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ABSTRACT 

 

Winter surge management in intensive care is hampered by the annual variability in the winter surge. 

We aimed to develop a real-time monitoring system that could promptly identify the start, and 

accurately predict the end, of the winter surge in a paediatric intensive care (PIC) setting. We adapted 

a statistical process control method from the stock market called "Bollinger bands” that compares 

current levels of demand for PIC services to thresholds based on the medium term average demand. 

Algorithms to identify the start and end of the surge were developed for a specific PIC service: the 

North Thames Children’s Acute Transport Service (CATS) using eight winters of data (2005-12) to 

tune the algorithms and one winter to test the final method (2013/14). The optimal Bollinger band 

thresholds were 1.2 and 1 standard deviations above and below a 41-day moving average of demand 

respectively. A simple linear model was found to predict the end of the surge and overall demand 

volume as soon as the start had been identified. Applying the method to the validation winter of 

2013/14 showed excellent performance, with the surge identified from 18th November 2013 to 4th 

January 2014.  

 

An Excel tool running the algorithms has been in use within CATS since September 2014. There were 

three factors which facilitated the successful implementation of this tool: the perceived problem was 

pressing and identified by the clinical team; there was close clinical engagement throughout and 

substantial effort was made to develop an easy-to-use Excel tool for sustainable use. 
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1. INTRODUCTION 

Clinicians from Great Ormond Street Hospital (GOSH) in the UK run the Children’s Acute Transport 

Service (CATS) which is responsible for transporting very sick children from non-specialist hospitals to 

paediatric intensive care units (PICUs) in north London. They are staffed by intensive care doctors 

and nurses and have two emergency paediatric ambulances for the North Thames area. While the 

numbers of children transported using such specialist retrieval teams are relatively small, all such 

retrievals are potentially life-saving and represent an important and expensive NHS resource 

(Ramnarayan, 2009). If the two teams are out on a call and cannot meet demand, that child must be 

transferred to another transport service (if possible) or else wait for the next CATS team to be free, 

with a risk of further clinical deterioration while waiting. If there is no local specialist PICU bed 

available, teams will need to transport the child further afield to the nearest hospital that has capacity 

(which can be as far away as the very north of England), which further impacts the service as that 

team is then unavailable for a considerable amount of time. Thus, when demand stretches capacity 

there is a risk of a worse clinical outcome for the children waiting longer for transport to a specialist 

unit and significant experienced stress for the CATS team.   

 

In the UK, every winter brings with it an increase in the number of emergency admissions (particularly 

patients with respiratory disease). The British Medical Association (“BMA - Winter pressures”) and 

most hospitals (e.g. “Winter preparedness 2013-14”) have preparedness plans in place to try to cope 

with this increase. However, these plans tend to focus on what do when pressures arise and less on 

whether we can forecast the start of the annual surge (Hanratty and Robinson, 1999). The pressure 

on children’s services is often particularly acute since PICU beds are not an abundant resource and 

young children, particularly the most vulnerable ones (for instance those with cystic fibrosis), are 

proportionately more susceptible to respiratory illnesses than adults (O’Donnell et al., 2010). Every 

winter, the CATS service has been severely stretched by increasing demand with no accompanying 

increase in capacity. However, there is now the possibility for CATS to temporarily increase its 

capacity during the winter surge through staffing additional retrieval teams. There is also potential for 

triggering different procedures for elective admissions to paediatric intensive care units when there is 

indication that the annual winter peak is beginning (for instance pre-emptively re-scheduling some 

operations). Currently, the UK Paediatric Intensive Care Society (PICS) identifies the winter surge as 

starting in mid-November and ending the first week of January and discusses various operational 

ways services can try to cope with the extra demand, including regular regional and national 

conference calls sharing information on experienced demand. 

 

Previous approaches to the winter surge in emergency demand in adult intensive care have involved 

using disease surveillance  (Hiller et al., 2013; Moriña et al., 2011; Nguyen et al., 2016), and/or 

weather and seasonal information (Batal et al., 2001; Boyle et al., 2012; Diehl et al., 1981; Jones et 

al., 2002; Marcilio et al., 2013; Shiue et al., 2016), and/or previous demand (Abraham et al., 2009; 

Jones, 2007; Jones et al., 2008; Proudlove et al., 2003), using a range of techniques including  
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regression, stochastic Markov models and time series analysis methods such as Autoregressive 

Integrated Moving Average (ARIMA) models. In general, while emergency demand was universally 

found to be strongly seasonal and autoregressive it was also extremely variable, with its stochastic 

nature making accurate forecasts beyond seasonal or monthly means difficult. Additional problems for 

paediatric emergency retrievals at CATS is that vulnerable children tend to be the first population 

cohort to fall ill every winter, so that the peak in paediatric intensive care is often a month or two 

earlier than in adults meaning that using sentinel disease methods are less useful. At the same time 

case volume and resources are much lower in this context, so that the stochastic nature of the 

demand tends to have even greater influence on experienced daily demand.  

 

The primary question we address in this paper is thus: can we find and implement a simple, feasible, 

method to improve on the PICS identification of the winter surge and thus help the CATS team with 

their winter planning? Real time identification of the surge could also be of benefit beyond CATS as 

their data feed into other regional and national services throughout the winter.  We describe the novel 

adaptation of a statistical process control method adopted from the stock market to build a signalling 

algorithm to identify the start and end of the winter surge. We also discuss the process of developing 

this solution with the clinical team and how this method was successfully implemented within CATS.  

