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Scale-discretised wavelets yield a directional wavelet framework on the sphere where 
a signal can be probed not only in scale and position but also in orientation. 
Furthermore, a signal can be synthesised from its wavelet coefficients exactly, in 
theory and practice (to machine precision). Scale-discretised wavelets are closely 
related to spherical needlets (both were developed independently at about the 
same time) but relax the axisymmetric property of needlets so that directional 
signal content can be probed. Needlets have been shown to satisfy important quasi-
exponential localisation and asymptotic uncorrelation properties. We show that 
these properties also hold for directional scale-discretised wavelets on the sphere 
and derive similar localisation and uncorrelation bounds in both the scalar and spin 
settings. Scale-discretised wavelets can thus be considered as directional needlets.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article 
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Wavelet methodologies on the sphere are not only of considerable theoretical interest in their own right 
but also have important practical application. For example, wavelets analyses on the sphere have led to many 
insightful scientific studies in the fields of planetary science (e.g. [4,5]), geophysics (e.g. [13,34,68,69]) and 
cosmology, in particular for the analysis of the cosmic microwave background (CMB) (e.g. [7,9,15,30,40–43,
49,53,59–63,66,75–77,82,83]) (for a somewhat dated review see [50]), among others. Of particular importance 
in such applications is the scale-space trade-off of the wavelets adopted, which arises from the extension of 
the familiar (Euclidean) Fourier uncertainly principle to the sphere [56]. Consequently, characterising the 
localisation properties of wavelets on the sphere is of considerable interest.
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Many early attempts to extend wavelet transforms to the sphere differ primarily in the manner in which 
dilations are defined on the sphere [2,3,14,19,29,39,56,64,65,73]. The construction of Freeden & Windheuser 
[19] is based on singular integrals on the sphere, while Antoine and Vandergheynst [2,3] follow a group 
theoretic approach. In the latter construction dilation is defined via the stereographic projection of the 
sphere to the plane, leading to a consistent framework that reduces locally to the usual continuous wavelet 
transform in the Euclidean limit. An implementation and technique to approximate functions on the sphere 
has been developed for this approach [1]. This construction is revisited in [78], independently of the original 
group theoretic formalism, and fast algorithms are developed in [79,80].

Initial wavelet constructions were essentially based on continuous methodologies, which, although in-
sightful, limited practical application to problems where the exact synthesis of a function from its wavelet 
coefficients is not required. Early discrete constructions [7,67,72] (and subsequently [47,52]) that support 
exact synthesis were built on particular pixelisations of the sphere and do not necessarily lead to stable bases 
[72]. Half-continuous and fully discrete frames based on the continuous framework of [2,3] were constructed 
by [10,11] and polynomial frames were constructed by [54]. More recently, a number of exact discrete wavelet 
frameworks on the sphere have been developed, with underlying continuous representations and fast imple-
mentations that have been made available publicly, including: needlets [6,36,55]; directional scale-discretised 
wavelets [33,48,81]; and the isotropic undecimated and pyramidal wavelet transforms [71]. Each approach 
has also been extended to analyse spin functions on the sphere [21–24,37,46,70] and functions defined on 
the three-dimensional ball formed by augmenting the sphere with the radial line [17,31,32,45].

1.1. Contribution

Needlets [6,36,55] and directional scale-discretised wavelets [33,48,81] on the sphere were developed 
independently, about the same time, but share many similarities. Both are essentially constructed by a 
Meyer-type tiling of the line defined by spherical harmonic degree �. Directional scale-discretised wavelets 
in addition include a directional component in the wavelet kernel, yielding a directional wavelet analysis 
so that signal content can be probed not only in scale and position but also in orientation. Needlets have 
been shown to satisfy important quasi-exponential localisation and asymptotic uncorrelation properties [6,
21,23,24,36,55,58]. In this article we show that these properties also hold for directional scale-discretised 
wavelets. We derive equivalent localisation and uncorrelation bounds, in both the scalar and spin settings, 
and show that directional scale-discretised wavelets are characterised by excellent localisation properties in 
the spatial domain.

More precisely, we prove that for any ξ ∈ R+
∗ , there exist strictly positive constants C1, C2 ∈ R+

∗ , such 
that the directional scale-discretised wavelet Ψ ∈ L2(S2), defined on the sphere S2 and centred on the North 
pole, satisfies the localisation bound:

∣∣Ψ(θ, ϕ)
∣∣ ≤ C1(

1 + C2θ
)ξ , (1)

where (θ, ϕ) ∈ S2 denote spherical coordinates, with colatitude θ ∈ [0, π] and longitude ϕ ∈ [0, 2π). Fur-
thermore, we prove that for Gaussian random fields on the sphere, directional scale-discretised wavelet 
coefficients are asymptotically uncorrelated. The correlation of wavelet coefficients corresponding to wavelets 
at scales j, j′ ∈ N and centred on Euler angles ρ1, ρ2 ∈ SO(3), respectively, parameterising the rotation group 
SO(3), is denoted Ξ(jj′)(ρ1, ρ2). We show that for any j, j′ ∈ N such that |j − j′| < 2 and for any ξ ∈ R+

∗ , 
ξ ≥ 2N (where N is the azimuthal band-limit of the wavelet), there exists C(j)

1 , C(j)
2 ∈ R+

∗ such that the 
directional wavelet correlation satisfies the bound:

Ξ(jj′)(ρ1, ρ2) ≤
C

(j)
1( (j) )ξ , (2)
1 + C2 β
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where β ∈ [0, π) is an angular separation between ρ1 and ρ2. For |j − j′| ≥ 2, wavelet coefficients are 
exactly uncorrelated, i.e. Ξ(jj′)(ρ1, ρ2) = 0. We present an overview of these results here only; precise 
definitions of the quantities involved and more specific bounds, showing the dependence on the param-
eterisation of the scale-discretised wavelet construction, are presented and derived in the main body of the 
article.

The characterisation of the localisation properties of directional scale-discretised wavelets presented is 
of considerable importance for applications, in particular for the analysis of the CMB, which to very good 
approximation is a realisation of a Gaussian random field on the sphere. Directional wavelets are useful 
for the analysis of the CMB, since, although the CMB is globally isotropic, its peaks are predicted to be 
elongated [12]. Furthermore, weak anisotropic signals with strong directional features are embedded in raw 
CMB observations (e.g. due to foreground contamination; [60]). Numerical experiments using simulated 
CMB observations are presented to demonstrate both the localisation and uncorrelation properties of scale-
discretised wavelets. All results are also extended to spin scale-discretised wavelets [46] and so are applicable 
not only to CMB temperature observations (a scalar signal on the sphere) but also to observations of CMB 
polarisation (a spin ±2 signal on the sphere). In addition to the derivation of the results summarised above, 
which constitute the main contributions of this article, for the first time, we also explicitly show that scale-
discretised wavelets form a tight frame on the sphere and present the detailed derivation of their directional 
construction. Since directional scale-discretised wavelets satisfy similar localisation and uncorrelation prop-
erties to needlets, and follow a similar construction but extended to a directional analysis, they can thus be 
considered as directional needlets.

1.2. Outline

The remainder of this article is structured as follows. In Section 2 the directional scale-discretised wavelet 
transform on the sphere is reviewed and we show explicitly that scale-discretised wavelets form a tight 
frame. The construction of scale-discretised wavelets is reviewed in Section 3, where the detailed derivation 
of their directional construction is elaborated for the first time; their directional correlation and steer-
ability properties are also reviewed. The main contributions of this article are presented in Section 4 and 
Section 5, where the quasi-exponential localisation and asymptotic uncorrelation properties of directional 
scale-discretised wavelets are proved, respectively. Technical results and additional mathematical back-
ground are deferred to Appendix A. Appendix A.1 reviews harmonic analysis on the sphere S2 and rotation 
group SO(3) concisely, focusing on definitions and approximations of relevant special functions and their 
properties, which are used throughout the article. The remaining appendices (Appendix A.2–Appendix A.4) 
present calculations on which the proofs of Section 4 and Section 5 rely. Numerical experiments demon-
strating the localisation and uncorrelation properties of directional scale-discretised wavelets are performed 
in Section 6.

