 3. Average of the MUI energy over all the UTs versus the number of iterations for (N,M) = (100, 35).
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Fig. 4. Average of the MUI energy over all the UTs versus execution time for (N,M) = (100, 35).
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Fig. 5. Average of the MUI energy over all the UTs versus the number of BS antennas for M = 35, 50.
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Fig. 6. PAPR performance for various precoding scheme for (N,M) = (90, 35) and (N,M) = (130, 50).
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