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Abstract—Content Delivery Networks (CDNs) have been the
prevalent method for the efficient delivery of content across
the Internet. Management operations performed by CDNs are
usually applied based only on limited information about Internet
Service Provider (ISP) networks, which can have a negative
impact on the utilization of ISP resources. To overcome these
issues, previous research efforts have been investigating ISP-
operated content delivery services, by which an ISP can deploy
its own in-network caching infrastructure and implement its
own cache management strategies. In this paper, we extend our
previous work on ISP-operated content distribution and develop
a novel scalable and efficient distributed approach to control
the placement of content in the available caching points. The
proposed approach relies on parallelizing the decision-making
process and the use of network partitioning to cluster the
distributed decision-making points, which enables fast reconfig-
uration and limits the volume of information required to take
reconfiguration decisions. We evaluate the performance of our
approach based on a wide range of parameters. The results
demonstrate that the proposed solution can outperform previous
approaches in terms of management overhead and complexity
while offering similar network and caching performance.

Index Terms—Cache Management, Content Placement, Net-
work Partitioning, Content Delivery Networks.

I. INTRODUCTION

The consumption of video content has increased dramat-
ically over the last few years and currently dominates the
network traffic. As indicated by reports from Cisco [1], video
had a 67% share of the global IP traffic in 2014 and is expected
to reach 80% in the next 3 years. Content Delivery Networks
(CDNs) have been the prevalent method for delivering video
content (content and video content are used interchangeably
hereafter) across the Internet. In order to meet the growing
demand, CDN providers deploy massively distributed storage
infrastructures that host content copies of contracting content
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providers and maintain business relationships with Internet
Service Providers (ISPs). Surrogate servers are strategically
placed and connected to ISP network edges [2] so that content
can be closer to clients, thus reducing both access latency and
the consumption of network bandwidth for content delivery.

Current content delivery services operated by large CDN
providers like Akamai [3] and Netflix [4] can exert enormous
strain on ISP networks [5]. This is mainly attributed to the
fact that CDN providers control both the placement of content
in surrogate servers spanning different geographic locations,
as well as the decision on where to serve client requests
from (i.e., server selection) [6]. These decisions are taken
without knowledge of the precise network topology and state
in terms of traffic load, and can result in network performance
degradation affecting the service quality experienced by the
end users.

To address this problem, in previous work we proposed a
cache management approach that enables ISPs to have more
control over their network resources [7] [8]. In contrast to
CDN providers, ISPs have a global knowledge about the
utilization of their network and can thus carefully configure the
management operations to perform. Exploiting the decreasing
cost of storage modules, the approach previously proposed
involves operating a limited capacity CDN service within
ISP domains by deploying caching points in the network.
Such a service can cache popular content, specific to an
ISP, and serve most client requests from within the network
instead of fetching content items from surrogate/origin servers.
Empowering ISPs with caching capabilities can allow them to
implement their own content placement and server selection
strategies, which will result in better utilization of network
resources. In addition, there are economic incentives for an
ISP to adopt this approach given that traffic on inter-domain
links can be significantly decreased.

While the utilization of network resources is affected by
both content placement and server selection operations, this
work concentrates on the former. Research CDNs, such as
Coral [9], have proposed distributed management approaches
[10]. However, commercial CDNs have been traditionally
using centralized models for managing the placement of
content in distributed surrogate servers. Both centralized and
distributed management approaches have their pros and cons in
terms of configuration optimality, implementation complexity,
computation and communication overhead, as well as re-
configuration timescales. For example, centralized solutions
would require collecting information from multiple locations
to build a global view of the user demand, which can incur



significant traffic overhead. In addition, computationally inten-
sive algorithms are executed in an off-line fashion, producing
longer-term configurations (in the order of days), and do not
allow for adaptation to changing user demand. However, they
are simple to implement and can result to optimal placement
decisions. On the other hand, distributed solutions involve less
computational overhead since they employ simpler placement
algorithms and usually operate on local views of the demand.
This allows them to execute in short timescales (e.g., in the
order of minutes or hours) and track the demand, but at the cost
of global optimality. Their implementation is more complex
since a coordination mechanism may need to be in place
to maintain configuration integrity among decision-making
points, which will also incur some communication overhead.

Although the release date and the expected popularity of
some video content could be known in advance, there are cases
that these cannot be predicted. A prime example concerns
disaster scenarios (e.g., earthquakes, terrorist attacks) in the
event of which news channels create video reports and updates.
In the German Wings plane crash in France (24 March 2015),
the official BBC report on the tragic event1 gathered nearly
100,000 hits during the first 24 hours. A centralized manage-
ment system, operating with long reconfiguration timescales,
would not cache this content soon after its release thus
forcing user requests to be served from the origin server. This
increases the access latency but also causes unnecessary usage
of network resources for delivering the content. We believe that
cache management systems should be more reactive to user
demand, or at least implement short reconfiguration cycles.

To this end, we extend our previous work on pro-active
cache management [7] [8] and focus on solutions that can
enable the fast execution of the content placement algorithm
and the reduction of the communication overhead. In [8], we
considered the content management problem in the context of
a multi-tenant scenario. We focused on the joint optimization
of content placement and server selection, which is formulated
as an Integer Linear Programming problem and may have
scalability limitations as both the content catalogue and the
caching infrastructure increase. To overcome these limitations,
we propose a new distributed content management approach.
In contrast to the strategies proposed in [7] which rely on
sequential decisions, here we develop parallelized decision
making processes that provide better scalability and lower
management complexity. We also develop a network partition-
ing approach that reduces the amount of information that needs
to be exchanged between decision making entities. The results
of our experiments demonstrate that the proposed solution
can achieve network and cache performance similar to the
ones obtained with the previous approaches while significantly
reducing the management/communication overhead and com-
plexity.

