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IMPORTANCE Amyotrophic lateral sclerosis (ALS) is a devastating adult-onset
neurodegenerative disorder with a poor prognosis and a median survival of 3 years. However,
a significant proportion of patients survive more than 10 years from symptom onset.

OBJECTIVE To identify gene variants influencing survival in ALS.

DESIGN, SETTING, AND PARTICIPANTS This genome-wide association study (GWAS) analyzed
survival in data sets from several European countries and the United States that were
collected by the Italian Consortium for the Genetics of ALS and the International Consortium
on Amyotrophic Lateral Sclerosis Genetics. The study population included 4256 patients with
ALS (3125 [73.4%] deceased) with genotype data extended to 7 174 392 variants by
imputation analysis. Samples of DNA were collected from January 1, 1993, to December 31,
2009, and analyzed from March 1, 2014, to February 28, 2015.

MAIN OUTCOMES AND MEASURES Cox proportional hazards regression under an additive
model with adjustment for age at onset, sex, and the first 4 principal components of ancestry,
followed by meta-analysis, were used to analyze data. Survival distributions for the most
associated genetic variants were assessed by Kaplan-Meier analysis.

RESULTS Among the 4256 patients included in the analysis (2589 male [60.8%] and 1667
female [39.2%]; mean [SD] age at onset, 59 [12] years), the following 2 novel loci were
significantly associated with ALS survival: at 10q23 (rs139550538; P = 1.87 × 10−9) and in
the CAMTA1 gene at 1p36 (rs2412208, P = 3.53 × 10−8). At locus 10q23, the adjusted hazard
ratio for patients with the rs139550538 AA or AT genotype was 1.61 (95% CI, 1.38-1.89;
P = 1.87 × 10−9), corresponding to an 8-month reduction in survival compared with TT
carriers. For rs2412208 CAMTA1, the adjusted hazard ratio for patients with the GG or GT
genotype was 1.17 (95% CI, 1.11-1.24; P = 3.53 × 10−8), corresponding to a 4-month reduction
in survival compared with TT carriers.

CONCLUSIONS AND RELEVANCE This GWAS robustly identified 2 loci at genome-wide levels
of significance that influence survival in patients with ALS. Because ALS is a rare disease and
prevention is not feasible, treatment that modifies survival is the most realistic strategy.
Therefore, identification of modifier genes that might influence ALS survival could improve
the understanding of the biology of the disease and suggest biological targets for
pharmaceutical intervention. In addition, genetic risk scores for survival could be used as
an adjunct to clinical trials to account for the genetic contribution to survival.
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Amyotrophic lateral sclerosis (ALS) is a neurodegenera-
tive disease of motor neurons in which relentlessly pro-
gressive weakness of voluntary muscles usually leads

to death within 3 to 5 years of symptom onset. Amyotrophic
lateral sclerosis is a heterogeneous disease with a poorly un-
derstood cause. Phenotypic variability in ALS is remarkable,
consisting of heterogeneity in disease duration, age at onset,
onset site, and type of motor neuron affected.1 Several ALS
genes have been identified. Of these, a massive hexanucleo-
tide repeat expansion in the chromosome 9 open reading frame
72 (C9orf72 [NCBI Entrez Gene 203228]) gene is the most com-
mon mutation in patients with the familial and sporadic ALS
variants.2,3 Large genome-wide association studies (GWAS)
have identified a number of susceptibility genes, including
Unc-13 homologue A (UNC13A [NCBI Entrez Gene 23025]),4

C9orf72,5 and sterile alpha and TIR motif containing 1 (SARM1
[NCBI Entrez Gene 23098]).6

Despite the poor prognosis of ALS, about 5% of patients
may survive more than 10 years.7 Long-term survivors are more
likely to have primary lateral sclerosis, but all phenotypic pat-
terns are represented. Younger age at onset correlates with lon-
ger survival, and other prognostic factors include disease pro-
gression rate at diagnosis, site of involvement at onset, certain
phenotypic patterns (flail limb variants), cognitive impair-
ment, and respiratory involvement.8-12 However, yet un-
known factors are also likely to influence survival.

