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We measure, by photonic torque microscopy, the non-conservative rotational motion

arising from the transverse components of the radiation pressure on optically trapped,

ultra-thin silicon nanowires. Unlike spherical particles, we find that non-conservative

effects have a significant influence on the nanowire dynamics in the trap. We show

that the extreme shape of the trapped nanowires yields a transverse component of

the radiation pressure that results in an orbital rotation of the nanowire about the

trap axis. We study the resulting motion as a function of optical power and nanowire

length, discussing its size scaling behavior. These shape-dependent non-conservative

effects have implications for optical force calibration and optomechanics with levitated

non-spherical particles.

Optical tweezers1,2 (OT) are tools that use a strongly focused laser beam to trap and

manipulate microscopic3 and nanoscopic4 materials. At the nanoscale OT are used for the

manipulation,5–10 assembly,11,12 and characterization13–15 of individual nanostructures, as

well as probes in photonic force microscopy applications.16–18 Recently, the possibility to

investigate the structural,14 optical,16,19 and thermal20,21 properties of individual nanowires

in OT has been at the core of intense research. In this context, their extreme shape has

a key role in determining their properties as well as optical forces22,23 and dynamical sta-

bility24 against thermal fluctuations in OT. Silicon nanowires (SiNWs) are an important

material for applications in microelectronics, photonics, and photovoltaics.25 Recent experi-

ments have also shown great potential for photodynamic26 therapy applications, as optically

trapped SiNWs can photosensitize singlet-oxygen, as well as photothermal20 therapy when

ion-implanted to increase photothermal heating. Hence, the opportunity to understand and

accurately control the position and orientation of individual SiNW can open perspectives for

all those fields.4,25

The origin of optical forces in OT is readily explained in the two limiting cases of spherical

particles that are either much smaller27,28 (dipole approximation) or much larger29,30 (ray

optics) than the trapping wavelength. In these two extreme regimes, the force divides into two
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main contributions:2 a conservative force proportional to the gradient of the light intensity

that is responsible for trapping, and a non-conservative scattering force directed along the

light beam propagation direction and proportional to the light intensity that generally has

a destabilizing effect for optical trapping.

It is a general result of vector calculus (Helmholtz theorem) that any well-behaved vector

field can be always decomposed into the sum of a non-rotational (curl-free) component and

a rotational (divergence-free) component.31 Thus, any generic optically trapped particle can

be considered to be subject to a force that is the sum of a conservative and a non-conservative

term:32,33

F = −∇U +∇×A (1)

The first term represents the conservative force arising from the gradient of an effective

trapping potential. The second term represents the non-conservative force (FNC) related to

the components of the radiation pressure.34–36 For spherical particles, the non-conservative

term arises mainly from the longitudinal radiation pressure related to the inhomogeneous

Gaussian laser beam used to create OT.33,37 This is responsible for a rotational motion

coupling to the Brownian dynamics of trapped particles in the directions transverse (ρ)

and parallel (z) to the beam propagation direction33,38–40 (the ρ-z plane in Fig. 1). For

non-spherical particles, however, the situation is much more complex. First, the traditional

identification of intensity gradient and scattering force is not generally applicable.41 Second,

the non-spherical shape results in transverse radiation pressure components34 that can have

dramatic consequences for the particle’s dynamics. First outlined in an astrophysical context

to explain the dynamics of interstellar dust,42 these radiation force components depend

critically on the orientation of a non-spherical particle along the light propagation (axial)

direction and generate phenomena such as the "optical lift effect"43,44 or the tumbling and

rotational motion of micro-ellipsoids45,46 and nanofibers.7

Here, we report measurements on non-conservative rotations at the nanoscale, performed

by means of photonic torque microscopy47 (PTM) on optically trapped silicon nanowires.
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We show how non-conservative effects scale with laser power and nanowire length, finding

that they have a significant role in the nanowire thermal dynamics. We show that the

extreme shape of the trapped nanosystem yields a transverse component of the radiation

pressure that drives an orbital rotation of the nanowire about the trap axis. Finally we

estimate the non-conservative torque, and the work extracted by thermal fluctuations from

the non-conservative transverse component of the radiation force.

