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Abstract

This paper addresses the joint spectrum sharing and povematibn problem fordevice-to-devicgD2D)
communications underlaying eellular network(CN). In the context oforthogonal frequency-division multiple-
access(OFDMA) systems, with the uplink resources shared with D2ikd, both centralized and decentralized
methods are proposed. Assuming globhahnnel state informatio(CSIl), the resource allocation problem is rst
formulated as a non-convex optimization problem, whichdlvedd using convex approximation techniques. We
prove that the approximation method converges to a sulmraptsolution, and is often very close to the global
optimal solution. On the other hand, by exploiting the dédized network structure with only local CSI at
each node, the Stackelberg game model is then adopted teedevistributed resource allocation scheme. In this
game-theoretic model, the base station (BS), modeled ate#uer, coordinates the interference from the D2D
transmission to theellular users(CUs) by pricing the interference. Subsequently, the D2Dspaegarded as
followers, compete for the spectrum in a non-cooperatighifan. Suf cient conditions for the existence of the
Nash equilibrium(NE) and the uniqueness of the solution are presented, antkrative algorithm is proposed
to solve the problem. In addition, the signaling overheadamspared between the centralized and decentralized
schemes. Finally, numerical results are presented toywtrd proposed schemes. It is shown that the distributed

scheme is effective for the resource allocation and coutdept the CUs with limited signaling overhead.
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I. INTRODUCTION

Device-to-devic€D2D) communications underlayirggllular networkdCNSs) has in recent years gained
signi cant interest both from the academia and industry tugs potential to improve spectrum ef ciency,
of oad the cellular system, enhance the cell throughput sank the energy consumption user equip-
mens (UE)s [1]-[3]. Different from the traditional CNs where BEeceive the services from the base
station (BS) directly, for D2D communications, UEs may conmicate directly via the D2D links under
the control of the BS. In general, there are two differenetypf access policy for the D2D links, namely,
orthogonal access where the D2D pairs (including the D2Dstratters and D2D receivers) and the
cellular uses (CU)s are allocated with orthogonal frequency bands 4, @on-orthogonal access where
the D2D pairs share the same spectrum with the CUs [5]-[7].

Due to the signi cant enhancement of the spectral ef ciemayh non-orthogonal access policy, enor-
mous efforts have been devoted to the analysis and desighcane spectrum sharing D2D systems.
Assuming globalchannel state informatioffCSl), centralized power and channel allocation schemes
were proposed in [6], [7] to coordinate the interferenceseauby D2D transmission to the CUs. For
D2D communications underlaying LTE-A systems, resourgacation schemes combined with the mode
selection were proposed in [8], [9], which demonstratedstauttial capacity improvement. A distributed
suboptimal joint resource allocation and mode selectidres® was proposed and analyzed in [10].

A common feature of the aforementioned works is that they @ohcerned the interference from the
D2D users to the CUs, while the interference from the CUs o @M2D users was ignored. Recently,
a number of works have appeared which investigated mordigabscenarios with mutual interference
between the D2D users and the CUs. In [11], with an emphasislocal interference situation, the authors
designed a novel scheme to remove the near-far interfetenD2D users from CUs. Also, an adaptive
receive mode selection scheme was proposed in [12] to inepifoe reliability of D2D communications
with the assumption that only one CU and one D2D pair sharesadh®e radio resource. To avoid causing
interference at the D2D users from the CUs, a novel intemferdimited area control scheme was designed
in [13].

In summary, for non-orthogonal D2D underlaying systemstradling the mutual interference between
the D2D users and the CUs is the most critical problem. Withgyaper interference coordination, the

spectrum ef ciency of the D2D underlaying systems may besdetated rather than improving.



The major efforts, so far, have mainly concentrated on tisggdeof centralized interference coordination
schemes. In such schemes, the BS which acts as a centrallntras to obtain global CSI which incurs
a huge system signalling overhead. Hence, the bene t of awvgat spectrum ef ciency brought by the
D2D communications may be overshadowed because of the sixpesverhead. Also, there are practical
scenarios where certain CSI is dif cult to obtain. In adaiitj most of prior works [11] assume that only
one CU and one D2D pair share the same frequency spectrunthanthe general case where one D2D
pair is allowed to share the frequency spectrum with more e CUs has not been investigatéd.
[14], a joint scheduling and resource allocation schemeless proposed to improve the performance
of D2D communications. Stackelberg game has been utiliaethddel the problem where the CUs are
viewed as leaders while the D2D pairs are modelled as follewle was also assumed that a channel
occupied by a CU is only allowed to be reused by one D2D pair.