 

2. DATA  

Data on all CATS referrals are checked and entered onto a dedicated database daily so that the 

database is up to date and of high quality in almost real time. In practice, at 9 am on any given day, 

data exist up until the day before.  We used anonymised reports generated from routinely collected 

data in our analysis. The study was discussed with the local Independent Review Board Chair who 

confirmed that ethical approval was not required.  

 

To develop our signalling algorithm, we used data on all calls to CATS from April 2005 to July 2013. 

We quarantined data from July 2013 to February 2014 to validate the final algorithm.  All analysis was 

carried out using a combination of Stata IC12 (StataCorp) and Microsoft Excel 2010.  

 

3. TIME SCALES AND VARIABLE OF INTEREST 

Each call is logged in the database with the exact time of call.  We first had to decide what time scale 

to use (for instance, daily or weekly) and what the main variable of interest should be.  

 

All calls that come into CATS need to be answered and dealt with by a member of the clinical team. 

However, only a subset of these calls result in the retrieval team leaving to pick up and transport a 

critically ill child. Discussing this with the clinical team at CATS, it was decided that “busy-ness” was 

experienced as demand for retrieval rather than just volume of calls; an increase in call volume 

without a corresponding increase in retrievals (for instance, many more calls for advice) could be 

absorbed relatively easily by the team. Thus it was decided to consider “demand for retrievals” as the 

variable of interest. This was defined as the sum of calls that actually ended in a retrieval and calls 
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that would have resulted in a retrieval if capacity had been available (i.e. refusals due to no available 

team). The latter were identified by calls with an outcome of “refused” where the reason for refusal 

was either no available retrieval team or no available paediatric intensive care bed.   

 

A surge in demand occurs whenever current demand is significantly higher than the recent average. 

However, from an operational point of view, surges only matter to a service if demand is high enough 

to strain capacity. For instance, in a service that has experienced consistently low demand (e.g. 

during August), a surge to medium demand is unlikely to present any problems in meeting that 

demand. To be useful for winter planning purposes, the identification of the start of the winter surge 

should occur only when demand has reached a level that strains available capacity. Reviewing the 

time series data with the clinical team and discussing “busy-ness”, revealed that 4 or more retrievals 

(or demand for retrievals) a day was experienced as “busy”. It was agreed to consider the start of the 

CATS winter surge as when demand first consistently breached “4 a day” or “28 a week” and the end 

of the surge when “4 a day on average” period was over.  

 

To explore appropriate timescales for the data, we first transformed the raw data into three time series 

at daily, weekly and monthly timescales. For the weekly data, we worked with consecutive seven day 

periods rather than “week of year” to avoid disproportionately low numbers in the last week of the year 

which is less than 7 days. For monthly data, we used calendar month to define each time period.  

Figure 1 shows the full monthly and weekly time series from 2005-2013 while Figure 2 shows 

example daily data comparing the summer (Panel A) and winter (Panel B) of 2009. The monthly time 
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series shows the annual winter surge in demand very clearly (Panel A, Figure 1). 

 

Figure 1 – Demand for emergency CATS retrieval from 2005-2013 at monthly (Panel A) and weekly (Panel 

B) resolution. 

The monthly time series (Figure 1, Panel A) highlights that we can predict roughly when the winter 

surge will occur – December will be the busiest month of the year. However, the week the winter 

surge starts is variable – certainly more variable than the current identification of 14 November – 1 

January allows for.  
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Figure 2 - Example daily time series data from the summer (Panel A) and winter (Panel B) of 2009. The 

horizontal red lines show the mean demand for retrievals over these periods (2.7 and 3.8 per day 

respectively) 

The time series of demand for emergency retrieval by the CATS team is very variable, particularly at 

timescales of days and weeks which are most useful for short term service planning (see Figures 1 

and 2). Figure 2 illustrates that even in summer, when demand is lowest, demand can still be high on 

any given day and conversely, in winter when demand is highest, demand can still be very low on any 

given day. For winter surge identification to be operationally useful, it is important to be able to 

monitor demand levels every day. However, using raw daily demand data, given we are looking for a 

move from an average daily demand of about “3 a day” to one of about “4 a day (or more)”, seems 

futile given the variability of the daily demand. (Figure 2).  
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Instead, we used the rolling 7-day total demand as a daily time series. That is, if {𝑦𝑡} is the daily 

demand for retrievals at time t, then the rolling 7-day total demand time series is defined by: 

{𝑤𝑡} = ∑ 𝑦𝑡−𝑗
6
𝑗=0  (1) 

 

In what follows, we use {𝑤𝑡} throughout as the daily time series of interest.  

 

4. DATA OVERVIEW 

Between 1 April 2005 and 15 July 2013, CATS received 17,527 calls. Of these, 9,731 represented 

genuine demand for retrieval, with a daily mean of 3.2 and standard deviation 1.7. The overall referral 

breakdown by outcome is given in Table 1, along with an indication of which referrals corresponded to 

genuine demand for retrieval.   

 

Table 1 - Number of calls by type of call received by Children’s Acute Transport Service (CATS) and 

outcome of call between 1 April 2005 and 15 July 2013. The final column indicates which calls were 

considered to represent “demand for retrieval”.  

Outcome of call  Frequency (% of calls) Counts as demand for 

retrieval? 

