A stated preference model to value reductions in community severance

Paulo Rui Anciaes
Peter Jones
Shepley Orr

Centre for Transport Studies, University College London

Rob Sheldon
Alison Lawrence

Accent

Paul J. Metcalfe

PJM Economics

World Conference on Transport Research, Shanghai, 13/07/2016
What is community severance?
Prague, Czech Republic
Açores, Portugal
How to monetize severance?

Sweden, Denmark (old documents for transport appraisal):
formulas combining traffic variables (density, composition, speed),
crossing need, and unit monetary values per age group

Pedestrian delay * value of walking time

Stated preference:
estimate willingness to contribute to projects that reduce severance
Stated preference survey

SP1

willingness to walk
to avoid crossing a road in a place without crossing facilities

SP2

willingness to pay

200 respondents, 100 in London, 100 in Southend (a smaller city)
Looking at the road conditions on the left, which of the three options would you choose?

Traffic density: **Low**

Central reservation with no guard railing

Cross at closest point
(not at pedestrian crossing)

Option A

Use covered over road
Adds 8 minutes to your journey

Option B

Avoid crossing road at all

Option C

Attributes
SP1: model results

<table>
<thead>
<tr>
<th>Variables</th>
<th>MIXED LOGIT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>coeff.</td>
</tr>
<tr>
<td>time</td>
<td>-0.31***</td>
</tr>
<tr>
<td>Option A (cross)</td>
<td>-2.45***</td>
</tr>
<tr>
<td>lanes=as now</td>
<td>-1.86***</td>
</tr>
<tr>
<td>no central reservation</td>
<td>-2.67***</td>
</tr>
<tr>
<td>density=medium</td>
<td>-</td>
</tr>
<tr>
<td>density=high</td>
<td>-1.63***</td>
</tr>
<tr>
<td>speed=30</td>
<td>-</td>
</tr>
<tr>
<td>Option C (don't cross)</td>
<td>-7.95***</td>
</tr>
</tbody>
</table>

Higher for females and people who don't cross every day (vs. males and people who cross every day)

Higher for people aged>50 (vs. age<50)
SP2: design

Traffic density: Low

Central reservation with no guard railing

In this scenario, which of the two options would you choose?

<table>
<thead>
<tr>
<th>Option A</th>
<th>Option B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cross at this point</td>
<td>Do not cross the road and pay the higher ticket cost</td>
</tr>
<tr>
<td>Saving 80p off your one-way ticket cost</td>
<td></td>
</tr>
</tbody>
</table>

- Option A
- Option B

or shopping bill

Attributes
SP2: model results

<table>
<thead>
<tr>
<th></th>
<th>Random-effects logit (coeff.)</th>
<th>Willingness to pay (£)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>1.24***</td>
<td></td>
</tr>
<tr>
<td>Saving</td>
<td>0.92***</td>
<td></td>
</tr>
<tr>
<td>Lanes=as now</td>
<td>-1.40***</td>
<td>1.5</td>
</tr>
<tr>
<td>No central reservation</td>
<td>-1.24***</td>
<td>1.4</td>
</tr>
<tr>
<td>Density=medium</td>
<td>-1.15***</td>
<td>1.3</td>
</tr>
<tr>
<td>Density=high</td>
<td>-2.56***</td>
<td>2.8</td>
</tr>
<tr>
<td>Speed>=30</td>
<td>-0.72***</td>
<td>0.8</td>
</tr>
</tbody>
</table>

- Higher for people aged > 50 (vs. age < 50)
- Higher for people with mobility restrictions (vs. full mobility)
Application: Tool for local authorities/general public

User inputs

Road conditions
(# lanes, central reservation, traffic levels and speeds)

Population

Major destinations
(stations, supermarkets, schools..)

Outputs

Severance index
‘Disutility’ of the road for pedestrians

Impact on behaviour
Probability that someone will not cross the road (by age group)

Monetary value of the impact
Thank you for your attention!

UCL
Street Mobility project

www.ucl.ac.uk/street-mobility
streetmobility.wordpress.com
@streetmobility