2. Scale-discretised wavelet transform

The directional scale-discretised wavelet transform supports the analysis of oriented spatially localised, 
scale-dependent features in signals on the sphere. In this section we review the scale-discretised wavelet 
framework on the sphere [33,48,81], following closely the presentation of [48], describing wavelet analysis 
and synthesis, and admissibility and tight frame properties. For clarity we present the scalar setting only, 
however the scale discretised wavelet transform on the sphere has been extended recently to support spin 
signals [46]. The concentration properties of scale-discretised wavelets derived in subsequent sections of this 
article hold in both the scalar and spin settings.
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2.1. Analysis

The scale-discretised wavelet transform of a function f ∈ L2(S2) on the sphere S2 is defined by the 
directional convolution of f with the wavelet Ψ(j) ∈ L2(S2). The wavelet coefficients WΨ(j) ∈ L2(SO(3))
thus read

WΨ(j)
(ρ) ≡ (f � Ψ(j))(ρ) ≡ 〈f, RρΨ(j)〉 =

∫
S2

dΩ(ω)f(ω)(RρΨ(j))∗(ω) , (3)

where ω = (θ, ϕ) ∈ S2 denotes spherical coordinates with colatitude θ ∈ [0, π] and longitude ϕ ∈ [0, 2π), 
dΩ(ω) = sin θ dθ dϕ is the usual rotation invariant measure on the sphere, and ·∗ denotes complex conjuga-
tion. The inner product of functions on the sphere is denoted 〈·, ·〉, while the operator � denotes directional 
convolution on the sphere. The rotation operator is defined by

(RρΨ(j))(ω) ≡ Ψ(j)(R−1
ρ ω̂) , (4)

where Rρ is the three-dimensional rotation matrix corresponding to Rρ and ω̂ denotes the Cartesian vector 
corresponding to ω. Rotations are specified by elements of the rotation group SO(3), parameterised by the 
Euler angles ρ = (α, β, γ) ∈ SO(3), with α ∈ [0, 2π), β ∈ [0, π] and γ ∈ [0, 2π). The wavelet transform of 
Eq. (3) thus probes directional structure in the signal of interest f , where γ can be viewed as the orientation 
about each point on the sphere (θ, ϕ) = (β, α). The wavelet scale j ∈ N encodes the angular localisation of 
Ψ(j), as discussed in more detail subsequently. Note that the wavelet scales j are discrete (hence the name 
scale-discretised wavelets), which affords the exact synthesis of a function from its wavelet (and scaling) 
coefficients.

The wavelet coefficients encode only the detail-information contained in the signal f ; scaling coefficients 
must be introduced to represent the approximation-information of the signal, i.e. low-frequency signal 
content. The scaling coefficients WΦ ∈ L2(S2) are given by the convolution of f with the axisymmetric 
scaling function Φ ∈ L2(S2) and read

WΦ(ω) ≡ (f � Φ)(ω) ≡ 〈f, RωΦ〉 =
∫
S2

dΩ(ω′)f(ω′)(RωΦ)∗(ω′) , (5)

where Rω = R(ϕ,θ,0) and the operator � denotes axisymmetric convolution on the sphere. Note that the 
scaling coefficients live on the sphere, and not the rotation group SO(3), since directional structure of the 
approximation-information of f is not typically of interest.

2.2. Synthesis

The signal f can be synthesised perfectly from its wavelet and scaling coefficients by

f(ω) =
∫
S2

dΩ(ω′)WΦ(ω′)(Rω′Φ)(ω) +
J∑

j=0

∫
SO(3)

d�(ρ)WΨ(j)
(ρ)(RρΨj)(ω) , (6)

where d�(ρ) = sin β dα dβ dγ is the usual invariant measure on SO(3) and 0 and J are the minimum and 
maximum wavelet scales considered, respectively. We adopt the same convention as [81] for the wavelet 
scales j, with increasing j corresponding to larger angular scales, i.e. lower frequency content.3

3 Note that this differs to the convention adopted in [33,46] where increasing j corresponds to smaller angular scales but higher 
frequency content.
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Typically, we consider band-limited functions, i.e. functions such that their spherical harmonic coefficients 
f�m = 0, ∀� ≥ L, where f�m = 〈f, Y�m〉 and Y�m ∈ L2(S2) are the spherical harmonics (defined in 
Appendix A.1) with � ∈ N and m ∈ Z, such that |m| ≤ �. In practice, for band-limited functions, wavelet 
analysis and synthesis can be computed exactly (to machine precision), since one may appeal to sampling 
theorems and corresponding exact quadrature rules for the computation of integrals [38,51], and efficiently 
by developing fast algorithms [44,46,48,79,80], which scale to very large data-sets containing tens of millions 
of samples on the sphere.

2.3. Admissibility

The wavelet admissibility condition under which a function f can be synthesised perfectly from its wavelet 
and scaling coefficients through Eq. (6) is given by the following resolution of the identity:

4π
2� + 1 |Φ�0|2 + 8π2

2� + 1

J∑
j=0

�∑
m=−�

|Ψ(j)
�m|2 = 1 , ∀� , (7)

where Φ�0δm0 = 〈Φ, Y�m〉 and Ψ(j)
�m = 〈Ψ(j), Y�m〉 are the spherical harmonic coefficients of Φ and Ψ(j), 

respectively, where δij for i, j ∈ Z denotes the Kronecker delta.

2.4. Parseval frame

Scale-discretised wavelets on the sphere satisfy the following Parseval frame property:

A‖f‖2 ≤
∫
S2

dΩ(ω)|〈f, RωΦ〉|2 +
J∑

j=0

∫
SO(3)

d�(ρ)|〈f, RρΨ(j)〉|2 ≤ B‖f‖2 , (8)

with A = B ∈ R+
∗ , for any band-limited f ∈ L2(S2), and where ‖ · ‖2 = 〈·, ·〉. We adopt a shorthand integral 

notation in Eq. (8), although by appealing to exact quadrature rules [38,51] these integrals may be replaced 
by finite sums. We prove the Parseval frame property as follows. Firstly, note the harmonic representation 
of the wavelet and scaling coefficients given by (see e.g. [44])

WΨ(j)
(ρ) = 〈f, RρΨ(j)〉 =

L−1∑
�=0

�∑
m=−�

�∑
n=−�

f�mΨ(j)∗
�n D�∗

mn(ρ) (9)

and

WΦ(ω) = 〈f, RωΦ〉 =
L−1∑
�=0

�∑
m=−�

√
4π

2� + 1f�mΦ∗
�0Y�m(ω) , (10)

respectively, where the Wigner D-functions D�
mn are the matrix elements of the irreducible unitary repre-

sentation of the rotation group SO(3) (defined in Appendix A.1). Substituting these harmonic expressions 
and noting the orthogonality of the spherical harmonics given by Eq. (A.4) and of the Wigner D-functions 
given by Eq. (A.7), it is straightforward to show that the term of Eq. (8) bounded between inequalities may 
be written

L−1∑ �∑ 4π
2� + 1 |f�m|2|Φ�0|2 +

J∑ L−1∑ �∑ �∑ 8π2

2� + 1 |f�m|2|Ψ(j)
�n |2 = ‖f‖2 , (11)
�=0 m=−� j=0 �=0 m=−� n=−�
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where the equality of Eq. (11) follows by the admissibility property Eq. (7). Thus, scale-discretised wavelets 
indeed constitute a Parseval frame with A = B = 1, implying the energy of f is conserved in wavelet space.

3. Wavelet construction

Scale-discretised wavelets are constructed to ensure the admissibility criterion Eq. (7) is satisfied, while 
also carefully controlling their angular and directional spatial localisation, in additional to their harmonic 
localisation. Wavelets are defined in harmonic space in the factorised form:

Ψ(j)
�m ≡

√
2� + 1
8π2 κ(j)(�) ζ�m , (12)

in order to control their angular and directional localisation separately, respectively through the kernel 
κ(j) ∈ L2(R+) and directionality component ζ ∈ L2(S2), with harmonic coefficients ζ�m = 〈ζ, Y�m〉 (κ(j)

and ζ are defined explicitly in Section 3.1 and Section 3.3, respectively). Without loss of generality, the 
directionality component is normalised to impose

�∑
m=−�

|ζ�m|2 = 1 , (13)

for all values of � for which ζ�m are non-zero for at least one value of m. The angular localisation properties 
of the wavelet Ψ(j) are then controlled by the kernel κ(j), while the directionality component ζ controls 
the directional properties of the wavelet (i.e. the behaviour of the wavelet with respect to the azimuthal 
variable ϕ, when centred on the North pole). In the remainder of this section we describe the construction 
of the wavelet kernel, the wavelet steerability property, and, for the first time, the explicit construction of 
the directionality component.