The geometry of the problem under study is shown in Fig. 1. In Fig. 1a we consider a

single nanowire confined and aligned in an OT. The conservative component of the optical

force pulls the particle towards the focal region. The coordinate system is fixed at the trap

center in the proximity of the focus, and at equilibrium the nanowire main axis is aligned with

the trap (z−)axis (see the images in Fig. 1b). Note that the nanowire center-of-mass position

on the optical axis is determined by the nulling of all the forces acting on the nanowire, i.e.,

axial gradient force, scattering forces, and gravity. At variance with other experiments on

thicker nanowires,7,11,13 our ultra-thin nanowires are pushed upwards with respect to the

focal point only by a fraction of their length (about 10-20%) by the longitudinal radiation

pressure (see Supplementary Information). Figure 1c shows the conservative component of

the optical force acting on a trapped SiNW during a rotational motion in the ρ-z plane. To

test its conservative nature we consider a predetermined closed path, then we split this path

in four parts and calculate the work done on each part (connecting points 0− 3 in Fig. 1c).

On the paths 0−1 and 2−3, the work is zero since the gradient force is perpendicular to the

particle path. On the path 1−2 and 3−0, work is different from zero, since the force changes

parallel to the path, but has opposite sign. By summing up the work carried out in each path

we verify that the work is null. This is valid regardless of the path chosen. We now consider

the non-conservative components, i.e., the longitudinal and transverse radiation pressure.

Because of the inhomogeneous gaussian intensity, the first one generates a rotational bias

field in the ρ-z plane (Fig. 1d). The second non-conservative component is generated by a

misalignment of the SiNW with respect to the z axis (Fig. 1e,f). The transverse component
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does not produce work along a closed path in the ρ-z plane (Fig. 1e), but gives rise to a

roto-translation orbital motion of the SiNW in the x-y plane (Fig. 1f).

In our experiments, ultrathin silicon nanowires8,48,49 (SiNWs) are prepared starting from

p-type Si single crystal. A discontinuous thin film of nanometric gold is deposited on the

samples by electron beam deposition at room temperature using a source of high purity gold

pellets48,50 (see Supplementary Information). Finally, samples are etched at room tempera-

ture in an aqueous solution of HF and H2O2 to form SiNWs. Note that our samples have a

photoluminescence spectrum in the visible range48,50 that can be excited with ultraviolet or

visible light. However, at our trapping wavelength, 830 nm, no photoluminescence is excited

at the available power in the trap, and the nanowires have the dielectric properties of bulk

silicon.8 Figure 1b shows a typical cross section SEM image of SiNWs obtained after the wet

etching of the Au-covered Si substrates. The image displays a dense and uniform distribu-

tion of nanowires, having the same length of about 2 µm. For optical trapping experiments

SiNWs with diameter, d, of about 10 nm and different length, L, in the range 1− 5µm are

used.8 The final step of the SiNWs sample preparation consists in the mechanical scratching

of the substrate with a consequent dispersion by sonication in aqueous solution.

Optical trapping experiments are carried out using a near infra-red (NIR) laser diode with

wavelength λ = 830 nm that delivers about 24 mW at the sample. The linearly polarized

laser beam is tightly focused by a high numerical aperture microscope objective (NA=1.3,

100×) in an inverted configuration. At this wavelength the absorption coefficient of water

is negligible2,51 (a tenth of that at 1064 nm) and therefore related water heating effects may

safely be ignored at our trapping power. Moreover, silicon is a low absorber in the NIR and

we expect to have negligible heating effects for ultra-thin native SiNWs optically trapped in

water despite their reduced intrinsic thermal conductivity.52 Note that in the case of thicker