Previous studies have reported an association of survival
with single-nucleotide polymorphisms (SNPs) in the kinesin-
associated protein 3 (KIFAP3 [NCBI Entrez Gene 22920]) and
UNC13A genes,13,14 although the KIFAP3 finding has not been
replicated.15,16 Identification of gene variants influencing sur-
vival is thus crucial, particularly because these factors may pro-
vide important targets for disease-modifying therapies. To
identify modifier genes that might influence ALS survival, we
performed a GWAS using Cox proportional hazards regres-
sion modeling that included age at onset and onset site as co-
variates, followed by meta-analysis.

Methods
Samples and Data
Genotypes were obtained from published GWAS of patients
with sporadic ALS from Italy, the United States, the United
Kingdom, Ireland, Sweden, Belgium, and France, collected by
the Italian Consortium for the Genetics of ALS (SLAGEN) and
International Consortium on Amyotrophic Lateral Sclerosis Ge-
netics (ALSGEN) (eMethods and eTable 1 in the Supplement).
Participating patients fulfilled the El Escorial revised criteria
for ALS17,18 without a reported family history of motor neu-
ron diseases. Individuals included were of European ances-
try by self-declaration. Clinical information was collected from
medical notes, including the date of last consultation, and sur-
vival data from death certificates or hospital or public rec-
ords. The site of onset was defined as bulbar for those in whom
first weakness affected speech and swallowing and as spinal
for those with limb or respiratory symptoms at onset. Symp-
tom onset was defined as the date of first weakness or speech

or swallowing disturbances. Survival duration was defined as
the difference between the date of death or tracheostomy and
the date of symptom onset and, for those still alive, as the dif-
ference between the censor date and the date of symptom on-
set. The censor date was taken as date of the last follow-up.
This study was approved by the ethics boards of the partici-
pating institutions, and all patients or their representatives pro-
vided written informed consent.

Genotyping, Quality Control, and Imputation Analysis
Samples of DNA were collected from January 1, 1993, to De-
cember 31, 2009. We collected genotype raw data of previ-
ously published ALS GWAS with 12 426 individuals (6389 cases
and 6037 controls) from 7 different cohorts6 (eTable 1 in the
Supplement). Quality control, imputation, and genotyped or
inferred SNP-filtering procedures were performed separately
per cohort, including data for cases and controls. In total, 11 136
individuals (5846 cases and 5290 controls) passed stringent
quality control (eMethods and eTable 2 in the Supplement).
To improve accuracy of the downstream imputation analy-
sis, cleaned, genotyped SNPs were first aligned to hg19 coor-
dinates and phased by estimation of the samples’ haplotype
structures according to the 1000 Genomes Project reference
(phase 1, version 3, NCBI build 37, hg19 coordinates, August
2012) using Shapeit2 software19 (eMethods in the Supple-
ment). Finally, aligned and prephased genotyped SNP data were
imputed genome wide using the IMPUTE2 toolset20 with 1000
Genomes phase 1 as the reference panel. After imputation
analysis, genotype data of cases only were extracted from each
cohort; in total, 4256 (72.8%) of 5846 patients with sporadic
ALS had complete clinical information (eTable 3 in the Supple-
ment) and therefore were included in the present study. Given
the low SNP coverage present in some original commercial ar-
rays (eTable 1 in the Supplement), the proportion of uncer-
tain inferred genotypes was high, with a mean of 52.3% of SNPs
per cohort (eMethods and eTable 2 in the Supplement) that did
not pass the stringent quality control threshold by posterior
probability greater than 0.9, information metric greater than
0.4, and minor allele frequency (MAF) from 0.4% to 2%
(eMethods and eTables 2 and 4 in the Supplement). In total,
7 174 392 overlapping variants within each cohort were tested
for association with ALS survival using Cox proportional haz-
ards regression analysis.

Key Points
Question Why does survival of a proportion of patients with
amyotrophic lateral sclerosis (ALS) greatly exceed the median of
3 years?

Findings This genome-wide association analysis identified
genetic influences on survival in a large international sample of
patients (73.4% deceased). Two novel loci were significantly
associated with ALS survival at chromosomes 10q23 and 1p36 in
the CAMTA1 gene.