3.1. Kernel construction

The kernel κ(j)(t) is a positive real function, with argument t ∈ R+, although κ(j)(t) is evaluated only 
for natural arguments t = � in Eq. (12). The kernel controls the angular localisation of the wavelet and 
is constructed to be a smooth function with compact support, as follows. Consider the smooth, infinitely 
differentiable (Schwartz) function with compact support t ∈ [λ−1, 1], for dilation parameter λ ∈ R+

∗ , λ > 1:

sλ(t) ≡ s

(
2λ

λ− 1(t− λ−1) − 1
)
, with s(t) ≡

{
exp

(
−(1 − t2)−1), t ∈ [−1, 1]

0, t /∈ [−1, 1]
. (14)

Define the smoothly decreasing function kλ by

kλ(t) ≡
∫ 1
t

dt′
t′ s

2
λ(t′)∫ 1

λ−1
dt′
t′ s

2
λ(t′)

, (15)

which is unity for t < λ−1, zero for t > 1, and is smoothly decreasing from unity to zero for t ∈ [λ−1, 1]. 
Define the wavelet kernel generating function by

κλ(t) ≡
√
kλ(λ−1t) − kλ(t) , (16)

which has compact support t ∈ [λ−1, λ] and reaches a peak of unity at t = 1. The scale-discretised wavelet 
kernel for scale j is then defined by
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Fig. 1. Scale-discretised wavelet tiling in harmonic space (L = 128, λ = 2, N = 3, J = 5).

κ(j)(�) ≡ κλ(λjL−1�) , (17)

which has compact support on � ∈
[
�λ−(1+j)L�, 
λ1−jL�

]
, where �·� and 
·� are the floor and ceiling 

functions respectively, and reaches a peak of unity at λ−jL. With this construction the kernel functions tile 
the harmonic line, as illustrated in Fig. 1. Note that needlets are constructed by a similar Meyer-like tiling 
of the line defined by spherical harmonic degree � [6,36,55], where the function s(t) of Eq. (14) is also used 
but minor differences in the kernel construction mean that the needlet and scale-discretised wavelet kernels 
differ slightly (see [33, Fig. 1]).

The maximum possible wavelet scale JL(λ) is given by the lowest integer j for which the kernel peak 
occurs at or below � = 1, i.e. by the lowest integer value such that λ−JL(λ)L ≤ 1, yielding JL(λ) = 
logλ(L)�. 
All wavelets for j > JL(λ) would be identically null as their kernel would have compact support in � ∈ (0, 1). 
The maximum scale to be probed by the wavelets J can be chosen within the range 0 ≤ J ≤ JL(λ). For 
J = JL(λ) the wavelets probe the entire frequency content of the signal of interest f except its mean, 
encoded in f00 and incorporated in the scaling coefficients.

To represent the signal content not probed by the wavelets the scaling function Φ is required, as discussed 
previously. Recall that the scaling function Φ is chosen to be axisymmetric; hence, we define the harmonic 
coefficients of the scaling function by

Φ�m ≡
√

2� + 1
4π

√
kλ(λJL−1�) δm0 , (18)

in order to ensure the scaling function probes the signal content not probed by the wavelets.
For the wavelets, scaling function and wavelet scale parameter ranges outlined above, the admissibility 

criterion Eq. (7) is satisfied. Although the precise construction of the directionality component has not yet 
been defined, provided it is normalised according to Eq. (13), admissibility holds.

3.2. Steerability

A function on the sphere is steerable if an azimuthal rotation of the function can be written as a linear 
combination of weighted basis functions. By imposing an azimuthal band-limit N on the directionality 
component such that ζ�m = 0, ∀�, m with |m| ≥ N , we recover wavelets that are steerable [20,81]. Moreover, 
if T ∈ N of the harmonic coefficients ζ�m are non-zero for a given m for at least one �, then the number 
of basis functions M ∈ N required to steer the wavelet directionality component satisfies M ≥ T and the
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optimal number M = T can be chosen. Furthermore, if ζ exhibits an azimuthal band-limit, then it can be 
steered using basis functions that are in fact rotations of itself:

ζγ(ω) =
M−1∑
g=0

z(γ − γg) ζγg
(ω) , (19)

which extends to the wavelets Ψ(j) also, where ζγ ≡ R(0,0,γ)ζ and g ∈ N. The rotation angles γg ∈ [0, 2π)
and interpolating function z ∈ L2(R) are defined subsequently. Note that the interpolating function is 
independent of the directionality component ζ of the wavelet. Due to the linearity of the wavelet transform, 
the steerability property is transferred to the wavelet coefficients themselves, yielding

WΨ(j)
(α, β, γ) =

M−1∑
g=0

z(γ − γg) WΨ(j)
(α, β, γg) . (20)

Before proving the steerability property of Eq. (19), we consider additional azimuthal symmetries that 
the directionality component, and thus wavelets, are designed to satisfy. For N − 1 odd (even), the wavelets 
are constructed to exhibit odd (even) symmetry under a reflection of ϕ:

ζ(θ,−ϕ) = (−1)N−1 ζ(θ, ϕ) , (21)

which for real functions on the sphere implies the harmonic coefficients ζ�m are purely real for N − 1 even 
and purely imaginary for N − 1 odd. In addition, for N − 1 odd (even), the wavelets are constructed to 
exhibit odd (even) symmetry under an azimuthal rotation by π:

ζ(θ, ϕ + π) = (−1)N−1 ζ(θ, ϕ) , (22)

which implies the harmonic coefficients ζ�m are zero for m odd when N − 1 is even and zero for m even 
when N − 1 is odd. This symmetry is exploited to optimise the number of basis functions required to steer 
the wavelet to M = N .

Returning to the steerability relation of Eq. (19), we prove this expression by proving the equivalent 
harmonic space representation:

(ζγ)�m =
K∑

m′=−K

�∑
n=−�

zm′ exp(im′γ) d�mn(0) ζ�n
M−1∑
g=0

exp(−i(m′ + n)γg) , (23)

where zm are the Fourier coefficients of the interpolating function, K ∈ N is the (as yet unconstrained) 
band-limit of the interpolating function, and d�mn are the Wigner d-functions (defined in Appendix A.1). 
Performing a rotation in harmonic space of the left-hand-side of Eq. (23), and noting the orthogonality 
of the final summation of Eq. (23) for the equiangular sampling γg = gπ/M , with m′, n < �M�, and thus 
K = �M� −1, one finds that the steerability relation is satisfied provided zm = 1/M = 1/N over the domain 
where ζ�m is non-zero and zero elsewhere, where we have exploited the symmetry relation of Eq. (22).

A steered wavelet for N = 3 and its basis functions, given by rotated versions of the wavelet, are plotted 
in Fig. 2. The wavelet can be steered to any continuous orientation γ by taking weighted sums of its three 
basis functions.

3.3. Directional construction

The directionality component is constructed to carefully control the directional localisation of the wavelet, 
while steerability is achieved by imposing an azimuthal band-limit N (as described above). Directional 
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Fig. 2. Demonstration of wavelet steerability property (L = 256, λ = 2, N = 3, j = 5). The wavelet in panel (d) is steered by 
constructed from a weighted sum of the wavelets shown in panels (a)–(c) through Eq. (19).

localisation is controlled by imposing a specific form for the directional auto-correlation of the wavelet, 
where the directional auto-correlation is defined by

Γ(j)(Δγ = γ′ − γ) ≡ 〈Ψ(j)
γ , Ψ(j)

γ′ 〉 =
∞∑
�=0

∣∣κ(j)(�)
∣∣2 min(N−1,�)∑

m=−min(N−1,�)

∣∣ζ�m∣∣2 exp(imΔγ) , (24)

where Ψ(j)
γ ≡ R(0,0,γ)Ψ(j). The peakedness of the directional auto-correlation function can be considered as 

a measure of the directionality of the wavelet: the more peaked the directional auto-correlation, the more 
directional the wavelet [78,81]. To control the directional localisation of the wavelet precisely, we seek a 
directional auto-correlation function of the form:

Γ(j)(Δγ) =
∞∑
�=0

∣∣κ(j)(�)
∣∣2 cosp(Δγ) . (25)

The directionality component of the wavelet is then defined to satisfy

cosp(Δγ) =
min(N−1,�)∑

m=−min(N−1,�)