In this paper, we consider the D2D communications underaygellular networks using OFDMA
technology, and investigate the problem of designing jgatver and channel allocation scheme to
maximize the sum data rates of D2D users while guaranteeioly €U's data rate requirement. First, we
present a centralized resource allocation scheme via theega@approximation method, which serves as a
benchmark for the system performance. Then a decentradeeime is proposed by modeling the system
as a Stackelberg game. In the game, the BS, regarded as & ldadedes the price of the interference
on each subchannel brought by D2D communications in theakipi maximize its own pro t, while the
uplink transmission from the CUs to the BS are protectedutinothe pricing. On the other hand, the
D2D pairs, as followers, compete sel shly in a non-coopgeaNash game to maximize their individual
data rates based on the prices set by BS. Capitalizing oratfietional inequality approach, we derive the
suf cient condition for the uniqueness dfash equilibrium(NE) in the non-cooperative game among the
D2D pairs. Then we propose a distributed iterative algarithich is proved to converge to the unique
NE. Finally, combining this distributed iterative schenmedahe pricing mechanism at the BS side, the
distributed resource allocation scheme is concluded.

Simply put, we apply the Stackelberg game-theoretic methimdhe D2D communications underlaying
cellular systems, since it is naturally compatible with sleeni-centralized network structu@onsequently,

a practical decentralized joint spectrum and power allonatcheme is proposed with limited overhead

incurred to the system.



Part of this works has been published in [15]. In this jounsion, we include proofs, derivations,
centralized scheme design and signaling overhead andghgatisre omitted in the conference version.

The remainder is organized as follows. Section Il introdube system model for D2D communications.
Section Il presents the resource allocation problem fdatman and a centralized optimal scheme based
on the successive convex approximation method. In Sectbrwé design a decentralized scheme by
modeling the resource allocation problem using the Staekglgame. The analysis of signaling overhead
for both centralized and distributed schemes is presemte8eiction V. In Section VI, the numerical

simulations are presented to verify the proposed schenesllyi- Section VII concludes the paper.

II. SYSTEM MODEL

In this paper, we consider the D2D communications undeartagtie cellular networks where the uplink
radio resource is shared by the D2D pairs as depicted in Figoduplink channel reuse, the victim of
interference at the cellular side is the BS, which likely tfesprocessing capability of sensing and dealing
with co-channel interferencdt is assumed that OFDM is used so that the frequency bandidedi into
N narrowband subchannels. In our model, we consider thae taexK D2D pairs coexisting with the

CUs in the system. Furthermore, we also assume that
1) The subchannels in the system are either pre-allocatétet@€Us by the BS or unoccupied. Each
subchannel is dedicated to one CU at most;

2) The transmission powers of the CUs on those occupied sunbelts are xed.

Considering that D2D transmission is a complementary mésson mode and the resource optimization
for cellular uplink transmission has been studied extezigiwe only study the joint channel and power
allocation for D2D transmission in the paper.

If subchanneh is allocated to theth CU ( CU) and if it is reused by th&th D2D pair ( D20}), then

for D2Dy, the received signal at the receiver (denoted@2PR ) on subchanneh is expressed as

n p_n nyn X( q_n n yn p_ n <n n
Ye = Prhexg + Prgx X+ Pfst + NS 1)

j=1
j6k
wherepy is the transmission power of the transmitter for D2D pga({denoted as D2D0J) on subchannel

n, hy denotes the channel gain from D2P# D2DR, gy is the channel gain from D20Tof thej th

D2D pair to D2DR, pf' is the transmission power of Gldn subchannet, f} denotes the interference



Uplink Interference brought by uplink channel reuse

Fig. 1. The model of D2D communications underlaying a calluletwork in the uplink.

channel from CWto D2DR, N represents the Gaussian noise with zero mean and variardg at
D2DRc on subchanneh, andx;' ands]' are the transmitted symbols by D2P@nd CU, respectively.