Meaning Identification of underlying mechanisms by which these
loci influence survival in ALS may suggest new therapeutic targets
for ALS treatment.
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Statistical Analysis
Data were analyzed from March 1, 2014, to February 28, 2015.
Multivariate Cox proportional hazards regression was mod-
eled to estimate crude hazard ratios (HRs) and build by back-
ward elimination (Wald test) estimation of HRs with 95% CI.
The Cox proportional hazards regression baseline model in-
cluded age at onset (as a continuous variable) and sex and on-
set site (bulbar vs spinal) as factor variables (eTable 4 in the
Supplement). We tested the proportional hazards assump-
tion by comparing the hazard curves stratified by sex, age at
onset, and onset site. All tests were 2 tailed, and significance
was assessed at P < .05 and performed in SPSS software (ver-
sion 22; IBM Corporation).

The Cox proportional hazards model was applied ge-
nome wide to filtered imputed data in each population with
the following independent variables: SNP genotype under a log-
additive model, the 4 principal components of ancestry, sex,
and age at onset. To maximize power in the exploratory analy-
sis, onset site was omitted in the final model owing to the
smaller numbers of patients (3438 [80.8%]) with this infor-
mation. The model was built by backward elimination using
the pacoxph program in the ProbABEL21 toolset to estimate the
HR with 95% CI, model, and covariate P values for each SNP.
Statistical significance was assessed at the genome-wide level
(P = 5 × 10−8).

Summary statistics for 7 174 392 overlapping SNPs were
combined in a meta-analysis using METAL software22 weighted
by β coefficients and the inverse of the corresponding stan-
dard errors; the fixed-effects model was applied to adjust data
from the 7 independent data sets. Genomic inflation was tested
by quantile-quantile plots and factor lambda estimate
(λ(gc) = 1.05) (eMethods and eFigure 1 in the Supplement).

The most associated variants were tested for heteroge-
neity of allele frequencies between studies by Cochran’s Q test
(eMethods and eTable 5 in the Supplement). The SNPs that
achieved genome-wide significance in the combined meta-
analysis were tested by Kaplan-Meier analysis and a log-rank
test. Kaplan-Meier curves for additive and dominant models
were compared by χ2 likelihood ratio tests.

Results
The international ALS cohort analyzed in the present study in-
cluded 4256 patients (2589 male [60.8%] and 1667 female
[39.2%]), of whom 3125 (73.4%) had died after a median sur-
vival of 32.8 (interquartile range [IQR], 22.2-49.2) months. The
mean (SD) age at onset, including censored individuals, was
59.1 (12.1) years (eTable 6 in the Supplement).

Data for onset site were available in a subset of 3438 patients
(80.8% [2066 male and 1372 female]); 1025 (29.8%) had bulbar
onset, with a mean (SD) age at onset of 62.4 (11.4) years compared
with spinal onset at a mean (SD) age of 57.7 (12.5) years. The me-
dian survival was 27.5 (IQR, 19.8-39.5) and 35.9 (IQR, 22.9-56.4)
monthsinpatientswithbulbarandspinalonset,respectively.Full
details are reported in eTable 7 in the Supplement.

A total of 7 174 392 SNPs had genotypes that passed qual-
ity control measures. Two loci exceeded the genome-wide sig-

nificance threshold: one on chromosome 10q23 and one on
chromosome 1p36 (Figure 1A and Table 1). At locus 10q23,
the top-ranked SNP was rs139550538, with a hazard ratio
of 1.61 (95% CI, 1.38-1.89; P = 1.87 × 10−9). This variant is
moderately rare (MAF, 0.03) and intronic within the insulin-
degrading enzyme (IDE [NCBI Entrez Gene 3416]) gene
(Figure 1C).

At the 1p36 locus, 4 SNPs exceeded genome-wide signifi-
cance, with the top-ranked SNP being rs2412208 (HR, 1.17; 95%
CI, 1.11-1.24; P = 3.53 × 10−8), followed by 87 SNPs in strong link-
age disequilibrium with rs2412208. All these SNPs fell within
a 90-kilobase region encompassing introns 3 to 4 of the
calmodulin-binding transcription activator 1 (CAMTA1 [NCBI
Entrez Gene 23261]) gene (Figure 1B and Table 1). Cox propor-
tional hazards regression analyses conditioning on the most
associated SNPs in both loci showed no evidence of residual
association.