CATS team deployed 9337 (53%) Yes 

Transfer request refused due to 

no CATS team or PICU bed 

394 (2%) Yes 

Transfer request refused but not 

due to capacity constraint 

2434 (14%) No 

Call cancelled by referrer 1397 (8%) No 

Child died before team deployed 119 (1%) No 

Courtesy call  488 (3%) No 

Advice given 3343 (19%) No 

Unknown 15 (0%) No 

Total number of calls 17527 (100%)  

Total demand for retrieval 9731 (56%)  

 

5. DEFINING HISTORICAL WINTER SURGES 

To define the historical winter surges, the lead author (CP) sat down with a senior CATS consultant 

(PR) and we manually identified the start and end dates for the surge each year from the rolling week 

time series {𝑤𝑡} and the “28 a week” high demand threshold. An example winter is shown in Figure 3 

for 2007/8 and the full list of manually identified start and end dates is given in Table 2. Note that the 

start of the surge is quite variable (ranging from 8 October to 25th November). 
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Table 2- Identified start and end of the winter surge for each winter up to 2012/13. 

Year Identified start of surge Identified end of surge 

2005/6 04-Nov-05 10-Jan-06 

2006/7 18-Nov-06 05-Jan-07 

2007/8 25-Nov-07 03-Jan-08 

2008/9 04-Nov-08 24-Dec-08 

2009/10 19-Nov-09 23-Dec-09 

2010/11 08-Oct-10 11-Jan-11 

2011/12 23-Oct-11 10-Jan-12 

2012/13 20-Oct-12 26-Jan-13 

 

Although there is a level of subjectivity to choosing exact start and end dates in this way, identifying 

dates allows us to train identification algorithms on historical data and there is no “gold standard” 

method for retrospectively defining the winter surge.   

 

 

Figure 3 - the identified start and end of the winter surge for the winter of 2007/8 using the rolling 

week time series. Note that we did not identify the start until demand had risen consistently above the 

"4 a day/28 a week" threshold. 

 

6. ALTERNATIVE APPROACHES TO THE PROBLEM 

We note that before turning to Bollinger Bands and statistical process control methods, we had tried 

other approaches to identifying the winter surge in demand. This included ARIMA and SARIMA auto-

regressive models fitted to all demand and separately to different diagnostic categories (Box and 

Jenkins, 2011) and using external data as an ‘upstream’ causal signal such as daily weather data 
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(temperature and humidity) (“Weather Online UK” ), national flu surveillance (“Weekly national flu 

reports - GOV.UK”) and Google flu trends (“Google Trends”).  While auto-regressive models could be 

successfully fitted and showed highly significant seasonal patterns, their white noise terms swamped 

the other terms so that, in identifying the start of the winter surge, these models performed no better 

than simply using the historical mean.  Using external weather data was initially promising with strong 

correlation between temperature and demand for CATS, but at the granular daily scale this correlation 

was much weaker and not useful for identifying the winter surge.  Meanwhile the influenza peak in 

adults, usually peaking in January or February, was generally later than the peak in CATS demand for 

retrievals. A possible reason for this is that the children who require CATS services in winter for 

respiratory conditions are the very sickest children in the population; since they are most vulnerable it 

is plausible they are at the vanguard of infections in the population rather than at the trailing edge, 

which makes tracking infections in the general population less useful for predicting the CATS winter 

surge.  

 

7. BOLLINGER BANDS 

Bollinger bands were introduced by stock market investor John Bollinger in 1992 (Bollinger, 1992) as 

a way to trigger buy and sell signals on shares by comparing current prices to medium term moving 

averages. Bollinger did not recommend them as absolute indicators to buy or sell stock but rather as 

reliable indicators of “whether prices are high or low on a relative basis”.  

 

For a given time series {𝑦𝑡}, we define a moving average with window width k as: 

𝑦𝑘 =
1

𝑘
∑ 𝑦𝑡−𝑗

𝑘
𝑗=1   (2) 

 

We similarly define a moving variance as: 

𝜎𝑘
2 =

1

𝑘
∑ (𝑦𝑡−𝑗 − 𝑦𝑘)

2𝑘
𝑗=1   (3) 

 

Standard Bollinger bands (a time series of lower (l) and upper (u) limits) use a window width of 20 

days and 2 standard deviations from the moving average, i.e. they are defined as: 

 

𝑏𝑙 = 𝑦20 − 2𝜎20 (4) 

𝑏𝑢 = 𝑦20 + 2𝜎20 (5) 

 

However, the window size used to calculate the moving average and variance depends on what you 

are trying to achieve. For instance a smaller window width would be more sensitive to short-term 

changes but have lower specificity (i.e. the signal is more likely to be a false positive). Similarly the 

multiple of standard deviations (band width) used to define the upper and lower bands is also flexible. 

The basic trading rule applied is that when the price of a stock exceeds the upper limit (𝑦𝑡 > 𝑏𝑢), the 

stock should be sold and when 𝑦𝑡 < 𝑏𝑙 the stock should be bought.  
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Although very simple, Bollinger bands have been shown to be profitable rules of thumb and continue 

to be used today in the stock market (Lento and Gradojevic, 2011; Leung and Chong, 2003). They 

have also been used in completely different contexts such as identifying fabric defects during 

manufacturing (Ngan and Pang, 2006), although an academic literature search reveals few 

documented uses outside of finance and none in health care. 