∣∣ζ�m∣∣2 exp(imΔγ) , (26)

for p ∈ N, where it is apparent that the modulus squared of the spherical harmonic coefficients of the 
directionality component identifies with the Fourier coefficients of cosp(Δγ). By noting Euler’s formula and 
performing a binomial expansion, cosn(φ) can be written

cosn(φ) = 1
2n

n∑
m=0

(
n

m

)
exp

(
i(n− 2m)φ

)
, (27)

for φ ∈ [0, 2π), from which we recover the following Fourier series expansions for even and odd exponents, 
respectively:

cos2n(φ) = 1
22n

2n∑
m=−2n,
m even

(
2n

n−m/2

)
exp(imφ) (28)

and
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cos2n+1(φ) = 1
22n+1

2n+1∑
m=−(2n+1),

m odd

(
2n + 1

n− (m− 1)/2

)
exp(imφ) . (29)

Associating the Fourier coefficients of cosine raised to a power with the harmonic coefficients of the direc-
tionality component of the wavelet, the following coherent expression is recovered for both even and odd 
exponents:

ζ�m = η υ

√
1
2p

(
p

(p−m)/2

)
, (30)

where

η =
{

1, if N − 1 even
i, if N − 1 odd

, (31)

υ = [1 − (−1)N+m]/2 =
{

0, if N + m even
1, if N + m odd

(32)

and

p = min{N − 1, �− [1 + (−1)N+�]/2} =
{

min(N − 1, �− 1), if N + � even
min(N − 1, �), if N + � odd

. (33)

The factors η and υ are introduced to ensure the symmetries given by Eq. (21) and Eq. (22), respectively, 
are satisfied. The exponent p is defined to achieve the greatest directionality supported by the azimuthal 
band-limit available at a given �. For wavelets with support within � ≥ N , i.e. j ≤ JN = �logλ(L/N) − 1�
(which is usually the case since N is typically chosen to be relatively small and the scaling function is 
used to represent the approximation-information of the signal), the parameter p is given by N − 1 and 
becomes independent of �. Note that the directional component normalisation of Eq. (13) is satisfied since ∑

k

(
n
k

)
= 2n. Example wavelets are plotted in Fig. 3, while directional auto-correlation functions are plotted 

in Fig. 4.

4. Localisation properties

We show in this section that directional scale-discretised wavelets Ψ(j) are characterised by an excellent 
localisation property in the spatial domain. More precisely, for any ξ ∈ R+

∗ , there exists strictly positive 
Cξ,N ∈ R+

∗ , such that the local concentration of a directional wavelet centred on the North pole reads:

∣∣Ψ(j)(θ, ϕ)
∣∣ ≤ (

Lλ−j
)2+N

Cξ,N(
1 + Lλ−jθ

)ξ . (34)

For the sake of simplicity, we present here the outline of the proof of this property; all the mathematical 
technicalities are extensively described in Appendix A.

Firstly, observe the following decomposition of directional scale-discretised wavelets in terms of spherical 
harmonics:
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Fig. 3. Directional scale-discretised wavelets (L = 256, λ = 2, J = 8). Wavelet scale j varies across columns, while azimuthal 
band-limit N values across rows.

Ψ(j)(ω) =
∞∑
�=0

�∑
m=−�

κ(j)(�) ζ�m

√
2� + 1
8π2 Y�m(ω) . (35)

For our purposes, we recall a general result in mathematical analysis, namely Theorem 2.2 of [25], which 
states that the spatial concentration properties of such wavelet constructions are conserved under the action 
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Fig. 4. Directional auto-correlation for even and odd N − 1. As N increases the directional auto-correlation function becomes more 
peaked and the associated wavelet more directional.

of C∞-differential operators, up to a polynomial term depending on the degree of the operator. A full 
statement of the theorem can be found in Appendix A.2. In order to apply this result, we rewrite directional 
wavelets in terms of some proper differential operator.

Let us start by assuming, for the sake of simplicity, that ζ�m does not depend on the multipole � but just 
on the azimuthal angle. For wavelet scales j ≤ JN = �logλ(L/N) − 1� such that the harmonic support of 
the wavelet lies within � ≥ N (the standard setting), this assumption is satisfied directly (as discussed in 
Section 3.3). For � < N , straightforward calculations lead to:

ζ�m ≤
(

�√
2

)− 1
4

≤ 1, for � > 1 . (36)

Consequently, from now on we will write ζm ≡ ζ�m.
Let us define the following C∞-differential operator on θ of order m on the sphere:

Tm ≡ (sin θ)m ∂m

∂(cos θ)m =
m∑

k=0

ak sink θ
∂k

∂θk
. (37)

Following Eq. (A.3) in Appendix A.1, we can rewrite the wavelet as

Ψ(j)(θ, ϕ) =
N∑

m=−N

ζm exp(imϕ) (−1)m
Lλ1−j∑

�=(Lλ−(1+j)∨m)

κ(j)(�) 2� + 1
25/2π3/2

√
(�−m)!
(� + m)! TmP�(cos θ) , (38)

where P�(·) are the Legendre polynomials (defined in Appendix A.1) and we have adopted the shorthand 
notation a ∨ b = max(a, b). Straightforward manipulations lead to the following bound, for any ϕ:∣∣Ψ(j)(θ, ϕ)

∣∣ ≤ (2N + 1) max
m=−N,...,N

∣∣ζm∣∣ ∣∣Q(j)
m (cos θ)

∣∣ , (39)

where

Q(j)
m (cos θ) ≡

Lλ1−j∑
�=(Lλ−(1+j)∨m)

κ(j)(�) 2� + 1
27/2π5/2 �−m TmP�(cos θ) . (40)

We have employed the bound of Eq. (A.32) above, which is derived in Appendix A.3.
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For the sake of simplicity, let εj = λjL−1 and define the function bm,εj mapping R to R+ as

bm,εj (x) ≡ κ(j)(x) x−m, for x > 0 . (41)

As in [55], we extend this function to the negative axis simply by taking bm,εj(−|x|) = bm,εj (|x|). Further-
more, because the function κ(j) assumes the value 0 in the interval (−λ−(1+j)L, λ−(1+j)L), it also holds that 
bm,εj (x) = 0 for x ∈ (−λ−(1+j)L, 0) ∪ (0, λ−(1+j)L). Moreover, we extend for continuity bm,εj (0) = 0.

We then obtain:

Q(j)
m (cos θ) = 1

(2π)5/2
TmU (j)

m (cos θ) , (42)

where

U (j)
m (cos θ) ≡

Lλ1−j∑
�=(Lλ−(1+j)∨m)

bm,εj (�)
(
� + 1

2

)
P�(cos θ) . (43)

As proved in Appendix A.4, for any ξ ∈ R+
∗ , there exists Cξ ∈ R+

∗ such that U (j)
m (cos θ) is bounded above:

∣∣U (j)
m (cos θ)

∣∣ ≤ Cξ/ε
2
j(

1 +
∣∣ θ
εj

∣∣)ξ
. (44)

According to Eq. (A.30) of Appendix A.2 it follows that

∣∣Q(j)
m (cos θ)

∣∣ ≤ (Lλ−j)2+mCξ(
1 + Lλ−jθ

)ξ , (45)

and, therefore, we obtain

∣∣Ψ(j)(θ, ϕ)
∣∣ ≤ (2N + 1) max

m=−N,...,N

∣∣ζm∣∣ (Lλ−j)2+NCξ(
1 + Lλ−jθ

)ξ (46)

≤ (Lλ−j)2+NCξ,N(
1 + Lλ−jθ

)ξ , (47)

as claimed.
If we consider spin scale-discretised wavelets [46], denoted by sΨ(j)(ω), ω ∈ S2, the following decomposi-

tion in terms of spin spherical harmonics sY�m(ω) holds:

sΨ(j)(ω) =
∞∑
�=0

�∑
m=−�

κ(j)(�) ζ�m

√
2� + 1
8π2 sY�m(ω) . (48)

Details and properties concerning spin spherical harmonics are extensively discussed in Appendix A.1. 
Considering s > 0, and using Eq. (A.19), we obtain

sΨ(j)(ω) =
∞∑ �∑

κ(j)(�) ζ�m

√
2� + 1
8π2

[
(�− s)!
(� + s)!

]1/2

ð
sY�m(ω) . (49)
�=0 m=−�
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Observe that 
[
(�− s)!/(� + s)!