The remainder of the paper is organized as follows. Section
II presents the cache management framework considered in
this work. In Section III, we describe the proposed content
placement approach and in Section IV, we present two net-
work partitioning methods. We evaluate the performance of

1https://www.youtube.com/watch?v=UYk3NE4Bbiw
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Fig. 1. Overview of the proposed caching infrastructure.

the placement algorithm in Section V. Section VI discusses
related work and finally, conclusions and future directions are
provided in Section VII.

II. CACHE MANAGEMENT FRAMEWORK

In this section, we describe the cache management frame-
work considered in this work.

A. In-Network Caching

We consider a scenario where an ISP operates its own
caching service by deploying a set of caching points within its
network, as depicted in Fig. 1. The caching locations can be
associated with network edge nodes, which represent access
networks connecting multiple users in the same region, or
with core nodes, interconnecting the access networks. Unlike
the heavyweight caching infrastructure maintained by CDN
providers, the proposed caching service relies on a simple
and lightweight solution. As can be observed in Fig. 1,
each network node is associated with caching capabilities -
represented by a local cache - which is used to locally store a
set of video content items. Local caches can be implemented
as external storage modules attached to the routers or, with the
advent of flash drive technology, integrated within the routers
themselves.

Based on this service, the ISP can cache popular content
(specific to its users) and, as such, serve most client requests
from within the network instead of fetching content items from
origin servers. In practice, the total caching space available in
the network will not permit, however, to store all possible con-
tent items. A subset of them needs therefore to be preselected,
for example based on content popularity, so that the volume
of selected items does not exceed the total caching capacity.
More specifically, three cases can be considered when deciding
how to satisfy a content request, as illustrated in Fig. 1. In the
first case, the request for content X3 received at edge node
E5 is served locally given the availability of the item in the
cache associated with node E5. In the second case, content
X1 requested at edge node E3 is not available in the local
cache but can be found in the caches associated with nodes
E1 and E4. To optimize the average retrieval delay, the item is
fetched from the closest location, i.e., node E4. Finally, in the



third case, the request for content X6 received at edge node
E1 needs to be redirected to the origin server since the item
is not stored in any of the network caches.

While serving a content request from the local cache does
not incur any cost in terms of network footprint and minimizes
the delay in satisfying the request, retrieving a content from a
remote location has an impact both on the network utilization
and retrieval latency. Intelligently managing the placement
of the content items in the different caches, under specific
user demand characteristics, is therefore essential to optimize
the use of network resources, and, as such, the quality of
service/experience offered to the users.

B. Management Plane

In the proposed framework, the caching infrastructure is
managed through a management plane, as shown in Fig. 1,
which implements the logic of cache management applications
(e.g., content placement strategies and request redirection ap-
proaches). From an architectural point of view, this can follow
a centralized approach, where management operations are
executed by a centralized management system that operates on
a global view of the network. It can also rely on a decentralized
model, where a set of distributed managers is responsible for
performing management operations. In this case, each manager
is in charge of a subset of the network caches2. To take
management decisions, the manager can use locally available
information about the resources it supervises or obtained from
other managers, using for instance the management substrate
structure and communication protocols proposed in [11] and
[12].

The choice of implementation of the management plane
depends on the timescale at which management operations are
executed. In general, centralized solutions are well-suited in
the case of applications for which the time between each exe-
cution is significantly greater than the time to collect, compute
and disseminate results. In contrast, distributed management
approaches are usually considered to implement the logic of
applications executed at short timescales [13]. In this paper,
we focus on a content management application that can be
executed at short timescales (for example every 30 minutes)
to better track changes in the user demand and focus on
decentralized management plane solutions, where one cache
manager is associated with a single caching location.

III. CONTENT DISTRIBUTION STRATEGY

In this section, we describe a content distribution approach
to control the configuration of each cache.

A. Content Placement

We first formalize the content placement problem and
introduce some notations. Let M represent the set of M
network caches. These are divided into the set of cachesME ,
associated with network edge nodes, andMC, associated with
core nodes, so that M =ME ∪MC and ME ∩MC = /0.
We denote cm as the capacity of cache m ∈ M. Let X

2Each cache is under the supervision of one manager only.

TABLE I
SUMMARY OF THE CONTENT PLACEMENT PROBLEM NOTATIONS.

M Set of M caches
ME Set of caches attached to edge nodes
MC Set of caches attached to core nodes
cm Capacity of cache m
X Set of X video content items
sx Size of content item x
rx

m Number of requests for item x received at cache location m
rrrx Total number of requests for item x in the network
ax

m Binary variable for content placement of item x at cache m
Sm Remaining capacity available at cache m

represent the set of the X video content items requested in
the network. We denote sx as the size of content x ∈ X in
bits. In addition, we denote rx

m as the number of requests
for item x received at cache location m. In the case of edge
caches, this represents the number of requests coming from
the users connected to the relevant access network. For core
caches, this is the aggregate of the requests for the content
that transit through the considered core node. We define rrrx

as the total number of requests for x received in the network,
so that we have: ∀x ∈ X , rrrx = ∑

m∈ME

rx
m. Finally, we denote

ax
m as the binary variable equal to 1 if item x is cached at

location m and 0 otherwise. For all m ∈M, we denote Sm
as the remaining capacity available at cache m, so that we
have: Sm = cm− ∑

x∈X
ax

m · sx. A summary of these notations is

provided in Table I.
The objective of the content distribution algorithm is to

determine the number of copies of each content to store in
the network, as well as the location of each copy, so that the
placement of content items in each individual cache satisfies
the cache capacity constraint. Formally, this can be defined
as finding, ∀m ∈M and ∀x ∈ X , the values of ax

m under the
cache capacity constraint, i.e., ∀m ∈M, ∑

x∈X
ax

m · sx ≤ cm.

Based on the resulting cache configuration, a mechanism
is then used to decide from where to serve each incoming
request, i.e., either locally or redirected to a remote location.
In this work, we assume that content items are retrieved from
the closest available location. As such, placement decisions
coupled with strategies to decide from where to serve the
requests can lead to a reduction of both the utilization of
network resources and the average content delivery latency.