 

8. USING BOLLINGER BANDS TO IDENTIFY THE START AND END OF A WINTER SURGE 

Use of Bollinger bands in the stock market is focused on spotting when a time series has deviated 

significantly from a recent medium term average. The underlying assumption is that such deviations 

cannot be predicted. In the stock market, all deviations are important regardless of when in the year 

they occur. However the situation for paediatric intensive care services is somewhat different: there is 

a surge every winter that places significant pressure on PICU services. Thus, if looking at daily 

demand over the year, demand will breach an upper Bollinger band at some point in the autumn as 

demand increases at the start of the surge and it will breach a lower Bollinger band as demand 

decreases once the surge is over. Those breaches could then act as surge identifiers, signalling the 

start and end of the winter surge. Our aim was to choose a window size and band width that respond 

quickly to changes in demand (to provide timely warning that the surge has started or ended) but not 

so quickly that a transient spike or dip in demand will result in a ‘false positive’ identification. Allowing 

the band width and window size to be determined by tuning the identification algorithms to historical 

data (the identified winter surges) is a key and novel difference in our approach from both the use of 

Bollinger Bands in the stock market and other statistical process control (SPC) methods in health 

care. 

 

Additionally, the likelihood of a false positive identification can be reduced by requiring that daily 

demand must consistently breach either the upper Bollinger band (to define the start of the surge) or 

the lower Bollinger band (to define the end of the surge) (e.g. see Wheeler, 2003).  

 

Finally, daily demand breaches the upper Bollinger Band whenever current demand is significantly 

higher than the recent average. However, while this does represent a surge in demand, it only matters 

to a service if demand is high enough to strain capacity. To be useful for winter planning purposes, 

the identification of the start of the winter surge should occur only when demand has reached a level 

that strains available capacity.  

 

The most suitable choices for window size, band width, consistency and absolute demand 

requirements are likely to depend on the particular paediatric intensive care service. The level of 

demand that is considered to strain available capacity must be defined by the local team (at CATS it 

has been defined as “4 a day”). Choices for window size, band width and consistency can then be 

optimised by defining start and end dates for previous winter surges in that service.  
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Let 𝑏𝑢 and 𝑏𝑙 represent upper and lower Bollinger band limits for some chosen window width k and 

multiple, c, of the standard deviation so that 𝑏𝑢 = 𝑤𝑘 + 𝑐𝜎𝑘, where 𝑤𝑘 =
1

𝑘
∑ 𝑤𝑡−𝑗

𝑘
𝑗=1 .  

 

9. OPTIMISING c AND k 

For any given choice of c and k and a given specification of an identification algorithm defining 

consistency and absolute “busy-ness” thresholds, we calculated the goodness of fit to the identified 

dates in Table 2 using the sum of the squared difference: 

 

𝑆𝑐,𝑘 = ∑ (𝑎𝑚 − 𝑓𝑚)28
𝑚=1  (6) 

 

where a is the manually identified date, f is the algorithm identified date and m is the year. Using the 

algorithms above we calculated 𝑆𝑐,𝑘 for values of c (the multiple of the standard deviation) from 0.6 to 

2.2 in increments of 0.1 and values of k (the window width) from 15 to 49. We then chose c and k to 

minimise 𝑆𝑐,𝑘. Note that we ran this optimisation process separately for the start and end of the winter 

surge, allowing c and k to be different for signalling the start and end of the surge.  Due to the small 

number of historical winters, we used brute force optimisation implemented in STATA IC 12, with a 

nested loop incrementing c within increments of k, choosing those values of c and k that minimised 

𝑆𝑐,𝑘  across the 595 combinations. The output of the brute force optimisation is given in the 

supplementary table. The optimisation took about 2 minutes to run on a standard desktop computer. 

 

10. DEVELOPING ALGORITHMS FOR IDENTIFYING THE START AND END OF THE SURGE 

We explored several options for algorithms to identify the start and end of the surge to reduce false 

positives. These included specifying a certain number of days that the Bollinger threshold had to be 

breached to ensure consistency of elevated demand and experimenting with hard threshold cut-offs 

for demand to ensure that demand was high enough to constitute a strain upon the service. We 

allowed different algorithms to be used to identify the start and the end of the surge.  

 

For the consistency criteria, we explored specifying a range of consecutive days that the demand,  𝑤𝑡, 

had to exceed the upper (or be under the lower) Bollinger Band from 2 to 5 consecutive days. We 

also explored relaxing the consecutive condition, specifying instead that at least 3 out of the 5 or at 

least 2 out of the last 4 previous days had breached the upper or lower threshold (following the 

approach discussed in Wheeler, 2003).  

 

For levels of absolute demand, we explored specifying that the demand had to be greater than 28 or 

greater or equal to 28 for the start of the surge and below 28 for the end of the surge, and again 

explored the impact of requiring consecutive days to meet the same threshold criteria.  

 

Finally, we hard coded into the algorithm a prioiri knowledge about winter: the requirement that it 

could feasibly be winter for the start of the surge and the requirement that the surge lasted at least a 

month for the end of the surge.  
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The final algorithms that optimised the goodness of fit criteria defined above are given below.  

 

ALGORITHM FOR START:  

The start of the surge is signalled if: 

 

EITHER: 

𝑤𝑡 > 𝑏𝑢𝑡  𝐴𝑁𝐷 𝑤𝑡−1 > 𝑏𝑢(𝑡−1) 𝐴𝑁𝐷 𝑤𝑡−2 > 𝑏𝑢(𝑡−2) AND 𝑤𝑡 ≥ 28 AND month>=10 

 

OR  

𝑤𝑡 ≥ 28 𝐴𝑁𝐷 𝑤𝑡−1 ≥ 28 𝐴𝑁𝐷 𝑤𝑡−2 ≥ 28 𝐴𝑁𝐷 𝑤𝑡−3 ≥ 28   AND month ≥10 

 

That is, in all cases it had to be at least October and EITHER the rolling week demand had breached 

the upper Bollinger limit three days in a row and the most recent week demand total had reached 28 

(i.e. “4 a day”) OR we had seen demand at or above 28 for four consecutive days. The latter was 

included as a potential signal to allow for the (unlikely) possibility of a slow rising tide of demand.  