Because rs139550538 is rare, Kaplan-Meier analysis was
performed under a dominant model (226 patients [5.3%] car-
ried ≥1 A allele). The AA or AT genotype was associated with
ALS survival (log-rank P = 1.3 × 10−7) and a median survival of
30.7 months compared with 36.7 months for the TT homozy-
gotes (Figure 2A and Table 2).

Kaplan-Meier analysis of SNP rs2412208 under an addi-
tive model showed that carrying a G allele (1909 patients
[44.9%]) was significantly associated with a decreased sur-
vival (log-rank P = 3.5 × 10−8), with median survivals of 36.0
months (GG) and 36.8 months (GT) in contrast to 40.8 months
in TT carriers (Figure 2B and Table 2). The HR estimates were
consistent across the 7 data sets analyzed (Figure 3). Under a
dominant model, the results were similar (Figure 2C) and a χ2

likelihood ratio test comparing the 2 models was not signifi-
cant (P = .12), showing that either could be valid.

We tested whether observed effect sizes (β) of the most
associated SNPs from the combined Cox proportional haz-
ards regression analysis were homogeneous across cases. We
found some evidence of heterogeneity across the different
data sets (rs2412208; I2 = 57.2%; P = .03) (eTable 5 in the
Supplement).

In the subset of 3439 patients with ALS with clinical data
including onset site, Cox proportional hazards regression was
modeled with this variable as an additional covariate. The top-
ranked SNP was rs2412208 at 1p36 with the combined HR of
1.19 (95% CI, 1.27-1.12; P = 5.11 × 10−8) (eFigure 2 and eTable 8
in the Supplement), confirming association of the CAMTA1 lo-
cus with ALS survival identified by the larger sample size when
this covariate was not included in the model. The SNP
rs139550538 in IDE gene was less significant (HR, 1.51; 95% CI,
1.27-1.78; P = 2.24 × 10−6), possibly because of the lower fre-
quency of this SNP in a reduced sample. In addition, in linear
regression analysis testing bulbar vs spinal phenotypes, this
variant was not significantly associated (P = .50), indicating
that the onset site was unlikely to confound the 10q23 asso-
ciation with survival.

Kaplan-Meier distribution of rs2412208 genotypes indi-
cated that risk allele G was associated (log-rank P = 5 × 10−6)
with a shorter survival of 3.5 months, which corresponded to
a 19% increased rate of mortality compared with the TT
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homozygotes (eFigure 3 in the Supplement). We examined pre-
viously reported candidate genes for ALS survival. The SNP
rs1541160 in the KIFAP3 gene was not significantly associ-
ated with survival in this study (HR, 1.04; 95% CI, 0.98-1.1;
P = .42) (eFigure 4 in the Supplement), which confirmed pre-
vious findings.15,16 The SNP rs12608932 in the UNC13A gene
showed suggestive association (HR, 1.17; 95% CI, 1.1-1.24;
P = .003), but coverage for this SNP was limited to a reduced
subset of patients (n = 3574) (eFigure 4 in the Supplement), and
further studies on a larger scale are needed to validate the ge-
netic effect of UNC13A as survival modifier. Of 105 SNPs tested
in the D-amino-acid oxidase (DAO [NCBI Entrez Gene 1610])
gene,23 none passed Bonferroni correction for multiple test-
ing, with the top-ranked SNP being rs4623951 (HR, 1.07; 95%
CI, 1.02-1.13; uncorrected P = .005). To replicate the associa-

tion of the EPH receptor A4 (EPHA4 [NCBI Entrez Gene 2043])
gene with ALS survival,24 we analyzed 1743 SNPs within the
gene region. None of these variants reached the genome-
wide significance (P = 5 × 10−8) or passed Bonferroni correc-
tion for multiple testing; the top-ranked SNP rs6436254 (MAF,
0.47) was intronic in EPHA4 and associated with ALS sur-
vival (HR, 1.07; 95% CI, 1.02-1.26; P = .007).