In the rest of this paper, we assume that all content items
have the same size. We believe that this a realistic assumption
as the fragmentation of items into equally sized chunks is a
requirement of many replication mechanisms, e.g., [14], [15],
and is also present in various content distribution systems such
as BitTorrent and modern streaming technologies (e.g., Apple
HLS, MPEG DASH) that usually operate on fixed duration
segments. In addition, we also assume that all caches have the
same capacity, which is a common assumption in the literature,
e.g., [14] [16]. Determining the correlation between the content
size and the user interest for the content, as well as taking into
account different cache sizes, are challenging research issues
which are outside the scope of this paper. As such, we have:
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∀x ∈ X , sx = s and ∀m ∈M, cm = c.
In our previous work, we developed two placement strate-

gies [7] to decide on the allocation of the content items in
the different caching locations. These strategies follow an
iterative process design, so that the placement decisions are
taken iteratively: the decision of a single cache manager (i.e.,
per content and per location) is communicated to the next
manager at each iteration. Although such sequential processes
have the advantage of preventing the occurrence of conflicting
decisions, they have inherent limitations in terms of scalability
as the number of items and caching locations increase. To
overcome these limitations, we propose a new strategy which
relies on the parallelization of the placement decisions. In con-
trast to our previous approach, the managers compute cache
configurations concurrently for multiple content items, which
results to a shorter decision-making process. We elaborate on
the details of the approach in the next subsection.

B. Proposed Approach

The objective of the proposed algorithm is to cache the
most popular content items in the network and to place them in
close proximity to the locations they are requested the most. In
other words, placement decisions are driven both by the global
popularity of the content (in terms of number of requests) and
the geographical location of the interests for each content.

As explained in Section III-A, the algorithm relies on
parallelizing the decision-making process, so that one instance
of the reconfiguration process is executed per caching location,
as depicted in Fig. 2. More specifically, the reconfiguration
process consists of two phases. The objective of the first
phase is to maximize the number of unique content items
to cache in the network, which, as a result, can lead to a
reduction of the number of redirections to the origin server.
In this phase, the decision process executed at each caching
location relies on a common network-wide knowledge shared
between the different reconfiguration instances. The objective
of the second phase is to replicate the content items in order
to maximize the local cache hit ratio (i.e., to maximize the
chances of finding the requested content locally). In addition,
this also increases the probability of being able to serve the
incoming requests from the near vicinity, which can lead to a
reduction in terms of network resource utilization. In this case,
the decisions taken for each caching point rely only on local
information regarding the location controlled by the relevant
reconfiguration instance. The knowledge used in both phases
is based on information about the interests for each content
at each caching location, which can be obtained by prediction
strategies, such as the one proposed in our previous work [8].

Content List of caching locations
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Fig. 3. Structure T.

C. A Two-Phase Content Placement Process

In this subsection, we elaborate on the details of each phase
of the reconfiguration process.

1) First Phase - Maximizing Content Diversity: In this
phase, decisions are taken based on global information about
all caching locations. In particular, this represents (i) the
number of requests for each content item received at each
caching location, from which the global popularity of the item
(i.e., total number of requests in the network for the content
item) and the interest of each location for the considered
item can be determined, and (ii) the configuration of the
cache associated with each caching location (i.e., list of items
available locally).

Based on this information, the algorithm can determine the
global popularity rank of each content x with respect to all the
content items requested in the network. The ranks are in the
interval [1;X ], so that the content with the highest popularity
has a rank equal to 1 and the one with the lowest popularity
has a rank equal to X. In addition, we can also compute, for
each content item x, the rank of each caching location m in
terms of interest for x with respect to all other caching points.
In this case, the ranks are in the interval [1;M], so that the
location with the highest interest has a rank equal to 1 and
the one with the lowest interest has a rank equal to M. Based
on the rank values, we define the structure T as shown in
Fig. 3, where ji represents the rank of cache j with respect
to item i. Content items in T are sorted by decreasing order
of global popularity, while the caching locations are sorted,
for each item, by decreasing order of interest for the item.
The configuration of each cache is represented by the binary
variables ax

m, defined in Section III-A, which are equal to 1
if content x is cached at location m and to 0 otherwise. In
addition, the binary variable ux is defined for each content
item x and is equal to 1 if the content is cached in at least
one caching location in the network and to 0 otherwise. By
definition, the value of ux is driven by the value of the ax

m
variables. We note K the knowledge of (i) the structure T , (ii)
the values of all the ax

m and (iii) all the parameters cm. In this
phase, the reconfiguration process executed for each caching
location is associated with an instance of the knowledge K,
so that all processes can operate on the same global view of
the system.

More specifically, the first phase of the algorithm relies on
an iterative process, so that, at each iteration, the following
operations are performed in parallel for each caching location.
We denote K(i) as knowledge K considered at iteration i.

1) Based on K(i), determine for all items x, ux, and for all
caches m, Sm.



2) Define S(i) as the normalized caching space available
remotely (i.e., in the other caches). S(i) is expressed in
units.

3) Consider iteratively the p first content items in T so that
up = 0 (i.e., the items not already cached in the network)
and p≤ S(i).

4) For each considered item, do:
a) If the cache for which the process is executed is

attached to the location with the highest interest for
the item and has enough capacity to accommodate
it, then place the content in that cache.

b) Otherwise, disregard the content.
At the end of each iteration i, the values of ax

m are updated
and a new instance of the knowledge K(i+ 1) is passed to
each process (note that this concerns only the updated ax

m).
The algorithm terminates if at least one of the three following
conditions is satisfied: a) all the available caching space has
been consumed, b) all requested content items have been
cached or c) there are no more feasible placements. The latter
occurs in case caching space is still available at a location but
none of the remaining content items to cache is requested at
that location, or in case the rank of the first content to consider
(driven by the parameter p) is larger than the total remaining
caching space (expressed in units).