 

ALGORITHM FOR END:  

The end of the surge is signalled if: 

 

The start of the winter surge has been signalled AND the signalled start was at least 31 days ago 

AND 𝑤𝑡 < 𝑏𝑙𝑡  𝐴𝑁𝐷 𝑤𝑡−1 < 𝑏𝑙(𝑡−1) 𝐴𝑁𝐷 𝑤𝑡−2 < 𝑏𝑙(𝑡−2). 

 

The demand volume just after the winter surge varied greatly year to year and so we did not use an 

absolute volume threshold to identify the end of the surge, since it reduced goodness of fit.  

 

Note that we are not attempting to fit a statistical model to the running totals (or their moving 

averages) and nor are we asserting any deep meaning to breaches of upper or lower limits. We have 

used a deliberately pragmatic approach, using the time series that is readily available, to try to spot in 

a timely manner when current demand is exceeding recent average demand as a way of determining 

when the winter surge has started (and similarly for the end of the surge). 

 

11. RESULTS OF THE OPTIMISATION 

The optimal Bollinger bands identified are shown in Table 3 while their corresponding signalled start 

and end dates, along with the sum of square errors, are shown in Table 4. The optimised Bollinger 

bands, together with the algorithms given above, matched the identified start and end dates very well, 

particularly for the start of the surge (arguably the most important).  

 

Table 3 - Optimal Bollinger bands for spotting the start and end of the winter surge. For both, the 

optimal lag is 41 days, but for the start the best multiple for the standard deviation is 1.2 and for the 
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end it is 1. For interested readers, the full results of the optimisation for the identification of the start 

are provided as supplementary material.  

 

Start of winter surge 𝑏 = 𝑤41 + 1.2𝜎41 

End of winter surge 𝑏 = 𝑤41 − 𝜎41 

 

Table 4 –The signalled start and end dates using the Bollinger bands defined in Table 3 

Year 

Manually 

Identified 

start 

Signalled 

start 

Squared 

difference 

for start 

Manually 

Identified 

end  

Signalled 

end 

Squared 

difference 

for end 

2005/6 04-Nov-05 07-Nov-05 9 10-Jan-06 14-Jan-06 16 

2006/7 18-Nov-06 23-Nov-06 25 05-Jan-07 08-Jan-07 9 

2007/8 25-Nov-07 26-Nov-07 1 03-Jan-08 06-Jan-08 9 

2008/9 04-Nov-08 07-Nov-08 9 24-Dec-08 26-Dec-08 4 

2009/10 19-Nov-09 20-Nov-09 1 23-Dec-09 29-Dec-09 36 

2010/11 08-Oct-10 08-Oct-10 0 11-Jan-11 12-Jan-11 1 

2011/12 23-Oct-11 24-Oct-11 1 10-Jan-12 15-Jan-12 25 

2012/13 20-Oct-12 21-Oct-12 1 26-Jan-13 19-Jan-13 49 

Total S     47     75 

 

An example of the Bollinger bands and signalled start and end of the surge for the winter of 2007/8 is 

shown in Figure 4. 
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Figure 4 - Example of the signalled start and end of the surge for the winter of 2007/8. The upper and 

lower Bollinger bands are shown in red and green respectively and the corresponding triggered start 

and end dates as red and green dashed vertical lines. The grey vertical dashed lines show the 

manually identified start and end of the surge.  

 

We can see that the daily rolling 7-day totals (𝑤𝑡) breach the upper Bollinger bands in mid-September 

and mid-October as well, indicating that demand was higher than the previous 6 week average. 

However, the September breach is still at low overall volume (just over 3 a day/21 a week) and so 

well below the agreed threshold for high demand. In October, the start is almost signalled but is not 

because it either fails the “𝑤𝑡 ≥ 28” condition or the condition of at least 3 consecutive days OVER the 

upper Bollinger band.  

 

The relatively large window width for the moving average would help to prevent early signalling of the 

end of the surge and has the effect of reducing the influence of short term changes in demand while 

the relatively low multiple of standard deviations (1.2) means that the we are not looking for a large 

shift in demand (remember that the average daily demand shifts from 3 to 4 per day during the surge). 

Thus the optimised values for the window width and multiple of standard deviation have the effect of 

selecting for a moderate but consistent shift in demand, which is intuitively appropriate for this winter 

surge context. As seen in Figure 2, the daily demand is still very variable during winter and there can 

be natural peaks and troughs even during the surge (e.g. mid-December in Figure 4). In almost all 

cases, the signalled date is after the manually identified date for both the start and the end of the 

surge. This is not surprising since a delay of at least three days is built into the algorithms by requiring 

a consistent breach. This is not a weakness of the method since when looking at historical data with 

the benefit of hindsight (as was done to manually identify historical dates), it is relatively easy to select 

the start and end of the surge. However, if using this method to signal the start and end in real time, it 

is important to be relatively sure that that the signal is not simply a transient spike (or dip).  