Discussion
We have identified 2 loci associated with survival in patients
with ALS at genome-wide significance in a large meta-
analysis using Cox proportional hazards regression analysis.
The discovery of gene variants within the IDE and CAMTA1

Figure 1. Genome-wide Association Study of Survival in Patients With Sporadic Amyotrophic Lateral Sclerosis (ALS)

10

8

6

4

2

0
0 222 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 20

P 
Va

lu
e,

 lo
g 10

Chromosome
1

Combined Cox proportional hazards analysisA

IDE

P = 5 × 10–8

10

8

6

4

2

0 0

20

40

60

80

100

6.8 7.0 7.2

P 
Va

lu
e,

 lo
g 10

Recom
bination Rate, cM

/M
b

LD plot of 1p36B

CAMTA1

7.4

Position on Chromosome 1, Mb

CAMTA1THAP3

DNAJC11

10

8

6

4

2

0 0

20

40

60

80

100

94.0 94.2 94.4

P 
Va

lu
e,

 lo
g 10

Recom
bination Rate, cM

/M
b

LD plot of 10q23C

94.6

Position on Chromosome 10, Mb

ECOC6HHEXKIF11MARK2P9CPEB3

MARCH5 IDE

rs139550538rs2412208

0.8
0.6
0.4
0.2

r2 Value

A, Manhattan plot of the combined (METAL software) Cox proportional hazards
regression analysis. The threshold for genome-wide significance after
correction for multiple testing was set at P = 5 × 10−8 (horizontal blue line).
Loci significantly associated with ALS survival are highlighted in red and labeled
according to the corresponding genes. At locus 10q23, the most associated
single-nucleotide polymorphism (SNP), rs139550538 (P = 1.87 × 10−9), was
moderately rare with a minor allele frequency (MAF) of 0.03, whereas at the
1p36 locus, the 4 SNPs significantly associated (rs2412208 [P = 3.53 × 10−8],
rs4584415 [P = 3.68 × 10−8], rs35447019 [P = 3.86 × 10−8], and rs4409676

[P = 4.48 × 10−8]) were common (MAF > 0.26). B and C, Regional linkage
disequilibrium (LD) plots of the 2 regions significantly associated with ALS
survival. At the 1p36 locus, 4 SNPs passed the genome-wide significant
threshold, followed by 87 tagged proxies suggestively associated (P < 10−4). All
the associated SNPs mapped within introns 3 to 4 of the CAMTA1 gene. At the
10q23 locus, the top-ranked SNP, rs139550538, intronic to the IDE gene, was in
weak (r2 < 0.4) LD with the tagged proxies that were located in the neighbor
gene, KIF11.
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genes as survival modifiers in ALS is important because of im-
proved understanding of the disease process and because the
genes and associated pathways might become a target for
therapy development. Furthermore, if gene variants have a
large effect on survival, we must account for this evidence in
the design and analysis of clinical trials.

The effect size of the variants found is comparable to that
of riluzole, a drug shown to improve survival in ALS, for which
the HR for those not taking vs taking riluzole is 1.14. A weak-

ness of our study is that the extent of riluzole use was not avail-
able to include in the analysis. Generally, rates of prescrip-
tion are higher in countries in which access to health care is
free or reimbursed than in those where private insurance is re-
quired, and if such differences correlate with allele fre-
quency differences, a spurious association might arise. We miti-
gated against this association by accounting for differences in
allele frequency by ancestry using principal components and
by accounting for differences in riluzole prescription rates by

Table 1. Summary Statistic Results From Cox Proportional Hazards Regression Analysis of ALS Survivala