SiNWs some temperature effects and temperature gradients might be present20 and would

result in convective flow along the axial direction that would eventually shift upwards the

nanowire center-of-mass as well as increasing its thermal dynamics in the trap.
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Figure 1: (a) Sketch of a SiNW in an optical trap. Trapping occurs when the gradient
force (Fgrad) overcomes the radiation pressure longitudinal (F∥) and transverse (F⊥) com-
ponents. This latter component arises when the SiNW is misaligned from the z axis by
thermal fluctuations, and yields a rotational orbital motion about the z axis of the SiNW
with a rotational frequency Ωxy. (b) Typical cross section SEM image (left) of SiNWs on
substrate as prepared (see Supplementary Information). The image shows a dense and uni-
form distribution of nanowires with similar length of about 2 µm. Diffraction-limited images
(right) of a SiNW with a length of ∼ 3 µm trapped and aligned in the OT (top right) and
moving and tilting in water when the laser is off (bottom right). (c) Conservative gradient
force component acting on a SiNW around a closed path in the ρ-z plane. The intensity
profile is a simplified, collimated Gaussian beam; it increases approaching the center of the
beam. The work done in a closed path connecting points 0 − 3 is null as expected. (d)
Non-conservative longitudinal radiation pressure component acting on a SiNW parallel to
the optical (z−)axis. The inhomogeneous intensity generates a work and a rotational bias in
the ρ-z plane. (e) Representation of the transverse radiation force exerted on a misaligned
SiNW in the ρ-z plane. The work done on a closed path is zero. (f) Representation of the
transverse radiation force in the x-y plane. Here the transverse force generates work on a
closed path and gives rise to a roto-translation orbital motion of the SiNW in the x-y plane.
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Trapped nanowires are imaged with a CCD camera through the microscope objective

(Fig. 1b). The Brownian motion of a trapped nanowire is studied by back focal plane

interferometry17,53,54 in the forward direction, i.e., the back focal plane of the microscope

condenser contains an interference pattern which is relayed to a quadrant photodiode (QPD)

in an optically conjugate plane. Signals from the QPD are processed via analog electronics

into a three-dimensional (Sx, Sy, Sz) tracking signal and acquired by a PC through an ac-

quisition board. The linearity range of the tracking signals for nanowires is within the size

range of the laser spot defining the optical tweezers,13,55 i.e., for our experimental conditions

about ∼ 0.8 µm in the transverse plane and ∼ 1.5 µm in the axial direction. Since the

Brownian dynamics of our nanowires occur on a size range that is less than one order of

magnitude smaller,8 we are well within the linear range of operation of QPD detection. An

accurate analysis of the decay rate of the autocorrelation functions of the tracking signals

enables calibration of the conservative components of the optical force and torque confining

and aligning the SiNWs in the trap.8 In fact, for small displacements the tracking signals

from a trapped SiNW contain information on both the center-of-mass and angular tilting

fluctuations.17

The calibration methods of OT assume that for small displacements from equilibrium

the restoring force or torque is proportional to the displacement, i.e., OT are usually con-

sidered acting as a Hookeian spring with a fixed stiffness.2 This condition implies that the

optical force-field must be conservative, thereby excluding the possibility of a rotational

(non-conservative) component. Radiation pressure forces, however, are intrinsically non-

conservative. Spherical particles experience non-conservative effects only when the intensity

of the focused laser beam is sufficiently low to allow the sphere to explore a large volume

of the effective confining potential. Under these condition the particle presents a thermal

motion with a toroidal bias coupling the directions transverse (ρ) and parallel (z) to the

beam propagation.33,38–40

For non spherical particles, such as SiNWs, due to their geometry non-conservative ef-
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fects are predicted to be first-order and non-vanishing with increasing laser power.56 Highly

elongated optically trapped SiNWs are oriented close to the axial direction (z−axis) by

optical fields11,22,57. During the trapping process the Brownian motion tends to misalign

the nanowires from the z−axis, and consequently a transverse component of the radiation

pressure is generated.42 This transverse component yields a persistent rotational bias in the

x − y plane in addition to the toroidal bias coupling the ρ − z directions caused by the

inhomogeneous longitudinal radiation pressure.