In this phase, the placement decisions computed for each
cache rely on an implicit coordination between the processes,
which limits the number and type of items to accommodate
locally. This forces the algorithm to maximize the number
of unique items cached in the network, and, as such, to
minimize the number of redirections to the origin server. It
is worth noting that although the first phase of the algorithm
involves sequential decisions, these are only serialized at the
group of content level (caches operate in parallel), which
limits the number of iterations. This is in contrast to purely
iterative approaches, which consider sequential decisions per
content and per caching location, thus leading to much longer
execution time.

2) Second Phase - Content Replication: The objective of
the second phase of the algorithm is to perform replication in
order to optimize the cache hit ratio. In this case, placement
decisions are taken independently for each caching location.
The algorithm tries to fill up the remaining capacity by copying
the locally most popular content items not already cached in
the considered location3. Each placement instance operates on
information regarding the number of requests received locally
for each item.

The pseudo-code of the content placement process is pre-
sented in Fig. 4. We quantitatively evaluate the convergence
of the algorithm in Section V.

D. Decentralized Decision-Making

From an implementation point of view, the different re-
configuration processes are distributed across a set of cache
managers, which have local knowledge about the resources
they supervise. To build the required global knowledge, the

3An item is cached in a location only if the content is requested at that
location.

Parallelized Content Placement Process
B Build initial knowledge K.
B Enter process phase 1.
while Ending conditions of phase 1 non satisfied do

Execute phase 1 algorithm.
Update knowledge K.

end while
B Enter process phase 2.

Fig. 4. Pseudo-code of the proposed parallelized content placement process.

managers need to communicate between themselves. The
volume of information to exchange is driven by the degree
of distribution of the management plane (i.e., number of
managers). In addition, this also depends on the stage of
execution of the algorithm. Initially, each manager needs to
acquire information about the number of requests received for
each content item at each caching location, which is used
to locally build the structure T . In addition, the managers
need to communicate the value of their local caching space
(i.e., the cm), as well as the configuration of their associated
cache (i.e., the ax

m). In contrast, the information which needs
to be exchanged at each subsequent iteration concerns only the
updated value of ax

m, from which the values Sm and ux can
easily be deduced. To further reduce the overhead incurred
by the coordination between the managers, the exchanged in-
formation can be compressed using simple encoding schemes
such as Bloom filters [17]. It is worth noting that the second
phase of the algorithm does not have a cost in terms of
coordination overhead.

From a complexity point of view, the cost and convergence
of the algorithm is affected by both the number of requested
content items and the number of caching locations. In the
worst case, the algorithm operates in a similar fashion to a
purely iterative process and the complexity is in the order
of O(M ·X). This could happen, in particular, in the case of
uniform user demand distributions. In a real scenario, however,
the demand is unlikely to follow such a distribution [18]. We
further discuss and evaluate the scalability and complexity of
the proposed approach in Section V-B1.

IV. NETWORK PARTITIONING

While the parallelization of the decision process enables
parallelism at the network level, issues may arise with respect
to the volume of information that needs to be exchanged in
order to maintain a global network view in the case of a
decentralized implementation. To limit the scope of knowledge
and, as such, the volume of information to exchange and
process, we propose to partition the network into regions.
More specifically, network nodes are partitioned into a set of N
clusters so that caching decisions (i.e., placement and request
redirection) are taken at the cluster level. Nodes in each cluster
have only visibility about other nodes in the same cluster. To
limit the complexity of the proposed approach, coordination
between clusters is not enabled. As such, upon receiving a
content request, each caching location checks whether it can
be satisfied from within the cluster, and if not, the request is
redirected to the origin server.



In this paper, we use ideas from the area of machine
learning to leverage the volume of information which needs
to be exchanged by partitioning the network topology, while
maintaining a level of network and cache performance similar
to the one that can be achieved when considering a single
network domain. We investigate two well known partitioning
methods proposed in the literature: the k-split approach (e.g.,
[19] [20]), which aims at minimizing the maximum intercluster
distance, and the k-medoids strategy (e.g., [21]), which aims
at minimizing the distance of each node in a cluster from a
designated node representing the center of the cluster.

Partitioning a single network domain of M caches4 into N
partitions facilitates content placement at the partition level.
In addition to minimizing the volume of information that
needs to be exchanged at each reconfiguration cycle, network
partitioning can also lead to a decrease in content retrieval
latency given that the distance between the requesting and
the replying nodes will, on average, be smaller. However, the
application of the placement strategy onto a smaller set of
caches may have an impact on the overall cache hit ratio. In
this case, a smaller subset of the requested items is likely
to be replicated within each cluster. Due to the absence of
coordination between the clusters, this may result in a large
volume of redirections to the origin server, leading to a
degradation of the cache hit ratio.

A. k-split network partitioning

The problem of partitioning a set of caches in N partitions is
generally NP-hard [22]. Let N represent the set of computed
clusters/partitions. In this section, we consider the use of the
k-split clustering/partitioning algorithm proposed in [19] and
[20] to partition the network domain (i.e., topology). The k-
split algorithm partitions the network into k sub-domains. Its
objective is to minimize the maximum intercluster distance
based on a similarity metric. This means that initially, a rep-
resentative similarity index L (defined based on the considered
partitioning metric), has to be derived for each network cache.

In this work, we use the actual topological latency/distance
between two domain caches as the clustering metric. In this
case, the similarity of two caches m1 and m2 is captured by
their topological distance dm1m2 , which can be defined based
for example on the hop count, the latency, etc. The usage of
the above metric alongside with the k-split clustering algorithm
produces a set of clusters, where the distance of a cache m,
that belongs to a cluster n ∈ N , to the other caches within
cluster n is always smaller than the distance of cache m to
any other cache in any of the other clusters N \{n}.