]1/2 is bounded by �−s, as given by Eq. (A.32) and shown in Appendix A.3. 
Noting Eq. (A.1), Eq. (A.2) and Eq. (A.3), straightforward calculations, entirely analogous to the scalar 
case and therefore omitted for the sake of brevity, lead to the following inequality:∣∣

sΨ(j)(θ, ϕ)
∣∣ ≤ (2N + 1) max

m=−N,...,N

∣∣ζm∣∣ ∣∣
sQ

(j)
m (cos θ)

∣∣ , (50)

where

sQ
(j)
m (cos θ) ≡

Lλ1−j∑
�=(Lλ−(1+j)∨m)

κ(j)(�) 2� + 1
27/2π5/2 �−(m+s)

ð
sTmP�(cos θ) . (51)

Similar manipulations of sQ(j)
m (cos θ) to those presented above (see again Appendix A.2), lead to the fol-

lowing result. For any ξ ∈ R+
∗ , there exists a strictly positive Cξ,N,s ∈ R+

∗ such that

∣∣
sΨ(j)(θ, ϕ)

∣∣ ≤ (Lλ−j)2+N+sCξ,N,s(
1 + Lλ−jθ

)ξ . (52)

5. Stochastic properties

We study in this section the stochastic properties of zero-mean homogeneous and isotropic Gaussian 
random fields on the sphere f when decomposed by directional scale-discretised wavelets. The stochastic 
field f is characterised by its power spectrum C�, with

E(f�mf∗
�′m′) = C� δ��′δmm′ (53)

and

E(f�m) = 0 . (54)

Specifically, we study the correlation of directional scale-discretised wavelet coefficients given by

Ξ(jj′)(ρ1, ρ2) ≡
E

[
WΨ(j)(ρ1) WΨ(j′)∗(ρ2)

]
√

E

[∣∣∣WΨ(j)(ρ1)
∣∣∣2]√E

[∣∣∣WΨ(j′)(ρ2)
∣∣∣2] . (55)

For notational convenience, we also introduce the covariance

ξ(jj′)(ρ1, ρ2) ≡ E

[
WΨ(j)

(ρ1) WΨ(j′)∗(ρ2)
]
, (56)

such that

Ξ(jj′)(ρ1, ρ2) = ξ(jj′)(ρ1, ρ2)√
ξ(jj)(ρ1, ρ1) ξ(j′j′)(ρ2, ρ2)

. (57)

Recall the harmonic representation of the scale-discretised wavelet transform of Eq. (9). Noting this 
expansion, the wavelet covariance may be written
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ξ(jj′)(ρ1, ρ2) =
∞∑
�=0

�∑
n=−�

�∑
n′=−�

C� Ψ(j)∗
�n Ψ(j′)

�n′

�∑
m=−�

D�∗
mn(ρ1) D�

mn′(ρ2) (58)

=
∞∑
�=0

�∑
n=−�

�∑
n′=−�

C� Ψ(j)∗
�n Ψ(j′)

�n′ D�
nn′(ρ) , (59)

where the second line follows from Eq. (A.13) and Rρ = R−1
ρ1

Rρ2 (see Appendix A.1 for further details). 
For the case where ρ1 = ρ2 and j′ = j, the covariance reduces to

ξ(jj)(ρ, ρ) =
∞∑
�=0

�∑
n=−�

C�

∣∣Ψ(j)
�n

∣∣2 , (60)

by Eq. (A.15) of Appendix A.1 (as also shown in [49]).
Expressing the wavelet by its kernel and directionality component, the wavelet covariance reads:

ξ(jj′)(ρ1, ρ2) =
∞∑
�=0

�∑
n=−�

�∑
n′=−�

C�
2� + 1
8π2 κ(j)(�) κ(j′)(�) ζ�n ζ�n′ D�

nn′(ρ) (61)

Furthermore, using Eq. (A.3), we obtain

ξ(jj′)(ρ1, ρ2) = ξ
(jj′)
(+) (ρ1, ρ2) + ξ

(jj′)
(−) (ρ1, ρ2), (62)

where

ξ
(jj′)
(+) (ρ1, ρ2) =

∞∑
�=0

�∑
n=−�

�∑
n′=0

C�
2� + 1

27/2π5/2κ
(j)(�)κ(j′)(�)ζ�nζ�n′

× (−1)n
√

(�− n′)!(�− n)!
(� + n′)!(� + n′)! exp

(
i(−nα + n′γ)

)
ð̄
n′ Tn P�(cosβ) (63)

and

ξ
(jj′)
(−) (ρ1, ρ2) =

∞∑
�=0

�∑
n=−�

−1∑
n′=−�

C�
2� + 1

27/2π5/2κ
(j)(�)κ(j′)(�)ζ�nζ�n′

×
√

(�− |n′|)!(�− n)!
(� + |n′|)!(� + n′)! exp

(
i(−nα + n′γ)

)
ð̄
|n′| Tn P�(cosβ), (64)

where in Eq. (63) we applied Eq. (A.22), while in Eq. (64) we applied Eq. (A.23). In both those formulas 
and henceforth, β is the Euler angle associated to the resultant rotation ρ = (α, β, γ), as stated above. These 

expressions show that, up to a complex exponential factor, both ξ(jj′)
(+) (ρ1, ρ2) and ξ(jj′)

(−) (ρ1, ρ2) depend on 
the absolute value of n′.

Following, for instance, [6], we introduce some mild regularity conditions on C� (see also [35]). Assume 
there exists R ∈ N, α ∈ R, α ≥ 2 and a sequence of functions 

{
g
(λ)
j (·)

}
such that we can rewrite

C� = �−αg
(λ)
j (λjL−1�) > 0 , (65)

for � ∈
[
�λ−(1+j)L�, 
λ1−jL�

]
and for j ∈ N, 0 < g

(λ)
j < ∞, while for r = 1, . . . , R, there exists cr ∈ R+

such that
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sup
j∈N

sup
u∈[Lλ−1,Lλ]

∣∣∣ dr
dur

g
(λ)
j (u)

∣∣∣ ≤ cr . (66)

These conditions guarantee the boundedness and smoothness of C� and are useful in the context of practical 
applications. For instance, these conditions encompass standard cosmological models describing the CMB, 
where the CMB is modelled as a realisation of a Gaussian random field on the sphere and where C�

can be modelled approximately by inverse polynomials (cf. [16]). Note also that, as stated in [6], the 
sequence 

{
g
(λ)
j (·)

}
belongs to the Sobolev space WR,∞. Because it follows immediately that there should 

exist g1, g2, α ∈ R+, α ≥ 2, such that g1�
−α ≤ C� ≤ g1�

−α, for the sake of the simplicity and without losing 
any generality, we assume henceforth C� = g1�

−α (see, again, [6]).
Consider now the variance: in order to compute its lower bound, observe that, for � sufficiently large, the 

following integral approximation holds

∞∑
�=0

(λjL−1�)−α (λjL−1)2 (2� + 1)
(
κ(j)(�)

)2 =
�λ1−jL�∑

�=	λ−(1+j)L


(λjL−1�)−α (λjL−1)2 (2� + 1)
(
κλ(λjL−1�)

)2

� 2
λ∫

λ−1

x1−α
(
κλ(x)

)2 dx , (67)

where 0 < C1 ≤ 2 
∫ λ

λ−1 x
1−α

(
κλ(x)

)2 dx ≤ C2 < ∞, and C1, C2 ∈ R+ (cf. Lemma 3 in [6]). Recalling ∑�
n=−�

∣∣ζn∣∣2 = 1, straightforward manipulations lead us to the following inequality:

ξ(jj)(ρ, ρ) =
∞∑
�=0

C�
2� + 1
8π2

(
κ(j)(�)

)2 ≥ C1(Lλ−j)(2−α). (68)

As far as the correlation ξ(jj′)(ρ1, ρ2) is concerned, observe that κ(j)(�)κ(j′)(�) = 0 if |j − j′| > 1, so that 
ξ(jj′)(ρ1, ρ2) is different from 0 only if j′ = j or if j′ = j ± 1.

Let us consider j = j′ and define a sequence of functions φ(j)
λ,1 given by φ(j)

λ,1(u) =
(
κ(j)(u)

)2
g
(λ)
j (u)u−α−n−n′. 

