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Morrison (2016) raises concerns about the parameterisation of our scaling model and its 

wider relevance to swim speeds among this group of marine predators. We welcome the 

opportunity to discuss these issues further and feel that this conversation highlights several 

interesting points for debate. 

Our original approach includes a focus on frontal area which we believe is a critical 

factor determining water flow to the gills in ram-ventilating sharks and this typically scales to 

2/3 of body mass. In support of this, a study on shark body form found that the scaling of 

frontal length measured in terms of ventral, lateral and dorsal spans all scaled isometrically 

with total body length (1), which in turn scales to the 1/3 of body mass. Notably, with these 

assumptions our predictions are consistent with the empirical data we gathered across 26 

species of shark. Morrison noted that gill surface area scales more steeply than 2/3, and 

therefore, sharks need not increase speeds with increasing size to maintain respiratory 

balance.  We believe, oxygenated water flow over the gills will be regulated by frontal area 

and swim speed as oxygen levels will be at their highest as they enter the animal, then 

becoming increasingly more depleted with increasing contact with the gills themselves. As 

such, we would argue that there is a complex relationship between gill area, water flow, and 

oxygen exchange. 



We would argue that the weak scaling of swim speed with mass predicted by our 

model is consistent with that observed among sharks and other fish ranging between 0.08 

and 0.2 (2,3,4). While we concede that alternative theoretical models like Weihs (5) may 

produce similar scaling estimates, the fact that alternative models have similar predictions is 

not unusual across scientific disciplines. Indeed it is interesting that the two approaches, 

Weihs based on fluid mechanics and ours based on oxygen uptake, have convergent 

predictions. In addition, our model differs from Weihs’ (5) in that it makes a mechanistic link 

between swim speed and oxygen uptake and therefore could be adapted to explore 

respiratory adjustments, during different states of behaviour among fish, where oxygen 

uptake potentially matches the costs of movement, such as during high speed hunting bouts 

or higher cruising speeds in low oxygen environments (6). 

We acknowledge that we made an unfortunate error in our calculation of megalodon 

swim speed and thank Morrison for drawing our attention to this. A correction, including a 

revised prediction of 1.34 m/s, has now been published.    
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