Since user requests are not directly received at the caches
associated with core nodes (i.e., the core caches), the under-
lying network partitioning method should avoid the formation
of clusters consisting of core caches only. To ensure that core
caches are clustered with at least one edge cache, we slightly
modify the traditional k-split algorithm. In particular, clusters
are formed iteratively, so that, at each iteration, the core
caches are assigned to the most appropriate cluster (in terms
of similarity) which has not already been assigned with core

4As stated in Section II-A, there is one cache per network node.

caches during that iteration. To implement this procedure, the
core cache assignment is based on a round robin mechanism.
The modification of the partitioning algorithm is applied to the
core cache assignment only, which results to the maximum of
core caches per cluster being d|MC|/Ne.

B. k-medoids network partitioning

In this section, we consider another well defined low-
complexity algorithm for the partition of the domain, called the
k-medoids clustering algorithm [21]. The k-medoids method
aims at minimizing the distance between caches labeled to be
in a cluster and a cache designated as the center of the con-
sidered cluster. The traditional k-medoids algorithm randomly
selects k of the M network caches as the medoids/centers of the
clusters and associates each cache to the closest medoid based
on the considered clustering metric. In a similar fashion to the
k-split approach, we use the actual topological latency/distance
between two caches as the clustering metric. The procedure is
repeated for every combination of k out the M caches and the
configuration with the lowest cost is selected.

Due to its exhaustive search approach, the k-medoids algo-
rithm can significantly affect the complexity of the network
partitioning procedure. To limit this complexity, we derive a
method by which the centers of the clusters are preselected
based on criteria of “importance”. In this paper, we define the
“importance” of a cache according to the graph-based metric
of betweenness centrality, which is used to determine the k
cluster centers. More specifically, the betweenness centrality
is an indicator of the centrality of a cache in a network. It
is equal to the number of shortest paths between all pairs
of vertices that pass through the node associated with that
cache. A cache with high betweenness centrality has a large
influence on the transfer of items through the network, under
the assumption that item transfer follows the shortest paths
(an assumption also made in this paper). After electing the k
caches with the highest betweenness centrality and assigning
them as the center of each cluster, we associate each of the
remaining (M− k) caches with the closest medoid based on
the topological distance.

In addition, we further modify the k-medoids algorithm with
respect to both the assignment of core caches to clusters and
the balance degree of each cluster in terms of size. In par-
ticular, the core cache assignment is similar to the procedure
described for the k-split method in Section IV-A. Regarding
the cluster size, we control the number of caches assigned
to each cluster by introducing a constraint on the maximum
number of caches to be included in a cluster. In the proposed
approach, each cluster is assigned around dM/Ne caches.
More precisely, the procedure works as follows: cache m is
assigned to cluster n if the distance between m and the medoid
of cluster n is smaller than the distance of m to the medoids
of any other clusters and if cluster n has been assigned less
than dM/Ne nodes. The second closest medoid is otherwise
selected until all the caches have been assigned to a cluster.
The modification of the cluster assignment ensures that the
complexity of the placement decision-making process (both in
terms of management overhead and volume of information to



be maintained locally) is equivalent for each cluster. It should
be noted that this is not the case with the k-split algorithm
which can produce clusters of different sizes. However, nodes
in the clusters computed by the k-split algorithm are generally
closer to each other compared to the result obtained with the
modified k-medoids algorithm. As such, there exists a trade-off
between the computational/communication complexity of the
placement procedure and its corresponding efficiency, which
we investigate in detail in Section V-B1.

V. EVALUATION

In this section, we evaluate the performance of the proposed
placement algorithm based on a wide range of parameters. The
objective is to evaluate the performance in terms of network
and caching costs, as well as in terms of management overhead
(i.e., scalability and complexity).

A. Experiment Settings

We implemented the considered scenario in a Matlab-based
simulator. The simulator relies on a set of parameters which
can be tuned to control the configuration of the system. An
important aspect of this work concerns the evaluation of the
complexity and scalability of the proposed approach. In the
absence of a sufficiently real large dataset (and associated
topology) to test these characteristics, we resort to using
synthetic traces.

We evaluate the performance of our approach based on
the Interoute network topology [23] as provided through the
Zoo topology dataset5. The Interoute network has 110 nodes
and 147 bidirectional links, and essentially spans over the
European continent. In the considered scenario, each node is
associated with a cache and we assume that, by default, all
caches have the same capacity, defined as a percentage of the
content catalog size. We select 88 nodes as edge nodes and 22
nodes (i.e., 20%) as core nodes (similar proportions have been
considered in previous work, e.g., [24] [25]). We also define a
transmission delay for each link. The values of the delay are
drawn from a random distribution and the delay of each link
ranges from 1 ms up to 200 ms based on the results reported
in [26] and [27]. The path between two nodes is based on the
shortest path computed according to the transmission delay. In
addition, we consider a single origin server which is attached
to one of the edge nodes and maintains the whole content
catalog.

While we want to test the scalability of our approach, the
number of content items to consider is also limited by the
scalability of the simulator. In [28], Sun et al. indicate that, in
their VoD dataset, the size of the catalog of watched videos
amounts to 500K unique items. To satisfy the scalability con-
straint of our simulator while preserving a good approximation
of a realistic content catalog, we consider a list of 100K unit
sized video content items.

To generate user demand, we use the demand model pre-
sented in our previous work [7]. In the proposed model,
the user demand is characterized by a) the total volume

5http://www.topology-zoo.org/dataset.html

TABLE II
SUMMARY OF THE EVALUATION PARAMETER SETTINGS.