Assuming again that ζ�n = ζn, we have

ξ
(jj)
(+) (ρ1, ρ2) ≤

∑
n

∑
n′

ζnζn′
∑
l

2� + 1
27/2π5/2 φ

(j)
λ,1(�) ð̄

n′TnP�(cosβ) . (69)

A similar result is attained as far as ξ(jj)
(−) (ρ1, ρ2) is concerned. Recalling that both n and n′ are bounded 

by N , we apply again the same techniques used to achieve localisation in Section 4, where φ(j)
λ,1(�) plays 

the same role as bm,εj (�) in Eq. (42), here omitted for the sake of brevity. These considerations lead to the 
following result. For any ξ′ ∈ R+, ξ′ ≥ 2(1 + N), there exists Cξ′,M such that

ξ(jj)(ρ1, ρ2) ≤
(Lλ−j)2(1+N)−αCξ′,N(

1 + Lλ−jβ
)ξ′ . (70)

Combining Eq. (75) and Eq. (70), we attain the following bound. For any ξ′′ ∈ R+, ξ′′ ≥ 2N , there exists 
Cξ′′,M such that

Ξ(jj)(ρ1, ρ2) ≤
(Lλ−j)2NCξ′′,N(

−j
)ξ′′ . (71)
1 + Lλ β
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Likewise, let us suppose j′ = j − 1, remarking that the case j′ = j + 1 is entirely analogous. Let us 
define a sequence of functions φ(j)

λ,2 given by φ(j)
λ,1(u) = κ(j)(u)κ(j−1)(u)g(λ)

j (u)u−α−n−n′ . Again recalling 
that ζ�n = ζn, we have

ξ
(j,j−1)
(+) (ρ1, ρ2) ≤

∑
n

∑
n′

ζnζn′
∑
l

2� + 1
8π2 φ

(j)
λ,2(�) ð̄

n′TnP�(cosβ). (72)

Straightforward calculations, similar to the case j = j′, provide an identical bound for Ξ(j,j′)(ρ1, ρ2).
Therefore, for the sake of the clarity, we state directly the final result: for any j, j′ ∈ N such that 

|j − j′| < 2 and for any ξ0 ∈ R+, ξ0 ≥ 2N , there exists Cξ0,M such that

Ξ(jj′)(ρ1, ρ2) ≤
(Lλ−j)2NCξ0,N(
1 + Lλ−jβ

)ξ0 . (73)

As far as spin scale-discretised wavelets are concerned [46], consider an isotropic spin s random field 

sf ∈ S2 and its corresponding spherical harmonic coefficients sf�m = 〈fs, sY�m〉. As proved in Theorem 
7.2 of [23], it holds that E(sf�msf

∗
�′m′) = C�δ��′δmm′ , where C� is the spin power spectrum, which is 

invariant with respect to the choice of the system of coordinates over S2 (see also [24]). Therefore, the 
upper bound established for the correlation between spin directional scale-discretised wavelet coefficients is 
entirely analogous to the one developed for the scalar case. Indeed, the spin wavelet correlation becomes

sξ
(jj′)(ρ1, ρ2) =

∞∑
�=0

�∑
n=−�

�∑
n′=−�

C� sΨ(j)∗
�n sΨ(j′)

�n′ D�
nn′(ρ) , (74)

and the wavelet variance is bounded as

sξ
(jj)(ρ, ρ) =

∞∑
�=0

C�
2� + 1
8π2

(
κ(j)(�)

)2 ≥ C1(Lλ−j)(2−α), (75)

because 
∑�

m=−� sY�m (ω) sY
∗
�m (ω) = 2�+1

4π , for any ω ∈ S2. Straightforward calculations lead to the following 
result. For any j, j′ ∈ N such that |j − j′| < 2 and for any ξ′0 ∈ R+, ξ′0 ≥ 2N , there exists Cξ′0,M such that

sΞ(jj′)(ρ1, ρ2) ≤
(Lλ−j)2NCξ′0,N(
1 + Lλ−jβ

)ξ′0 . (76)

6. Numerical experiments

We perform numerical experiments to study the localisation and correlation properties of directional 
scale-discretised wavelet coefficients of simulations of homogeneous and isotropic Gaussian random fields on 
the sphere. Specifically, we simulate realisations of the CMB, which, in the standard Lambda Cold Dark 
Matter (ΛCDM) cosmological model, is assumed to be a realisation of a Gaussian random field on the sphere. 
We assume a power spectrum C� specified by the ΛCDM cosmological model that best fits observations of 
the CMB made by NASA’s Wilkinson Microwave Anisotropy Probe (WMAP) [28] (combined with other 
cosmological data: we adopt the full 9-year WMAP+BAO+H0 best-fit 6 parameter λCDM model).4 Our 
Milky Way galaxy obscures our view of the CMB, hence real observations are made over incomplete sky 
coverage. We study statistical properties of wavelet coefficients in the presence of incomplete coverage on the 
sphere, adopting the WMAP KQ75 mask [8] (see Fig. 5). To compute directional scale-discretised wavelet

4 Available at: http :/ /lambda .gsfc .nasa .gov.

http://lambda.gsfc.nasa.gov
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Fig. 5. Binary (WMAP9 KQ75) mask plotted using the Mollweide projection showing regions of the sky where the CMB is accurately 
observable (ones of mask) and unobservable (zeros of mask).

Fig. 6. Localisation statistic Δ(j)(ρ), plotted using a Mollweide projection for each orientation γ, computed from Monte Carlo 
simulations (L = 128, λ = 2, N = 3, j = 2).

transforms on the sphere we use the s2let
5 code [33,46], which in turn relies on the so3

6 [38] and ssht
7

[51] codes, all of which are open-source and publicly available.

6.1. Localisation

To study localisation properties in the context of incomplete coverage we compute the following locali-
sation statistic:

5 http :/ /www .s2let .org.
6 http :/ /www .sothree .org.
7 http :/ /www .spinsht .org.

http://www.s2let.org
http://www.sothree.org
http://www.spinsht.org
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Fig. 7. Localisation statistic Δ(j)(ρ), plotted using a Mollweide projection for each orientation γ, computed from Monte Carlo 
simulations (L = 256, λ = 2, N = 3, j = 2).

Δ(j)(ρ) =
E

[∣∣∣ŴΨ(j)(ρ) −WΨ(j)(ρ)
∣∣∣2]

E

[∣∣∣WΨ(j)(ρ)
∣∣∣2] , (77)

where ̂· denotes a quantity observed over incomplete coverage (adopting the WMAP KQ75 mask illustrated 
in Fig. 5). The localisation statistic Δ(j)(ρ) computed from Monte Carlo simulations is shown in Fig. 6
and Fig. 7 for different wavelet parameters. Notice that Δ(j)(ρ) is close to zero over the majority of the 
sphere and only deviates significantly from zero along the mask boundaries, highlighting the excellent spatial 
localisation properties of scale-discretised wavelets. As expected, deviations from zero in Δ(j)(ρ) are induced 
when the size of the gap in coverage is of a comparable or greater size than the wavelet considered. For 
example, small point source regions of the mask have a minimal impact in Fig. 6 but a more significant 
impact in Fig. 7, where the size of the wavelet is smaller.

6.2. Correlation

To study the correlation properties of scale-discretised wavelets we compute the expected correlation 
Ξ(jj′)(ρ, ρ) defined by Eq. (55). The correlation is computed empirically from Monte Carlo simulations, for 
both complete and incomplete coverage (adopting the WMAP KQ75 mask illustrated in Fig. 5), and also 
analytically by noting



78 J.D. McEwen et al. / Appl. Comput. Harmon. Anal. 44 (2018) 59–88
Fig. 8. Correlation ξ(jj′)(ρ, ρ) computed analytically and empirically (from Monte Carlo simulations) in the absence and presence 
of a mask (L = 256, λ = 2, N = 3).

ξ(jj′)(ρ, ρ) =
L−1∑
�=0

�∑
m=−�

C� Ψ(j)∗
�m Ψ(j′)

�m . (78)

Computed correlation values are illustrated in Fig. 8. Notice that the analytic calculation is in close agree-
ment with the empirical calculation for both complete and incomplete coverage. Since the implementation 
of the scale-discretised wavelet transform is built on exact quadrature [38,51] and any errors in computed 
wavelet transforms are of the order of machine precision [33,46], differences between analytic and empirical 
computations are due to statistical noise (100 Monte Carlo simulations were computed). As expected the 
correlation is essentially zero for |j − j′| > 1.
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Appendix A. Auxiliary results

In this appendix we collect some useful technical results. In the first subsection we recall well-known 
results related to spherical harmonics, spin spherical harmonics, Wigner D-functions and some related 
properties. The latter subsections include results pivotal for the exhaustive proofs of the localisation of the 
directional scale-discretised wavelets Ψ(j) and the upper bound of the covariance between WΨ(j)(ρ1) and 

WΨ(j′)(ρ2). This appendix should be read in conjunction with the main text, where symbols and expressions 
introduced already are defined explicitly.