 

12. CHECKING THE STABILITY OF THE CHOSEN BOLLINGER BAND PARAMETERISATION 

When using all 8 years of historical data, a window width of 41 days was chosen as optimal for both 

start and end and multiples of 1.2 and 1 for the standard deviation respectively. We also wanted to 

check that this parameterisation was reasonably stable (to provide more confidence in using the 

chosen bands in the future). To do this, we re-ran the Bollinger band optimisation process eight more 

times, each time excluding one year from analysis. The optimal values for c and k for the start and 

end of the surge are shown in Tables 5 and 6 respectively. It is clear from this that the 

parameterisation is very stable. 

 

Table 5 -  Optimal window width and standard deviation multiplier for the start of the surge excluding 

one year at a time 

Years Best window width 

FOR START 

Best SD multiplier Minimum sum of 

squared errors 
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All years 41 1.2 47 

Excluding 2005/6 41 1.2 38 

Excluding 2006/7 41 1.2 22 

Excluding 2007/8 21 1 46 

Excluding 2008/9 41 1.2 38 

Excluding 2009/10 41 1.2 46 

Excluding 2010/11 41 1.2 47 

Excluding 2011/12 41 1.2 46 

Excluding 2012/13 41 1.2 46 

 

Table 6 - Optimal window width and standard deviation multiplier for the end of the surge excluding 

one year at a time 

Years Best window width 

FOR END 

Best SD multiplier Minimum sum of 

squared errors 

All years 41 1 149 

Excluding 2005/6 41 1 133 

Excluding 2006/7 41 1 140 

Excluding 2007/8 41 1 140 

Excluding 2008/9 41 1 145 

Excluding 2009/10 42 1 108 

Excluding 2010/11 41 1 148 

Excluding 2011/12 41 1 124 

Excluding 2012/13 41 1 52 

 

13. PREDICTING THE END OF THE WINTER SURGE AND TOTAL VOLUME OF DEMAND 

The developed algorithm based on Bollinger bands allows us to monitor demand in real time for 

signalling the start and end of the winter surge. However, it would also be very useful to have an idea 

of the duration of the surge and overall volume of demand at the beginning of the surge, since this 

could inform any special measures that are put in place once the surge has been signalled.  

 

Define a new variable ℎ𝑚 as the number of days after the 1st October that the winter surge is signalled 

each year, m. Plotting the duration of the surge, 𝑑𝑚, defined as the number of days between the 

signalled start and signalled end vs ℎ𝑚, we see an excellent linear relationship (Figure 5). Clearly ℎ𝑚 

is not independent of the duration (since both depend on the signalled start date), but we are not 

using the observed relationship to model the duration. Instead, we simply want a convenient and easy 

way to estimate the end of the surge once the start has been signalled. We suspect that the 

relationship in Figure 5 is telling us is that regardless of when the surge starts, it will continue until 

approximately the first week of January and that there is a slight tendency for surges that start early to 

continue longer. Using a simple linear regression we obtain a fitted R2 value of 0.91 and the equation: 
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𝑑𝑚 = 108.7 − 1.26ℎ𝑚                                      (7) 

 

 

Figure 5 - relationship between 𝒉𝒎and the duration of the surge, 𝑑𝑚.  

 

We similarly explored the relationship of total volume of demand, 𝑣𝑚 , with ℎ𝑚 (Figure 6). Again we 

see an excellent linear relationship. This is a result of the fact that during the surge each year, despite 

the peaks and troughs, the average daily volume of demand was very close to 4. Thus the overall 

volume during the surge is simply (approximately) 4 times the number of days it lasted. Given the 

linear relationship seen in Figure 5 we should thus not be surprised to see this reflected in volume. 

However, this is very useful, since we can now calculate a reasonable estimate for total volume of 

demand over the surge. Since demand for a CATS retrieval translates directly to a demand for a 

PICU bed in North London, this enables us to give the hospitals receiving CATS patients an early 

estimate of the likely number of beds needed for emergency cases that winter. This could simply be 

communicated as the rule of thumb “from now until early January we are likely to need an extra PICU 

bed a day in North London”.  

 

The fitted linear relationship for volume, 𝑣𝑚   , has an R2 of 0.91 and equation:  

 

𝑣𝑚 = 452.7 − 5.12ℎ𝑚                                           (8) 

 

When using equations (7) and (8) to predict duration and volume at the start of the surge, we apply 

prediction intervals to the point estimates using:  

𝑦̂ ± 𝑡𝑛−2
∗ 𝑠𝑦√1 +

1

𝑛
+

(𝑥∗−𝑥)2

(𝑛−1)𝑠𝑥
2                                                  (9) 
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where 𝑦̂ is the point estimate for duration (or volume), n=8 (the number of data points used to fit the 

line), x* is the new x observation (the new ℎ𝒎), 𝑠𝑦 is the root mean squared error from the regression 

fit, 𝑠𝑥
2 is the observed variance of the eight ℎ𝑚 observations used for the regression and 𝑡𝑛−2

∗  is the 

two sided T-distribution threshold.  

 

 

Figure 6 - relationship between ℎ𝒎 and the volume 𝑣𝑚 

 

13. TESTING THE ALGORITHMS ON THE WINTER OF 2013/4  

We tested the new algorithms and duration and volume prediction on the winter of 2013/14 (which 

was not used for algorithm development or the optimisation process).  

 

Running the algorithm, the start of the winter surge was signalled on the 18th November 2013 (Figure 

7). We can see that the algorithm has signalled the start of surge at a point when a purely visual 

inspection would not have been able to. Applying equations 7 and 8 to predict the duration and 

volume and equation 9 to provide 60% prediction intervals, we obtain an expected end of surge to be 

5th January 2014 [29 December, 11th January] (shown as the grey dashed line in Figure 7) and an 

expected overall volume of demand of 207 [181, 241].  