We characterize the rotational motion of SiNWs in the optical trap by photonic torque

microscopy38,47,58 (PTM). In particular, in order to highlight the orbital rotational bias in the

transverse (x − y) plane we consider the normalized differential cross-correlation functions

(DCCFs) of the nanowire tracking signals defined as (see Supporting Information):

DCCFxy(τ) = CCFxy(τ)− CCFyx(τ), (2)

where CCFxy = ⟨Sx(t)Sy(t+τ)⟩/
√
⟨S2

x(t)⟩⟨S2
y(t)⟩ represents the normalized cross-correlation

function between tracking signals along the x and y axes as a function of lag time, τ .

Here we consider normalized DCCFs so that we can compare results from different SiNWs

samples and investigate the scaling behavior of the non-conservative effects with length or

power. We fit the DCCFs with the solutions of the Langevin equation in a non-homogeneous

force field.58 The functional form of the fitting used depends on whether rotational bias

or thermal fluctuations dominate the motion of the SiNWs (see Supporting Information).

In the case that the positional thermal fluctuations prevail over the orbital rotational bias

we use a suitably parameterized hyperbolic function that describes the overdamped regime,

otherwise we use a sinusoidal fitting function58 that describes the rotational regime of the

non-conservative nanowire motion. While we observe that for optically trapped SiNWs

the non-conservative rotations prevail over fluctuations in the x − y plane, we find that

positional fluctuations overdamp the non-conservative rotations in the ρ − z plane. As a
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consequence of this, orbital rotations of the SiNWs persist as they are driven by the non-

conservative transverse force in whatever sense they start (see Fig. 2a,b). By contrast,

the non-conservative effects in ρ − z plane have characteristics similar to those found for

spherical particles,33,38–40 i.e., they result from the inhomogeneous longitudinal radiation

pressure created by the highly focused laser beam (Fig. 1d). Neither of these phenomena

would occur in a simple Hookeian spring model of optical trapping and they are the result of

non-zero curl in the optical force. Here, we focus on the observations in x−y transverse plane

that are intrinsically related to the non-spherical shape and the occurrence of the transverse

radiation pressure (Fig. 1f), while the observations in the ρ− z plane are summarized in the

Supporting Information.

First, we evaluate the non-conservative contribution to the nanowire motion as a function

of trapping laser power. Figures 2a and b show exemplar DCCFs for a SiNW of length

L = 4.0±0.2 µm at two different values of laser power, P ≈ 1 and P ≈ 14 mW, respectively.

By fitting the DCCFs oscillations we measure the rotational frequency, Ωxy, in the x − y

plane. This is used to define the contribution to the dynamics from non-conservative forces

as

ϵxy =
Ωxy

ωρ

(3)

where:

ωρ =
ωx + ωy

2
(4)

is the average of the autocorrelation functions (ACFs) decay rates in the transverse plane

(x − y), ωx = kx/γ⊥ and ωy = ky/γ⊥, obtained from the transverse tracking signals8,17

(Sx, Sy). The decay rates are related to the transverse force constants, kx and ky, and to the

hydrodynamic viscous coefficient, γ⊥ = 4πηL/(ln p + δ⊥), in the direction perpendicular to

the SiNW axis6,8,59 which is dependent on the nanowire length, L, water dynamical viscosity,