Parameter Value

Number of nodes 110

Number of links 147

Number of caches 110

Number of items 105

z 1.174

β 2

of requests for each content in the network, which defines
the global content popularity (GCP), and b) the number of
caching locations where each content is requested, defining
the geographic distribution of the interests (GDI). The GCP
is represented by a Zipf distribution of parameter z, which
gives the total number of requests for each content item in the
network. The GDI is represented by a function fβ of parameter
β [7], which provides, for each item, the number of locations
(i.e., edge nodes) from where it is requested. For each content,
the locations are randomly selected among the 88 edge nodes
and the number of requests for the item is then equally divided
between these locations. We select the value of z based on the
characteristics of the dataset used in [28] and set it to 1.174.
The value of β is set to 2, since according to [7] such a value
increases the heterogeneity of the GDI. The parameter settings
are summarized in Table II.

B. Performance Evaluation

We compare the performance of six different schemes. To
show the impact of parallelization, we first compare the perfor-
mance of the proposed approach (denoted Parallel in the plots)
to the Global-Popularity driven Strategy (GPS) presented in
[7] (denoted Centralized in the plots). The GPS algorithm
follows an iterative process where one placement decision
is taken per content and per caching location at a time. For
both approaches, we also investigate the influence of network
partitioning by considering scenarios with and without node
clustering. In the case without clustering, the visibility of each
node is defined at the network level and we refer to this
scenario as Single Domain. In the other case, decisions are
taken at the cluster level and we consider here two scenarios:
(i) the network is partitioned according to the proposed k-
split method and (ii) the network is partitioned according to
the proposed k-medoids method. Finally, we also implement
the greedy content placement algorithm presented by Qiu
et al. in [29], which we use as a performance benchmark
for the Single Domain scenario. The greedy algorithm is
an iterative approach which aims at minimizing the average
retrieval latency. It was shown that solutions of high quality
can be achieved with this algorithm. In particular, its median
performance is within a factor of 1.1−1.5 of the optimal and
around a factor of 4 for the maximum cases [16].

1) Scalability and Complexity: An important aspect of the
proposed approach concerns its scalability and complexity. In
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Fig. 5. Convergence of the considered placement schemes.
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Fig. 6. Communication costs of the considered placement schemes.

this section, we report the number of iterations required by
each scheme to terminate and investigate how this can be
affected by the number of clusters and the storage capacity
available in the network. The results are presented in Fig. 56.
As expected, the largest number of iterations is taken by the
Greedy scheme and the Single Domain GPS approach given
that they both follow a full iterative process (one decision per
content and per location).

As can be observed, the use of clustering leads to a
significant decrease in the number of iterations required by
the GPS scheme (reduced by a factor 10), which uniformly
diminishes as the number of clusters increases. With the
proposed Parallel approach, the number of iterations is further
reduced (by a factor 104) and it takes around 20 iterations
for the algorithm to terminate. The speed of execution of the
algorithm is further increased when using network partitioning.
It can be observed that the smaller number of iterations can
be achieved when nodes are clustered based on the k-medoids
method compared to the k-split method. This is because the
k-medoids method has been altered to produce clusters of the
same size, whereas the k-split method may compute some very
large clusters, depending on the actual characteristics of the
underlying topology (i.e., similarity metric). Also it can be
observed that, in contrast to other schemes, the convergence
of the Parallel approach (with and without partitioning) does
not depend on the available storage space in the network.

Finally, we plot in Fig. 6 the volume of coordination mes-

6In the cases with network partitioning, the number of iterations is driven
by the cluster with the larger number of iterations.

sages that need to be exchanged at each reconfiguration cycle.
The observations formulated with respect to the number of
iterations apply here as well. In particular, it can be concluded
that the use of a parallel decision-making process in conjunc-
tion with network partitioning can significantly improve the
performance of the content management application in terms
of overhead and complexity.

2) Network and Caching Performance: In the previous
subsection, we showed that the proposed placement strategy
coupled with network partitioning outperforms all other ap-
proaches in terms of communication overhead and complexity.
We now focus on the performance of the different schemes
in terms of network and caching costs based on three per-
formance indicators: (i), the average retrieval latency (i.e.,
average delay for fetching the requested content from the
closest available location), (ii), the network cache hit ratio
(i.e., ratio of requests that can be served from within the
domain), and (iii), the average link stress (i.e., average number
of items transiting a link per second, which can be used as an
indicator of the average network link load). For each scheme,
we evaluate the influence of the number of clusters N, the
storage capacity c available at each caching location and the
value of the Zipf distribution parameter z. In the rest of this
section, unless otherwise stated, we consider the following
reference parameter values: N = 15, c = 0.01 ·X and z = 1.174

Impact of the number of clusters: We investigate the
impact of the number of clusters on the network and caching
performance. Although the single domain schemes are not
affected by the number of clusters, their performances are
reported for comparison purposes. The results are shown in
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Fig. 7. Performance of the considered placement schemes vs. the total number of clusters.
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Fig. 8. Performance of the considered placement schemes vs. the storage capacity of each node.

Fig. 7 for the number of clusters N varying from 2 to 40. It
is worth noting that we did not further increase the number of
clusters given the constraint on the allocation of core nodes to
a cluster. However, the extreme case with clusters of one node
only (N = 110) would represent a fully distributed solution
where placement decisions consist in caching the most popular
content items locally.

As can be observed, the value of the three metrics de-
creases for all clustering scenarios as the number of clusters
increases. When more clusters are formed, the number of
network locations from where a content can be fetched is
restricted (i.e., an item is either retrieved from within the
cluster or fetched directly from the origin server). Due to
the absence of coordination between the clusters, this leads
to a drop in terms of cache hit ratio since the probability of
retrieving the requested content item from within a cluster
with limited caching space is lower. However, as depicted in
Fig. 7b, this drop is limited and the value of the cache hit
ratio tends towards 0.87 as the number of clusters increases.
This relatively high value shows that with the cache capacity
considered in this experiment (i.e., c = 0.01 ·X), the available
caching space in most clusters is sufficient for accommodating
locally the most popular content items, i.e., the ones incurring
significant volume of traffic in the network. As such, content
items tend to be retrieved from a closer location on average,
which leads to a decrease in the average retrieval latency and
average link stress. In addition, it can be observed that the
Parallel scheme is more sensitive than the GPS centralized
approach with respect to the cache hit ratio, which drops from
1 to around 0.90 when the number of clusters increases up to
4. It should however be noted that the decrease is subsequently

very slow (from 0.90 with 4 clusters to around 0.87 with 40
clusters).