A.1. Spherical harmonics and Wigner D-functions

We succinctly recall the main definitions and properties of the spherical harmonic functions and the 
Wigner D-functions, which we make use of throughout the article. For further details and proofs we refer 
the reader to [35,74].

The scalar spherical harmonic functions are explicitly defined by

Y�m(θ, ϕ) = (−1)m
√

2� + 1
4π

(�−m)!
(� + m)! P

m
� (cos θ) exp(imϕ) , (A.1)

for natural � ∈ N and integer m ∈ Z, |m| ≤ �, where Pm
� (·) are the associated Legendre functions, which 

can be related to the Legendre polynomials P�(·) by

Pm
� (cos θ) ≡ (sin θ)m dm

d(cos θ)mP�(cos θ) . (A.2)

Recall the definition of the C∞ differential operator Tm specified by Eq. (37): it can be readily noted that

Pm
� (cos θ) = TmP�(cos θ). (A.3)

Note that here we adopt the Condon–Shortley phase convention, with the (−1)m phase factor included in 
Eq. (A.1) above. The orthogonality and completeness relations for the spherical harmonics read, respectively,

〈Y�m, Y�′m′〉 =
∫
S2

dΩ(θ, ϕ) Y�m(θ, ϕ) Y ∗
�′m′(θ, ϕ) = δ��′δmm′ (A.4)

and

∞∑
�=0

�∑
m=−�

Y�m(θ, ϕ) Y ∗
�m(θ′, ϕ′) = δ(cos θ − cos θ′) δ(ϕ− ϕ′) , (A.5)

where δij is the Kronecker delta symbol and δ(x) is the one-dimensional Dirac delta function.
The Wigner D-function D�

mn, for integer m, n ∈ Z, |m|, |n| ≤ �, may be decomposed, in terms of Euler 
angles, by
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D�
mn(α, β, γ) = e−imα d�mn(β) e−inγ . (A.6)

The orthogonality and completeness relations for the Wigner D-functions read, respectively,

〈D�
mn, D

�′

m′n′〉 =
∫

SO(3)

d�(ρ) D�
mn(ρ) D�′∗

m′n′(ρ) = 8π2

2� + 1
δ��′δmm′δnn′ , (A.7)

and

∞∑
�=0

�∑
m=−�

�∑
n=−�

D�
mn(α, β, γ) D�∗

mn(α′, β′, γ′) = δ(α− α′) δ(cosβ − cosβ′) δ(γ − γ′) , (A.8)

where 〈·, ·〉 is used to denote inner products over both the sphere and the rotation group (the case adopted 
can be inferred from the context).

We note the additive property of the D-functions is given by

D�
mn(α, β, γ) =

�∑
k=−�

D�
mk(α1, β1, γ1) D�

kn(α2, β2, γ2) , (A.9)

where ρ = (α, β, γ) describes the rotation formed by composing the rotations described by ρ1 = (α1, β1, γ1)
and ρ2 = (α2, β2, γ2), i.e. Rρ = Rρ1Rρ2 . The Euler angles may be related explicitly by

cot(α− α2) = cosβ2 cot(α1 + γ2) + cotβ1
sin β2

sin(α1 + γ2)
, (A.10)

cosβ = cosβ1 cosβ2 − sin β1 sin β2 cos(α1 + γ2), (A.11)

and

cot(γ − γ1) = cosβ1 cot(α1 + γ2) + cotβ2
sin β1

sin(α1 + γ2)
. (A.12)

Thus

�∑
k=−�

D�∗
km(α1, β1, γ1) D�

kn(α2, β2, γ2) = D�
mn(α, β, γ) , (A.13)

where now ρ = (α, β, γ) describes the rotation formed by composing the inverse of the rotation described 
by ρ1 = (α1, β1, γ1) and the rotation described by ρ2 = (α2, β2, γ2), i.e. Rρ = R−1

ρ1
Rρ2 , since

D�
mn(α, β, γ) = D�∗

nm(−γ,−β,−α) . (A.14)

For the case ρ1 = ρ2,

�∑
k=−�

D�∗
km(α1, β1, γ1) D�

kn(α1, β1, γ1) = δmn . (A.15)

Finally, we note that one can relate the Wigner D-functions and the spherical harmonics (for further 
details and discussion we refer to [35,57]):



J.D. McEwen et al. / Appl. Comput. Harmon. Anal. 44 (2018) 59–88 81
Y�m (θ, φ) =
√

2� + 1
4π D� ∗

m0(ϕ, θ, 0). (A.16)

The Wigner D-functions may also be related to the spin spherical harmonics [57], nY�m ∈ L2(S2), which can 
be constructed from the scalar harmonics through repeated action of the differential spin raising/lowering 
operators. When applied to a spin-n function, the spin raising and lowering operators are defined by

ð ≡ − sinn θ

(
∂

∂θ
+ i

sin θ

∂

∂ϕ

)
sin−n θ (A.17)

and

ð̄ ≡ − sin−n θ

(
∂

∂θ
− i

sin θ

∂

∂ϕ

)
sinn θ , (A.18)

respectively. The spin-n spherical harmonics can hence be expressed in terms of the scalar (spin-zero) 
harmonics by

nY�m(θ, ϕ) =
[
(�− n)!
(� + n)!

]1/2

ð
nY�m(θ, ϕ) , (A.19)

for 0 ≤ n ≤ �, and by

nY�m(θ, ϕ) = (−1)n
[
(� + n)!
(�− n)!

]1/2
ð̄
−nY�m(θ, ϕ) , (A.20)

for −� ≤ n ≤ 0. Spin spherical harmonics are related to the Wigner D-functions by [26]

nY�m(θ, ϕ) = (−1)n
√

2� + 1
4π D� ∗

m,−n(ϕ, θ, 0) . (A.21)

Expressing the spin harmonics as spin raised or lower scalar harmonics, it follows that

D�
mn(α, β, γ) =

√
4π

2� + 1

[
(�− n)!
(� + n)!

]1/2
ð̄
nY ∗

�m(β, α) exp(inγ) , (A.22)

for 0 ≤ n ≤ �, and

D�
mn(α, β, γ) = (−1)n

√
4π

2� + 1

[
(� + n)!
(�− n)!

]1/2

ð
−nY ∗

�m(β, α) exp(inγ) , (A.23)

for −� ≤ n ≤ 0.
Before concluding this subsection, let us introduce the Mehler–Dirichlet approximation for Legendre 

polynomials. Further details can be found in [55]. Let us start from Eq. (32) in [18, p. 177], concerning the 
integral representation of the Gegenbauer polynomials: as well-known in the literature, Legendre polynomials 
correspond to Gegenbauer of parameter 1

2 , so that we obtain

P�(cos θ) = C
1
2
� (cos θ) =

√
2Γ(1)Γ(� + 1)
π

1
2 �!Γ(1

2 )Γ(1)

θ∫
0

cos(� + 1
2 )φ√

cosφ− cos θ
dφ =

√
2
π

θ∫
0

cos(� + 1
2 )φ√

cosφ− cos θ
dφ . (A.24)

As suggested in [18], we replace φ and θ with π − φ and π − θ respectively, to get
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P�(cos(π − θ)) =
√

2
π

π∫
φ

cos
(
(� + 1

2 )π − �(φ + 1
2 )
)

√
cos θ − cosφ

dφ . (A.25)

On one hand, recall that

cos
((

� + 1
2

)
π − �

(
φ + 1

2

))
= (−1)� sin

(
�
(
φ + 1

2

))
. (A.26)

On the other hand, using the symmetry property of Legendre polynomials, we have

P�

(
cos(π − θ)

)
= P�(− cos(θ)) = (−1)�P�(cos(θ)) . (A.27)

Combining together all these results, we obtain

P�(cos(θ)) =
√

2
π

π∫
φ

sin(�(φ + 1
2 ))√

cos θ − cosφ
dφ . (A.28)

A.2. A general result on localisation over compact manifolds

Here we recall the general result established in [25] as Theorem 2.2, properly adapted to the sphere S2. 
Let g ∈ C∞(R) and let {λ�} be the set of eigenvalues associated to the Beltrami–Laplacian operator over 
S2. Let Λ(x, y, t; g) be given by

Λ(ω1, ω2, t; g) ≡
∞∑
�=0

�∑
m=−�

g(t
√
λ�) Y�m(ω1) Y ∗

�m(ω2) . (A.29)

For t ∈ R+
∗ , for any function g ∈ C∞(R), for every pair of differential operators on the unit sphere S2, T1

and T2, depending respectively on ω1 ∈ S2 and ω2 ∈ S2, and defined such that degT1 = i1, deg T2 = i2, and 
for every non-negative integer τ ∈ N, there exists a constant Cτ ∈ R+

∗ such that

∣∣T1 T2 Λ(ω1, ω2, t; g)
∣∣ ≤ Cτ t−2−i1−i2(

1 + d(ω1,ω2)
t

)τ , for all t ∈ R
+
∗ , ω1, ω2 ∈ S

2 , (A.30)

where d(ω1, ω2) = arccos(ω̂1 · ω̂2) denotes the geodesic distance between ω1, ω2 ∈ S2. In the framework of 
directional wavelets, we have:

Λ(j)(x, y) ≡ Λ(x, y, λjL−1;κ(j)(�)) . (A.31)

A.3. Upper bound of 
√

(�−m)!/(� + m)!