η, length-to-diameter ratio, p, and end correction,59 δ⊥. Evident here is the decrease in

rotational frequency at higher power from Ωxy ≈ 18 rad/s at P ∼ 1 mW (Fig.2a) to Ωxy ≈ 11
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rad/s at P ∼ 14 mW (Fig.2b) arising from the stronger angular confinement of the SiNW to

the optical axis. In Fig. 2(c) the non-conservative contribution to the motion, ϵxy, and the

amplitude of the DCCFs oscillations are shown, and unlike spherical particles they are non-

zero (despite being small) even at higher trapping power. This behavior emphasizes that

although non-conservative effects for optically trapped non-spherical particles scale down

dramatically with laser power they cannot be fully neglected. At low power (∼ 1 mW)

their contribution is much larger due to the reduced axial alignment (larger orientational

fluctuations) that allows the SiNW to explore larger angles with respect to the optical (beam

propagation) axis, thus yielding a larger transverse radiation pressure component.

Figures 3a and b show the transverse DCCFs obtained for the longest (∼ 5 µm) and

shortest (∼ 1 µm) SiNWs length, respectively. For the longest SiNWs a fourfold decrease in

the oscillation frequency of DCCF oscillations is clearly evident, dropping from Ωxy ≈ 9.7

rad/s for L ∼ 1 µm (Fig.3a) to Ωxy ≈ 2.6 rad/s for L ∼ 5 µm (Fig.3b). This is a consequence

of the stronger alignment with the axial direction for longer nanowires.8 This strong decrease

is also observed in Fig. 4a that shows the rotational frequency Ωxy as a function of length.

Here each point is the mean of about 20 different measurements for each SiNW sample and

the uncertainty is the standard deviation from the mean. Thus, the scaling behavior of

the rotational frequency, Ωxy, is found to follow a L−2 law with SiNW length. The non-

conservative contribution, ϵxy, and the DCCFs amplitude are plotted in figure 3c. While

the latter is found to be fairly constant in the length range explored, the non-conservative

component is found to decrease with a L−1 scaling law (red solid line in Fig. 3c). This

observed scaling behavior is justified by the fact that for SiNW longer than the trapping beam

Rayleigh range (as is the case for most of our samples) the transverse trapping forces are

fairly constant with length.8,13,24 Thus, the trap decay rates, ωx = kx/γ⊥, ωy = ky/γ⊥, scale

as L−1 following the scaling of the hydrodynamic coefficient, and since the non-conservative

rotation, Ωxy, is found to scale as L−2 (Fig. 4a), we consistently find a L−1 scaling behavior

for the non-conservative contribution, ϵxy.
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Figure 2: Transverse DCCFs for a SiNW with L ∼ 4 µm trapped at two different laser beam
powers, P ≈ 1 mW in (a) and P ≈ 14 mW in (b). The DCCF oscillation frequency is found
to decrease from Ωxy = 17.83± 0.03 rad/s to Ωxy = 10.8± 0.1 rad/s, respectively. Note how
the DCCF slope at τ = 0, related to the persistent sense of rotation, in (a) is the opposite of
that observed in (b). (c) Non-conservative transverse component of the force field (red) and
DCCFs amplitude (blue) as a function of the laser power for a SiNW with L ∼ 4 µm. About
a tenfold increase in the non-conservative component (red data) is observed at low (∼ 1
mW) power as the nanowires are subject to larger angular fluctuations that yield a larger
radiation pressure transverse component. The error bars represent the standard deviation
from the mean value obtained over about 10 measurements for each power value on different
trapped nanowires.
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Figure 3: Transverse DCCFs for two different SiNWs trapped at P ∼ 19 mW with length
L ≈ 1 µm, in (a), and L ≈ 5 µm, in (b). The DCCF oscillation frequency is found to decrease
from Ωxy = 9.7 ± 0.1 rad/s to Ωxy = 2.63 ± 0.03 rad/s, respectively. (c) Non-conservative
transverse component of the force field (red) and DCCFs amplitude (blue) as function of the
SiNWs length. The red solid line is an hyperbolic fit representing a L−1 size scaling behavior.
The error bars represent the standard deviation from the mean value obtained over about
20 measurements for each length.
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The slope of the DCCFxy at τ = 0 is related to the sense of rotation of the trapped SiNW.