 

Continuing the algorithm through the winter of 2013/14, the end of the surge was signalled on the 4th 

January 2014 and the overall volume of demand was 235 (see Figure 8). The algorithm has done a 

good job in identifying the winter surge, although it could be argued that the actual end of the surge 

was slightly later, around the 21st January 2014. However, either the triggered end (4th January) or a 

later end of 21st are reasonable and the choice is somewhat subjective. Certainly, as tested on the 
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winter of 2013/4, the method for picking out the start and end of the winter surge is fit for purpose, as 

was agreed with the clinical team.  

 

 

Figure 7-  running on the algorithm on the winter of 2013/4 to find the start of the winter surge. These 

data were not used to develop the algorithm or optimise the Bollinger bands. The red dashed line 

shows the signalled start of the surge and the grey dashed line the predicted end of the surge.  

  

We note that demand for CATS services is experienced by the team as a daily burden rather than a 

weekly burden. It is interesting to see how the algorithm has made sense of the much messier daily 

demand for the winter of 2013/14 (Figure 9). The variability is evident – using just the daily data, it 

would be harder to pick out a winter surge period, but we can also see that the signalled surge period 

does indeed have a higher average demand than the non-surge period. 
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Figure 8 - running on the algorithm on the winter of 2013/4 to find the end of the winter surge. These 

data were not used to develop the algorithm or optimise the Bollinger bands. The green dashed line 

shows the signalled end of the surge and the grey dashed line the predicted end of the surge.  

 

Figure 9 - Daily demand for retrieval for the winter of 2013/4. The blue lines show the average daily 

demand outside of the identified surge period while the red line shows the average demand within 

surge period (almost 5 a day). The vertical dashed lines show the signalled start and end of the surge. 
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14. IMPLEMENTATION 

This special issue of EJOR arising from the 27th European Conference on Operational Research has 

a focus OR in practice and a key component of OR is the “real world” application of analytical 

methods (“The Science of Better”). Thus we highlight here the elements of this work that enabled 

rapid and successful implementation of this work, all of which were facilitated by the OR analyst (CP) 

working in an embedded research role for two days a week within Great Ormond Street Hospital. 

 

Addressing a pressing problem 

The winter surge is experienced as a difficult period by those working within CATS, due to the large 

increase in demand for services. This project was focused on, and motivated by, finding an approach 

that could be used by the team in real time to mitigate some of the perceived burden. This meant that 

the method used was secondary and the primary requirement was for feasibility of daily on-going use. 

The focus on usability and the clear desire for such a tool among the CATS team facilitated the quick 

implementation of the final algorithms. 

 

Engaging key clinical team members throughout 

The problem came from the clinical team and was discussed throughout development with three key 

clinical champions within CATS (all co-authors on this paper), which included the clinical lead for data 

within CATS (PR). This ensured that the analytical development used the available data 

appropriately, in particular in defining: what constituted “demand” for the CATS team, the threshold for 

“busy-ness” and in establishing what output would be useful for the clinical team. These discussions 

were also useful for the clinical team in aiding thinking about the winter surge as a whole and its 

impact on the service. Having developed a methodology for identifying the winter surge, the lead 

author (CP) then discussed it in detail with the whole CATS team, including clinicians, administrators 

and nursing staff.  They were very enthusiastic and were keen to use the method for the coming 

winter of 2014/5. 

 

Producing an easy-to-use software tool 

Although both Bollinger Bands and the final algorithms are relatively simple, they do require data 

manipulation to implement and update every day with the most recent available data. Key to the 

sustainable use of this method was the development of a simple Excel spreadsheet that would take 

as input the standard data report generated from the CATS database and, on the click of a button, 

clean and process the data to produce charts as shown in Figure 10. Had there been any substantive 

additional burden in terms of time taken or difficulty for the CATS administrative or clinical team, the 

tool would not have been successfully implemented.  This final step in enabling the move from 

potential to actual use of a new method was crucial. 

 

The lead author (CP) implemented the Bollinger bands and the algorithms within Microsoft Excel 2010 

using Visual Basic so that the spreadsheet: 
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 carries out automated data-cleaning and checking  

 processes the cleaned data to provide daily totals of genuine demand 

 updates the information on the 7-day running totals, the 41 day moving average and upper 

and lower Bollinger bands 

 checks for the winter signalled start and end (depending on time of year) 

 updates a chart displaying the recent few months of demand along with upper and lower 

Bollinger bands (with signals if appropriate).  

 If the start of the winter has been signalled, writes out the predicted end and volume on a 

separate worksheet.  

 

Note that for the implementation, we updated the best linear fits in equations (7) and (8) to include the 

observations from 2013/14 data. These have continued to be updated every year as more data 

becomes available. In 2014, we also shifted the potential start of winter back from 1 October to a 

week later (8th October).  

 

Example output from the Excel file for from the winter of 2014/15 is shown in Figure 10. We can see 

that the algorithm identifies the surge well and that a predicted end of the surge is also shown on the 

graphic (the actual end of the winter surge was signalled on 5th January 2015).  