Since the objective of the Greedy approach is to minimize
the retrieval delay, it generally obtains better performance in
terms of average retrieval latency compared to the rest of the
examined schemes. Only when the number of clusters is large,
the corresponding placement schemes manage to surpass its
performance (Fig. 7a). In contrast, the best performance in
terms of cache hit ratio is obtained with the Single Domain
GPS Centralized approach. In this experiment, the storage
capacity available at each caching location is so that all
requested content items can be cached in the network, and,
as such, a cache hit ratio of 1 is achieved with GPS. To
minimize the average delay, the Greedy algorithm may prefer
to fetch some items from the origin server. This can happen in
particular if the origin server is closer than a remote network
cache location or if the items have lower popularity. Those
items are thus not replicated within the domain, which leads
to a lower cache hit ratio. It can also be observed that the
performance of the Single Domain Parallel scheme is similar
to that of the Single Domain GPS scheme.

Finally, while slightly better performance can be achieved in
terms of average retrieval latency and average link stress with
the k-split partitioning method compared to the k-medoids one,
the actual clustering mechanism has negligible influence on the
cache hit ratio.

Impact of the cache size: We investigate the impact of the
storage capacity available at each caching location. The results
are shown in Fig. 8 for storage capacity varying from 0.1%
to 15% of the content catalogue X .
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Fig. 9. Performance of the considered performance schemes vs. the Zipf parameter of the content popularity.
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Fig. 10. Performance of the considered placement schemes vs. the content popularity alteration factor.

As can be observed, all the schemes tend towards similar
performance as the storage capacity available at each location
increases. In this case, the number of content items which can
be accommodated locally increases and more requests can be
served directly from the cache attached to the location where
these are received. As a result, similar performance can be
achieved by the different schemes.

Impact of the popularity distribution: We investigate the
impact of the global popularity distribution of the content,
which is driven by the Zipf parameter z. The results are shown
in Fig. 9 for z varying from 0.1 to 2.5.

The distribution of the content popularity becomes more
uniform as the value of z decreases, which means that the
difference between the volume of requests received for popular
items and less popular ones decreases. In [7], we showed that
in the case of a uniform popularity distribution, a scheme
that favours the placement of a larger number of unique
content items obtains better performance than a scheme which
tends to replicate content. As explained previously, there is
no coordination between the clusters. As a result, although
content diversity can be achieved at the cluster level, the
absence of coordination between clusters means that content
items tend to be replicated at the network level, which has
a severe impact on the cache hit ratio of the GPS and
Parallel schemes with network partitioning. In the extreme
case where z is in the order of 0.1− 0.2, the hit ratio drops
to 15%− 20%. However, measurement-based studies, such
as the ones presented in [30], [31], suggest that the Zipf
parameter z for web traffic lies in the range of 0.64− 0.84,
while in [28] the authors show that this parameter is equal

to 1.174 for an online video content provider. This implies
that for real world environments, where the distribution of
content popularity is less uniform (especially in video delivery
systems), the proposed clustering and placement schemes
perform significantly well.

In the Single Domain cases, it can be observed that the
average retrieval latency decreases when the value of z in-
creases. The absence of replication for low values of z forces
the caches to fetch the requested items from remote network
locations, leading to higher average retrieval latencies. In the
cases with network partitioning, the volume of requests which
need to be redirected to the external server is such that the
corresponding content placement schemes are less affected by
the value of the Zipf parameter. It can be noted, however, that
when the value of z increases and replication becomes the
prominent placement choice, similar performance in terms of
retrieval latency can be achieved with both the Single Domain
and Cluster scenarios (in this case popular items are replicated
where they are the mostly requested).

Impact of content popularity dynamics: To evaluate the
robustness of the different schemes with respect to content
popularity dynamics, we investigate the impact of a popularity
alteration factor, noted δ , on the three considered metrics. In
this experiment, we compute an initial content placement with
a fixed value of δ . We then randomly permute the rank of
δ ·M content items and evaluate the resulting performance in
terms of average retrieval delay, cache hit ratio and average
link stress. The results are shown in Fig. 10 for an alteration
factor δ varying from 0 to 0.4.

As can be observed, in all cases, the latency increases as
the alteration factor increases (Fig. 10a). Compared to Single



Domain approaches, clustered schemes tend to be more robust
(the increase is marginal). However, these are more affected
in terms of cache hit ratio. Given that the algorithm favors the
replication of popular content items, it is very dependent of
the content ranking. The alteration of the ranking coupled with
the absence of coordination between clusters can therefore
lead to severe degradation in terms of performance. From Fig.
10c, we can see that all the schemes are affected in similar
proportions in terms of average link stress. An alteration factor
of 40% leads to an increase in terms of average link stress
of around 60%. Since the cache hit ratio decreases as the
alteration factor increases, a larger number of items needs to
traverse the network links, which results in an increase of the
average link stress.

VI. RELATED WORK

The content placement problem has been investigated in var-
ious types of caching infrastructures, ranging from traditional
CDN architectures (e.g., [32]) to Video on Demand (e.g., [33])
and IPTV (e.g., [14] [34]) systems, as well as in radically novel
environments such as Information-Centric Networks (e.g., [16]
[28]).