Marker Chromosome Position Gene Allele 1 Allele 2
Frequency
of Allele 1

Effect,
β Coefficient P Value Directionb

rs139550538 10 94284069 IDE A T 0.0292 0.4807 1.87 × 10−9 +++++++

rs2412208 1 7092782 CAMTA1 T G 0.7394 −0.1617 3.53 × 10−8 −−−−−−−

rs4584415 1 7094278 CAMTA1 T C 0.7128 −0.1567 3.68 × 10−8 −−−−−−−

rs35447019 1 7093158 CAMTA1 A T 0.2602 0.1611 3.86 × 10−8 +++++++

rs4409676 1 7094465 CAMTA1 T C 0.2602 0.1601 4.48 × 10−8 +++++++

rs2412214 1 7089674 CAMTA1 T C 0.2469 0.1642 5.18 × 10−8 +++++++

rs2412210 1 7092549 CAMTA1 T C 0.2577 0.1593 6.83 × 10−8 +++++++

rs11120817 1 7081233 CAMTA1 A T 0.7517 −0.1582 1.21 × 10−7 −−−−−−−

rs4287204 1 7076184 CAMTA1 A G 0.2473 0.1562 1.78 × 10−7 +++++++

rs3986512 1 7090699 CAMTA1 T C 0.7540 −0.1569 1.87 × 10−7 −−−−−−−

rs4500344 1 7090814 CAMTA1 T G 0.2461 0.1562 2.05 × 10−7 +++++++

rs11588097 1 7071415 CAMTA1 A G 0.7529 −0.1548 2.36 × 10−7 −−−−−−−

chr1:7073102:D 1 7073102 CAMTA1 CCT C 0.7532 −0.1548 2.44 × 10−7 −−−−−−−

rs6690584 1 7078434 CAMTA1 T G 0.7044 −0.1468 2.53 × 10−7 −−−−−−−

chr3:140138508:D 3 140138508 SLC9A9 T TATGA 0.0615 0.3677 2.96 × 10−7 +++++++

rs10864267 1 7094802 CAMTA1 T C 0.2437 0.1538 3.12 × 10−7 +++++++

rs4436414 1 7120915 CAMTA1 A G 0.3927 0.1352 3.15 × 10−7 +++++++

rs6693136 1 7066567 CAMTA1 A G 0.2456 0.1535 3.33 × 10−7 +++++++

rs969599 8 18424731 PSD3 A G 0.9462 −0.3112 3.37 × 10−7 −−−−−−−

rs7414485 1 7121397 CAMTA1 A G 0.3935 0.1341 3.65 × 10−7 +++++++

rs10864263 1 7068025 CAMTA1 T C 0.2909 0.1435 4.46 × 10−7 +++++++

rs72911847 2 194578775 Intergenic A G 0.9702 −0.4722 4.76 × 10−7 −−+−−−−

rs2186090 1 7062426 CAMTA1 T C 0.2887 0.1427 5.52 × 10−7 +++++++

rs7525119 1 7061430 CAMTA1 T C 0.2883 0.1425 5.81 × 10−7 +++++++

rs115134572 3 143348245 SLC9A9 A G 0.9757 −0.4727 6.21 × 10−7 −−−−−−−

rs11120822 1 7113112 CAMTA1 C G 0.3720 0.1337 6.23 × 10−7 +++++++

rs11120824 1 7113591 CAMTA1 A G 0.3732 0.1333 6.58 × 10−7 +++++++

rs75285952 4 27904556 LOC105374552 A G 0.0522 0.3047 7.89 × 10−7 ++−++++

rs7546792 1 7124346 CAMTA1 T C 0.3890 0.1315 7.93 × 10−7 +++++++

rs7543531 1 7072726 CAMTA1 T C 0.3147 0.1371 9.68 × 10−7 +++++++

rs6656691 1 7122453 CAMTA1 C G 0.5762 −0.1284 9.84 × 10−7 −−−−−−−

rs10746465 1 7107231 CAMTA1 A C 0.3093 0.1372 9.97 × 10−7 +++++++

rs2275909 1 7068672 CAMTA1 T C 0.6794 −0.1358 1.02 × 10−6 −−−−−−−

rs12061141 1 7069808 CAMTA1 T C 0.3206 0.1355 1.09 × 10−6 +++++++

rs6686843 1 7071578 CAMTA1 T C 0.3206 0.1351 1.17 × 10−6 +++++++

rs2275907 1 7068367 CAMTA1 T C 0.3204 0.1350 1.20 × 10−6 +++++++

chr1:7063679:I 1 7063679 CAMTA1 A ATG 0.6834 −0.1354 1.25 × 10−6 −−−−−−−

rs11120829 1 7123793 CAMTA1 A C 0.5773 −0.1272 1.26 × 10−6 −−−−−−−

rs11800442 1 7069252 CAMTA1 T C 0.3227 0.1343 1.31 × 10−6 +++++++

Abbreviations: ALS, amyotrophic lateral sclerosis; CAMTA1, calmodulin-binding
transcription activator 1 gene; IDE, insulin-degrading enzyme gene;
SNP, single-nucleotide polymorphism; − deleterious genetic effect; + protective
genetic effect.

a Analyses are combined using METAL.
b The number of symbols for each SNP indicate the number of data sets

included in the meta-analysis.
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performing a meta-analysis stratified by country. Multidisci-
plinary clinic attendance has also been reported to increase
survival,25,26 which also may vary across countries, but we have