A positive slope is related to a counterclockwise (CCW) circulation of the Brownian vortex

with respect to the optical (z-)axis, while a negative slope is related to a clockwise (CW)

circulation. In our experiments, from the statistics of all the measurements we observe that

about 45% of the time the sense of rotation is negative, hence the circulation is CW, while

for the remaining 55% of the times we observe a positive rotation with a CCW circulation.

This shows that there is no preferred sense of rotation for long observation times. In fact,

the sense of the non-conservative rotational bias is persistent (either positive or negative) in

most of our observations within the 2 s acquisition time. However, by breaking the tracks

and calculating the DCCFs in subsequent intervals, we were able to observe in a few cases a

reversal of the sense of rotation, i.e., a reversal of the DCCFs oscillations (see Sec. S3 in the

Supporting Information). This confirms that the observed orbital rotational bias does not

come from intrinsic properties of the beam or the SiNWs, but rather depends on averaged

orientational (tilting) degrees of freedom (generating the transverse radiation force) that have

a much longer relaxation time with respect to the translational ones.6,8 While the driving of

the process is accounted by the occurrence of the shape-induced transverse force, the initial

breaking of the symmetry could arise as the nanowire is pulled into the beam.

The transverse component of the radiation pressure on a SiNW that is tilted with respect

to the optical axis generates a non-conservative torque, ΓNC , about the optical (z-)axis (see

Fig.1), that yields the non-conservative orbital rotational bias. At equilibrium, the non-

conservative radiation torque is counterbalanced by the torque generated by hydrodynamic

viscous drag whose modulus is defined as:47,58

Γdrag = γ⊥Ωxy⟨ρ2⟩ (5)

where Ωxy is the rotational frequency in the x − y plane obtained experimentally from the

DCCF analysis and ⟨ρ2⟩ = ⟨x2⟩+ ⟨y2⟩ is the measured SiNW mean-squared-displacement in
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the transverse plane. Thus, in Fig.4b we show the measured modulus of the non-conservative

torque, ΓNC,z = Γdrag, for the different SiNW samples. Also for this quantity we infer a L−1

length scaling from the data that is consistent with the dimensional analysis of γ⊥ ∝ L,

Ωxy ∝ L−2, and the fact that the mean-squared-displacement in the transverse plane is fairly

constant for SiNW longer than the trapping beam Rayleigh range.8,13,24

Non-conservative radiation forces acting on the SiNWs cause a thermally activated orbital

rotation on the SiNWs about the z−axis and along a nearly circular averaged path. From

the details of the path in the transverse plane and the drag force counteracting the non-

conservative component, we can estimate the work, WNC, and the power, PNC, dissipated

by the non-conservative torque in a single rotation:38,58

WNC =

∫ 2π

0

ΓNC,zdφ = 2πγ⊥Ωxy⟨ρ2⟩ (6)

PNC = ΓNC,zΩxy = γ⊥Ω
2
xy⟨ρ2⟩. (7)

Thus, from our measurements shown in Fig. 4, we can estimate that the work done by the

non-conservative force is in the range WNC ≈ 0.3− 1× 10−22 J, while the power dissipated

in a cycle is within the range PNC ≈ 0.3 − 7 × 10−22 W. Note that these work values are

about one hundredth of the work done for untwisting DNA,60 or four orders of magnitude

smaller than the work done by bacterial flagellar motors,61 as the transverse radiation force

component in our experiments is only a fraction in the order of a few percent of the optical

force exploited for force or torque transduction with OT.2 In this context, understanding

how to marshal and control non-conservative optical forces at the nano-scale could help us

to power future nano-machines.62

We test these estimates with calculations of the work based on simulations of optical forces

on SiNWs by the coupled dipole method24 (see Sec. S4 of the Supporting Information). First

we apply a particular tilt and direction to the nanowire, next we calculate the work done,