The common objective of all the proposed content place-
ment approaches is to decide how to replicate content items
across different network locations in order to better utilize
network resources. Some solutions, such as the ones presented
in [32], [35], [36], [33] and [8], have focused on centralized
mechanisms, which assume the availability of global informa-
tion about user demand and network conditions at a centralized
location. As a result, this may incur a significant overhead
and can have scalability limitations. Other initiatives have
proposed distributed approaches but these either rely on the
assumption of hierarchical infrastructures (e.g., [37], [14] and
[34]), which simplifies the problem, or follow a sequential
process (e.g., [16] and [7]), which also has limitations in
terms of scalability. A distributed approach has been proposed,
in particular, by Laoutaris et al. in [17] in the context of
distributed replication groups, where nodes in each group
cooperate to take replication decisions that can minimize the
overall network cost. Although it is reported that the solution
can be implemented in a parallelized fashion, the authors do
not elaborate on the actual mechanism. In this paper, we go
a step further and design a realistic and practical parallelized
decision-making process. A purely distributed approach has
also been considered in [32], where placement decisions
are taken independently by each node without any level of
coordination. Although this can overcome any limitations in
terms of scalability, uncoordinated decisions may result in the
suboptimal use of the caching space. In contrast, our approach
offers a trade-off between scalability and resource usage
based on the two-phase reconfiguration process. In addition,
scalability is further improved through network partitioning.

To reduce the complexity of replication algorithms,
Gkatzikis et al. have proposed in [38] to cluster the items
based on their popularity characteristics according to different
clustering methods. While this has the advantage of leading
to the formation of smaller input content sets and, as such,

to improve the scalability, it may compromise the level of
flexibility required to perform fine-tuned item allocation. In
contrast, partitioning and clustering is applied in our approach
at the network level and the characteristics of each individual
content item can thus be preserved. It would be however
interested to investigate in future work how the performance
of the proposed algorithm would be affected when considering
content clusters rather than individual items.

To quickly respond to sudden changes in content popu-
larity, reactive replacement strategies such as Least Recently
Used (LRU) or Least Frequently Used (LFU) have also been
considered in the literature. One of the main advantages of
such approaches resides in their low complexity (in terms of
implementation and execution) since decisions can be taken
independently for each cache. However, as demonstrated in
our previous work [8], the lack of coordination between the
decision-making points comes at a cost in terms of bandwidth
usage. In addition, to capture the evolution of content popular-
ity, reactive schemes require a transitory period during which
cache misses can occur, which can represent a non-negligible
volume of traffic. In contrast to these reactive approaches, a
proactive placement strategy can pre-provision the caches in
anticipation to the near future evolution of the interests, result-
ing as such in fewer cache misses. By nature, the performance
of any proactive scheme depends on the prediction accuracy of
the requests. To deal with the uncertainties in the future request
pattern, a cache management solution that combines proactive
placement and reactive approach could be envisioned. Such a
scheme was considered in [33] and [39] in which the authors
propose to pre-partition the local storage capacity according to
fixed ratios in order to implement different caching strategies.

To be supported, our approach implies the existence of
new types of collaboration between ISPs and CDNs. Over
the last few years, there have been substantial research efforts
invested in the development of novel models of interaction
between the ISPs and the CDNs (e.g., [5], [6], [40], [41]
and [42]). While Jiang et al. have discussed various coop-
eration models in [5], a new framework to support joint
decisions between a CDN and an ISP with respect to the
server selection process has been proposed by Frank et al. in
[6]. In contrast to these approaches, our solution focuses on
empowering ISPs with caching capabilities, which can allow
them to implement their own content placement and server
selection strategies. ISP-centric caching approaches have also
been considered in [41] and [42]. However, the full-blown
CDN service to be supported by an ISP, as proposed in these
approaches, can incur high operational costs, given that ISPs
will have to maintain large storage capacities, and may thus
be an economically unviable solution. In [39], Sharma et al.
have investigated from a quantitative perspective the interplay
between traffic engineering and content distribution in the
context of an ISP-operated caching infrastructure. Recently,
a SDN-based framework has been proposed by Wichtlhuber
et al. in [43] to facilitate the collaboration between the
ISP and the CDN. Our approach could also benefit from a
SDN/OpenFlow environment as this can provide the ability to
better control and manage incoming traffic and requests (e.g.,
ability to filter traffic based on matching rules).



VII. SUMMARY AND CONCLUSIONS

In this paper, we propose an efficient and scalable content
management approach to control the distribution of content
items in an ISP-operated caching infrastructure. The pro-
posed approach relies on a parallelization of the decision-
making process, where one instance of the content placement
algorithm is executed per caching location. In addition, we
investigate how network partitioning can facilitate the imple-
mentation of decentralized cache management solutions by
limiting the volume of information that needs to be exchanged
between distributed decision-making points. It is worth noting
that the proposed parallelized process could also apply in
centralized settings.

The performance of the proposed approach has been eval-
uated both in terms of network and caching costs and man-
agement overhead. The results show that similar performance
in terms of network and caching cost can be achieved by
the Parallel algorithm compared to the GPS strategy and that
this performance is close to the one achieved by the Greedy
approach. Due to the lack of coordination between the formed
clusters, network and caching performance can be affected
by network partitioning. The worst performance, in terms of
cache hit ratio, is achieved with more uniform popularity
distributions (Zipf parameter smaller than 0.6), in which case
the ratio falls under 0.5. However, partitioning the network
into clusters provides a significant gain in terms of manage-
ment overhead, offering as such better scalability and lower
complexity. Compared to the Single Domain approaches, the
number of iterations and the number of exchanged messages
can be divided by up to a factor 104 and 106, respectively.
Finally, the results suggest that the partitioning method used
to form the clusters does not significantly impact the overall
performance of the content placement approach, especially in
the cases where realistic values regarding the global popularity
distribution of the content are used.

In the future, we plan to investigate the benefits of applying
content clustering on the performance of the proposed place-
ment strategies. In addition, we will work on the elaboration
of additional business models for the interaction between ISP
and CDN. Finally, we plan to integrate the proposed cache
management framework in a SDN-based environment and
investigate how this can facilitate the realization of such an
approach.
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