accounted for this possibility through the country-stratified
meta-analysis.

The most associated polymorphism at the 10q23 locus was
a low-frequency variant within the IDE gene, a zinc metallo-
peptidase that degrades intracellular insulin and other pep-
tides, such as β-amyloid. Tagged proxies for this polymor-
phism were in weak (r2 < 0.4) linkage disequilibrium and

Figure 2. Survival Distribution Across the Genotypes of the Top-Ranked Single-Nucleotide Polymorphisms (SNPs)
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Kaplan-Meier curves plot survival distribution. A, IDE rs139550538 distribution
of genotypes under a dominant model. Survival in the 226 AA/AT carriers was
compared with that in 4030 TT carriers, showing that the presence of at least
1 A allele is associated with a median survival of 30.7 months compared with
36.7 months in TT homozygotes. B, Variant CAMTA1 rs2412208 genotypes
under an additive genetic model show 265 GG and 1644 GT carriers with a

median survival of 36.0 and 36.8 months, respectively, compared with
40.8 months in 2347 TT carriers. C, Variant CAMTA1 rs2412208 genotypes
under a dominant model show survival in 1909 GG/GT and 2347 TT carriers;
TT homozygotes have a life span extended by more than 4 months.
Kaplan-Meier curves report patients’ survival up to 10 years, plotted in SPSS
software.
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located in a neighboring gene, the kinesin family member 11
(KIF11 [NCBI Entrez Gene 3832]), a motor kinesinlike protein
involved in the spindle function during cell mitosis (Figure 1C).
The biological basis of this association is therefore unclear.

The most associated 87 variants in the CAMTA1 gene
(P ≤ 10−4) map to a small 90-kilobase region within introns 3 to

4 (Figure 1B) encompassing the CG-1 DNA-binding domain. The
CG-1 motif is a functional domain with a nuclear localization sig-
nal and transcriptional regulation properties that extends from
exons3 to7 (6825092 to7640553basepair;GRCh37/hg19Assem-
bly) within CAMTA1. Intragenic CAMTA1 microrearrangements
disrupting a CG-1 DNA-binding domain have been reported to
cosegregate with nonprogressive congenital cerebellar ataxia
(NPCA)andgait instabilityinseveralunrelatedfamilies.27,28 Com-
mon variants within CAMTA1 have also been reported to be as-
sociated with variation in human episodic memory.29 Mutant
CAMTA1 knockout mice, disrupted in the CG-1 domain, show se-
vere ataxia and neuronal atrophy approximating the phenotype
of haploinsufficiency observed in patients with NPCA.30 Further-
more, the identification of the consensus sequences of the
DNA-binding site of the CG-1 domain combined with expression
analyses in CAMTA1 knockout mice have shown more than 80
neural-related genes regulated by CAMTA1.30 The finding of a
gene involved in cerebellar disease in ALS is not surprising given
that trinucleotide repeat expansion in the ataxin 2 (ATXN2) gene
causes spinocerebellar ataxia or ALS,31 the finding of C9orf72
pathologic mechanisms in the cerebellum of patients with ALS,32

and the discovery of abnormal eye gaze in patients with ALS.33,34

Increasing evidence suggests an association between ALS and
cerebellar degeneration that is currently underrecognized, in the
same way as the association between ALS and frontotemporal
dementia remained undetected until recently.