 

 

Figure 10 - example output for the CATS service from the implemented Excel file from mid-winter 

2014/15.  
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15. LIMITATIONS 

The method is deliberately simple and pragmatic but it does come with limitations. By responding to 

changes in demand, it is necessarily reactive and does not predict the start of the winter surge ahead 

of time. While the start and duration will always be stochastic to some extent, there undoubtedly exist 

to a complex set of causal factors that determine its start and duration. Possible causal contributors 

include the weather (temperature; humidity), circulation of respiratory viruses that year and the size 

and characteristics of the local (relatively small) population of vulnerable children. Exploring and 

modelling these causal factors, let alone then developing a predictive real time forecasting tool based 

on them, would be a fascinating but large project and outside the scope of this work.  

 

A related limitation is that although the method identifies the start in real time and can be used to 

predict its likely end, it cannot predict the size, timing or duration of the peak demand for that specific 

winter. On average, demand over the winter surge is “4 a day” and the peak is usually mid-December, 

but this can change from year to year. Some  winters are worse than others and some have short 

high peaks; others longer, less high peaks and some can be both long and very busy with little 

respite. It would be useful for a service to have an indication of the type of the winter likely for that 

season, but our method is unable to provide this information.  

 

16. DISCUSSION 

Using methods adapted from the stock market, we have developed a system for monitoring daily 

demand that can be used to identify the start and end of the winter surge for emergency paediatric 

intensive care services in real time. Importantly, the system also provides robust predictions of the 

duration of the winter surge and the total volume of demand during that time at the beginning of the 

surge. We suspect that the accuracy of these predictions is due at least partly to the fact that the 

winter surge almost always ends during the first ten days of January, regardless of when the winter 

surge started (i.e. starting earlier does not mean it will end sooner). The method performed very well 

when tested on a validation dataset. 

 

The method identifies the start and end of the winter surge by comparing current demand to a 

medium-term moving average, where the optimal window size for the moving average was 41 days. 

Although demand for paediatric ICU is not exclusively from external emergency referrals, it is such 

external referrals that drive the increase in demand every winter. Retrieval services cover an entire 

geographical area and, from an emergency demand point of view, sit “upstream” of individual PICUs. 

Applying this method within a retrieval service thus provides a practical way to alert clinical teams 

within local PICUs and local commissioners when the winter surge has started. The ability to know 

when the surge has started provides significant advantages over the current crude fixed dates used 

by several national bodies. A key advantage is that the method also predicts the end date of the surge 

once the start has been signalled; this can be simply translated into a more approximate rule of thumb 

“the surge for PIC services will end during the first two weeks of January regardless of how early or 

late it starts”. 
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The availability of a system to alert clinical teams to the start of a surge in demand, along with 

predictions of the end of the surge and the total volume of demand, will have significant implications 

on how emergency preparedness plans are implemented in PIC in the future. Since emergency 

demand is inherently unpredictable and cannot be controlled, the main response from the retrieval 

service could be to increase the number of available teams from the identified date (rather than a 

fixed date) until the predicted end of the surge, although we acknowledge difficulties with designing 

rotas that are flexible enough to cope with short term changes. Knowledge of the predicted demand 

will also help plan for the number of such additional teams required. Other possible responses by 

retrieval services could include reducing the number of non-essential meetings, restricting annual 

leave or using non-clinical staff days. Sharing information regarding the surge with the regional PICUs 

will help them prepare for the excess demand by hiring temporary staff to open more beds or by 

rescheduling elective surgery cases to after the end of the surge period. While these measures have 

already been tried in the past, they have either been too late (long after the surge has started) or too 

early (weeks before any surge), resulting in an ineffective response both clinically and from a cost 

perspective. The tool was used successfully in real time at CATS for the winters of 2014/15  and 

2015/16 and its outputs shared with other regional retrieval services and local service commissioners. 

We have agreed with the clinical team that as each winter passes, we will review the algorithms and 

modify them if appropriate.  We also note that since the implemented tool runs throughout the year, 

plotting the current and recent demand with the upper and lower Bollinger Bands provides a daily 

visual check for sudden increases in demand outside of winter and would highlight unexpected 

demand due to, for instance, a new epidemic.  If considered useful by the clinical team, further 

development could include exploring signalling of the much shorter surges (typically 5-10 days long) 

that occur unpredictably throughout the year. This has not been explored in detail to date because it is 

unclear whether any operational response is possible for such short surges. 

 

The method’s robustness and simplicity should also allow for a relatively straightforward application to 

any PIC service, and indeed, other health care environments where external demand for services is 

both highly variable and unpredictable.  Applying it to another PIC service does require local 

knowledge of what is a suitable threshold of high demand and requires data to be available on 

refusals that were in scope of the service. Although the timing of seasonal surges may vary with 

geographical location (Ong et al. 2009; Wiler et al. 2011), this does not affect the applicability of the 

method to other contexts.  For very different contexts, the methodology for signalling a surge would 

be the same but the range of possible responses/implications would differ.  

 

We believe there were three factors which facilitated the successful implementation of this tool in 

practice: the perceived problem was pressing, identified by the clinical team and not driven by 

methodology; extensive clinical engagement throughout and academic time taken to develop an easy-

to-use Excel tool to enable daily use of the method. The embedded research role held by the lead 
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author facilitated this engagement and seems a promising approach for implementing practical OR 

solutions within clinical settings (Marshall et al., 2014).  

 

16. CONCLUSIONS 

We have developed and tested a novel method to identify the start and end of the winter surge in 

emergency demand for paediatric intensive care depending on absolute levels of demand and how 

these compare to the 41-day moving averages and standard deviation of demand. Close collaboration 

with the clinical team and a focus on a practical solution was key to the project’s success. 
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