As far as the behaviour of 
√

(�−m)!/(� + m)! is concerned, we make use of the following approximation, 
which we show here: √

(�−m)!
(� + m)! ≤ �−m . (A.32)

Stirling’s approximation leads to
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(�−m)!
(� + m)! ≈

(�−m) 1
2 (�−m)�−mexp(−(�−m))

(� + m) 1
2 (� + m)�+mexp(−(� + m))

(A.33)

= �−2mexp(2m)
(

(1 − m
� )

(1 + m
� )

)�
(1 − m

� ) 1
2−m

(1 + m
� ) 1

2+m
. (A.34)

Consider now the positive function h ∈ C∞, defined on the support (−1, 1) as

h(x) =
(

1 − x

1 + x

) 1
2 1
(1 − x2)m . (A.35)

Its first derivative is given by d
dxh(x) = (1 +x)−(m+ 3

2 )(1 −x)−(m+ 1
2 )(2mx −1), so that we have d

dxh(x) = 0 for 
x = (2m)−1. The function h is therefore monotonically decreasing in the interval (−1, 1/2m) and increasing 
for x ∈ (1/2m, 1). Consider x ≡ m/�: because m = −M, . . . , M , it follows that |m/�| ≤ |M/�|. Hence we 
obtain ∣∣∣∣M�

∣∣∣∣ < 1 ⇒
∣∣∣∣1 ± m

�

∣∣∣∣ > 0 . (A.36)

Therefore, we have that, for any �,

h
(m
�

)
< +∞ . (A.37)

On the other hand, h attains its minimum for � = 2m2, where

h

(
1

2m

)
=

(
2m− 1
2m + 1

) 1
2
(

4m2

4m2 − 1

)
> 0 . (A.38)

Because � > (Lλ−(1+j) ∨m) and lim�→∞ h(m� ) = 1, we have that

(1 − m
� ) 1

2−m

(1 + m
� ) 1

2+m
≤ max

(
1, h

(
m

(Lλ−(1+j) ∨m)

))
. (A.39)

Furthermore, for large �, it can be easily seen that

lim
�→+∞

(1 − m
� )�

(1 + m
� )� = exp(−2m) . (A.40)

Consequently, the approximation specified above holds for large �. On the other hand, for small �, let us 
define F�,m = exp(2m) (1−m

� )�

(1+m
� )� . We must prove that F�,m ≤ 1. Let us compute

logF�,m = 2m + �
(
log

(
1 − m

�

)
− log(1 + m

�

))
. (A.41)

Now, because log(1 + x) = x − x2

2 + x3

3 + O(x4) and log(1 − x) = −x − x2

2 − x3

3 + O(x4), we have

logF�,m = 2m + �

(
−m

�
− 1

2
m2

�2
− 1

3
m3

�3
− m

�
+ 1

2
m2

�2
− 1

3
m3

�3
+ O

((m
�

)4))
, (A.42)

so that



84 J.D. McEwen et al. / Appl. Comput. Harmon. Anal. 44 (2018) 59–88
logF�,m = −2
3
m3

�2
+ O

(m4

�3

)
≤ 0. (A.43)

Thus, F�,m ≤ 1, and consequently the approximation specified above also holds for small �.

A.4. Upper bound of U (j)
m (cos θ)

As far as the kernel U (j)
m (cos θ), defined in Eq. (43), is concerned, we obtain the following upper bound: 

there exists ξ ∈ R+ such that

∣∣U (j)
m (cos θ)

∣∣ ≤ Cξ/ε
2
j(

1 +
∣∣ θ
εj

∣∣)ξ
. (A.44)

The construction of this bound strictly follows the procedure used to establish the localisation prop-
erty for the so-called spherical standard needlets developed in [55]. First of all, observe that for large �, 
bm,εj

(
εj

(
� + 1

2
))

≡ bm,εj (εj (�)). Furthermore, using the Meher–Dirichlet formula for Legendre polynomi-
als Eq. (A.28), we obtain

U (j)
m (cos θ) ≤

∞∑
�=0

bm,εj

(
� + 1

2

)(
� + 1

2

)
P�(cos θ) (A.45)

= 1
2

π∫
θ

Gm,εj (α)√
cos θ − cosα

dα , (A.46)

where

Gm,εj (α) =
∞∑

�=−∞
bm,εj

(
� + 1

2

)(
� + 1

2

)
sin

(
α
(
� + 1

2

))
. (A.47)

Observe that bm,εj (x)x sin(αx) is an even function. We now compute the Fourier transform, here denoted 
F [·], of Gm,εj (α), considering three different cases depending on the sign of m:

1. m = 0. In this case, the proof is trivially equivalent to [55].
2. m < 0. In this case, we have

xbm,ε(x) = κ(j)(x)(x)|m|+1 = κλ(εjx)(x)|m|+1 . (A.48)

For any integrable function g, let its Fourier transform be denoted by F [f (x)] (ν), ν ∈ R. Furthermore 
we define κ̂ (ν) = F [κλ (x)] (ν). Therefore, we obtain

F [xbm(εjx)](ν) = F [x|m|+1κλ(εjx)](ν) (A.49)

= i|m|+1

εj
κ̂(|m|+1)

( ν

εj

)
, (A.50)

where we adopt the notation here κ̂(|m|+1)(·) = d|m|+1

dν|m|+1F [κλ(x)](·). Hence, we have

∫
bm,ε

(
x + 1

2

)(
x + 1

2

)
sin

(
θ
(
x + 1

2

))
exp(−iνx) dx = 1

2πiexp
(
iν2

) i|m|+1

εj
κ̂(|m|+1)

( ν

εj

)
, (A.51)
R
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which, by Poisson summation formula and some simplifications, leads to

Gm,εj (cos θ) ≤ 1
2πε

∣∣∣∣ +∞∑
ν=−∞

κ̂(|m|+1)
(
θ + ν

εj

)∣∣∣∣ . (A.52)

Now, following [55], standard Fourier properties yield

F
[

dr

dxr

(
x1+|m|κλ(x)

)]
(ν) = ir+1νrκ̂(|m|+1)(ν) . (A.53)

Hence, we obtain ∣∣∣∣θ + ν

εj

∣∣∣∣r∣∣∣∣κ̂(|m|+1)
(φ + ν

εj

)∣∣∣∣ ≤ 1
εj

∥∥∥∥ dr

dxr

(
x1+|m|κλ(x)

)∥∥∥∥
L1

. (A.54)

Therefore, for any given ξ > M , if

Vξ,κλ
≡ max

0≤r≤ξ

∥∥∥∥ dr

dxr

(
x1+|m|κλ(x)

)∥∥∥∥
L1

, (A.55)

we have

Gm,εj (θ) ≤
1

4π2εj

∣∣∣∣ +∞∑
ν=−∞

2Vξ,κλ
/εj

1 +
∣∣ θ+ν

εj

∣∣ξ
∣∣∣∣ . (A.56)

The remainder of the proof is equivalent to [55].
3. m > 0. By construction, bm,εj (·) fulfils all the conditions necessary for boundedness as in [55].

In all the three cases, we have therefore

∣∣U (j)
m (cos θ)

∣∣ ≤ Vξ,κλ

4π2ε2
j

π∫
θ

1
1 +

∣∣ φ
εj

∣∣ξ dφ√
cos θ − cosφ

. (A.57)

According to [55], we obtain

∣∣U (j)
m (cos θ)

∣∣ ≤ Cξ/ε
2
j

(1 +
∣∣ θ
εj

∣∣)ξ . (A.58)
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