A strength of our study is, to our knowledge, the use of the
largest data set for sample size (n = 4256) and genotyped SNP
coverage (>7 million) analyzed to date. In addition, the use of
a Cox proportional hazards regression model allowed us to in-
clude 1131 patients still alive (26.6%), meaning the study was
not biased by the restriction of a linear regression method lim-
ited to patients who have died. In contrast, a potential weak-
ness of our study is the difficulty of imputing low-frequency
variants; a reference panel including disease-specific geno-
type data will improve imputation of rare variants.

Figure 3. Forest Plot of CAMTA1 rs2412208 Hazard Ratio (HR) Estimates
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HR (95% CI)

HR (95% CI)

CAMTA1 rs2412208

Reduced
Risk

Increased
RiskSource

GWAS Data Set
UMC-1 1.46 (1.20-1.79)
UMC-2 1.10 (1.00-1.24)
Ireland 1.26 (1.00-1.61)
MGH-KCL-Evry 1.10 (1.04-1.26)
NIH-IT 1.51 (1.23-1.84)

1.10 (1.01-1.28)
1.10 (1.04-1.27)
1.17 (1.11-1.24)
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Hazard ratio estimates are measured under an additive genetic model across
the 7 genome-wide association study (GWAS) data sets (described in detail in
eTable 1 in the Supplement). The HR in each cohort was estimated in a
multivariate log-additive genetic model using the pacoxph program adjusted by
age at onset, sex, and population stratification, whereas the summary HR was
calculated by fixed-effects meta-analysis using R library rmeta. Genotype raw
data included in each study and combined in the meta-analysis were collected
by the Medical Center Utrecht, Utrecht, the Netherlands (UMC-1 and -2), the
Beaumont Hospital Dublin, Ireland (Ireland), Massachusetts General Hospital,
Boston (MGH), the National Institutes of Health, Bethesda, Maryland (NIH-IT),
the Italian Consortium for the Genetics of ALS (SLAGEN), and the UK National
MND DNA and Biobank Study (UK). Dark blue boxes indicate single studies and
are proportional to the sample sizes; bars indicate 95% CI. Evry indicates
University of Evry and Paris, Evry, France, and Hospital de la Salpetriere, Paris,
France; KCL, King’s College London.
a Includes samples from Umeå and Leuven.

Table 2. Genetic Effect of the Most Associated SNPs in the Summary Cox Proportional Hazards
Regression Analysis

SNP
No. (%)
of Patients

Median Survival,
mo HR (95% CI) P Valuea

rs139550538 (Chr 10q23; IDE)

Additive genetic model

AA 2 (0.05) 19.0

1.61 (1.38-1.89) 1.87 × 10−9TA 224 (5.3) 31.0

TT 4030 (94.7) 39.0

Dominant genetic model

AA/AT 226 (5.3) 30.7
1.52 (1.31-1.77) 1.3 × 10−7

TT 4030 (94.7) 36.7

rs2412208 (Chr 1p36; CAMTA1)

Additive genetic model

GG 265 (6.2) 36.0

1.17 (1.11-1.24) 3.5 × 10−8TG 1644 (38.6) 36.8

TT 2347 (55.1) 40.8

Dominant genetic model

GG/GT 1909 (44.9) 36.6
1.18 (1.09-1.26) 4.6 × 10−6

TT 2347 (55.1) 40.8

Abbreviations: CAMTA1,
calmodulin-binding transcription
activator 1 gene; Chr, chromosome;
HR, hazard ratio;
IDE, insulin-degrading enzyme gene;
SNP, single-nucleotide
polymorphism.
a Calculated using the log-rank test.
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Conclusions

We have identified genetic variants that have a statistically sig-
nificant association with survival. The promise of this re-

search is not only to improve our understanding of the biol-
ogy of the disease and suggest biological targets for
pharmaceutical intervention to extend the survival time of the
patients but also to use genetic risk scores as an adjunct to clini-
cal trials to account for the genetic contribution to survival.
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