W =
∮
F·dr, as the wire is translated about a circular loop in the x−y plane, centered at the
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Figure 4: (a) Rotational frequency, Ωxy, obtained from the DCCFs as a function of length,
L. The red line is a fit to the data with a L−2 scaling law. The error bars represent the
standard deviation from the mean value obtained over about 20 measurements for each
length value on different trapped nanowires. The uncertainty on the length is obtained from
scanning electron microscopy images of the as-prepared SiNW samples. (b) Scaling of the
torque of the non-conservative force component as a function of SiNW length. The blue line
is a fit to the data with a L−1 scaling law. (c) Calculation of the work done by a 4 µm
SiNW as a function of its inclination and as translated in a circular path with radius equal
to the measured transverse RMS displacement. The averaged tilt direction, φ, is fixed at
15 degrees with respect to the polarization (x-)axis. The calculations at small tilting are
consistent (10−22 J) with the estimates obtained from the experiments.
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trapping point and with a radius equal to the measured transverse RMS displacement,
√
⟨ρ2⟩.

An example of such calculations as a function of the wire inclination is shown in Fig. 4c.

It is worth noting how the calculations at small (few degrees) tilting yield an estimate that

is consistent (10−22 J) with the non-conservative work estimated from our measurements.

Moreover, the persistent inclination and direction are dependent on the nanowire length as

it is related to a balance between the restoring conservative torque of the OT and the non-

conservative torque generated by the transverse components of the radiation force. Finally,

we point out that the work and power dissipated by the non-conservative force are related to

the external degrees-of-freedom (center-of-mass, tilting) of the trapped particle. By Kohn’s

theorem63 these are separated by the internal degrees-of-freedom to which energy is dissipated

by heating effects20 that for our experiments are estimated to be at the nanowatts level.

In conclusion, non-conservative effects on non-spherical particles are linked to the oc-

currence of a transverse component of the radiation pressure. Although we measured non-

conservative effects in the order of few percent of the trap strength and with amplitudes

in the range of 5-10%, we were able to detect them at any available laser power (up to 24

mW at the sample), so this needs to be taken into account when dealing with calibration of

optical trapping forces based on effective potentials.18,64,65 From our measurements we are

not able to infer a possible power threshold at which non-conservative rotations disappear.

However, recent experiments on thick tapered nanowires66 show a change of behaviour of

the non-conservative dynamics at about 50 mW. Further experimental work at higher power

on ultrathin nanowires might be able to clarify if these effects truly disappear at some power

or they just scale down monotonically.

In addition, non-conservative forces can have a dramatic effect in optomechanics with

levitated non-spherical particles.4,67 In this context, laser cooling of the particle motion

relies on trapping in vacuum aiming to reach the quantum ground state of the effective

harmonic potential and reveal quantum phenomena at the mesoscale.68–70 However, non-

conservative forces may have a detrimental effect as they can strongly limit the cooling
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efficiency and final center-of-mass effective temperature.71 Therefore, a careful consideration

of non-conservative effects must be taken into account when undertaking laser cooling ex-

periments on non-spherical particles.

Since completing this paper, Toe et al.66 have published a study of the non-conservative

dynamics of InP nanowires with a small taper in optical tweezers and presented a mechanical

model for the rotational-translational coupling in the trap. The current work elucidates the

origin of the non-conservative force in terms of a transverse component of the radiation pres-

sure and its scaling with nanowire length, thereby highlighting the significance of symmetry

and dimensionality in the occurrence of non-conservative effects in optical tweezers.

Supporting Information. The Supporting Information is available free of charge on the

ACS Publications website. Silicon nanowires synthesis. Photonic torque microscopy and dif-

ferential cross-correlations functions. DCCF and circulation. Stochastic circulation induced

by transverse polarization forces. Center-of-mass position and fluctuations.
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