Therefore, the signal-to-interference plus noise ratiblf§ achieved at D2DRon subchannet is given

by
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where  is a constant SINR gap, which links the achievable rate agwa with the bit-error-rate (BER)

in practical systems. According to [16], with the requireBER BERy, we have

In(5BERy)

T “

On the other hand, the received signal at the BS from; @Usubchanneh is expressed as

n P— nah X P AN N n
i = pifhis + prfi X + NG (5)
k=1
whereh} is the channel gain between Cbnd the BSf is the interference channel gain on subchannel
n between D2DT and the BSN;" is the Gaussian noise with zero mean and variand&bfeceived at
the BS on channeb. Therefore, the SINR achieved at the BS from ;@ud subchanneh in the uplink

is given by

SINR); = illal = i

R
n n n n.__n ~Nn
peFe + N P~k + i
k=1 k=1

; (6)

whereH" , jhMj2, F o2, o, % and -~ , % Then similar to (3), the data rate of €ldn

subchanneh can be expressed as
0 1

Rp:(p') = log, %1 + R id § : (7)

where ~; can be derived according to (4).

In the paper, although we aim at designing the resourceatltmt for D2D transmission in the single
MBS scenario, the proposed schemes can be extended to thieMB3 scenario where theter-cell
interference(ICl) is present. Thdractional frequency reus@FR) can be applied to avoid the ICI or it

can be treated as noise.

1. ABS-CONTROLLED CENTRALIZED SCHEME

If the BS has global CSlI, power and channel allocation cangbienized jointly in a centralized manner,
to maximize the D2D sum-rate under the constraint of eachs@dta rate.

De ne the power allocation matri® , [Pq;:::;Py;:::;Pk]", wherePy , [pi:ioll i)k,



8k 2f1;:::;Kg. Then the problem can be formulated as a non-convex optiloizaroblem:

8
% 0 p! pM™;8k2f1:::;Kg;8n2f1;:::;Ng;(C1)
X
XX N Dk D f e

max RP(pR) s.t. ) P Pi8k2f1::5Kg (C2) (8)
P k=1 n=1 X\I n=1

Rpi(p') ri;8CU;;(C3)

n=1

where C1 is the local spectral mask constraint gfitf is the maximum transmission power D2D pair
k can use on each subchannel, C2 represents that the towhitgrower of each D2D pak is limited
by Py, and C3 guarantees the data rates of the CUs. Since the iebjatction and the functionRg;
in constraints C3 are non-concave, the problem is not coridewever, some approximations could be

applied. Based on [17], the following inequality is used ppr@Xximate thdn function:
alnx+b In(1+ x): (9)

Whena = 5 andb=In(1+ x) 5 Inx, the above approximation is exact. With the approximation

(9), the non-concave function in (8) is converted into:

0 1
N
Ri=InB1+ —0 P 1~ log,e
R
k@j=1 Pkt A
o o 1 1
N
= @ak”In@ 5 P A+ A loge
« ol ot
0 0" 11 1

—%aklnpk A ® . % o N+ PKK + K loge: (10)

Then de ningp] , €%, (8) becomes a convex optimization problem in which paransef andl can

: SINR} SINR ] . .
be estimated by, = 1+5|NRkn andf! =In(1+SINR ) m. Hence, standard convex optimization
methods can be used to solve it. However, since (9) is emglbgee, the choices af and b might
not lead to the best result. Thus, iterative proceduresldhmiapplied to tighten the approximation. The

centralized algorithm is formally described as Algorithm 1



Algorithm 1 Centralized Scheme

=
w
D
—
QO
(@]
o
c
>
—
D
O
I
o
QD
>
o
=3
=
=
=
(¢
—
>
(¢
©
Q
=
1)
=
(=
o
o
2
o
5
<
(1%
O
—+
o
=
2
(@)
+
[EEY
~
(o8]
~
N
-~
=
A
«Q

. repeat
. Updatec:= c+1;

With (9) andal(c); H(c); pi , €%;8k;n, transform (8) into a convex optimization problem;
Using standard convex optimization techniques, such asdlgeangian dual method, to solve the
problem obtained irLine 5 and obtain the optimal solution which is assignedPds + 1) ;

until kP(c+1) P(ok , for some prescribed

return P(c+1);

© N

Note the successive convex approximation method emplogeel Wwould converge to the point which
satis es the Karush-Kuhn-Tucker (KKT) conditions of theiginal problem based on the analysis in
Appendix A. Although it is a heuristic algorithm and can ordgnverge to a suboptimal solution, as

observed in [17], this approximation method often comptitessolution close to the global optimum.

IV. ABS-SUPERVISEDDISTRIBUTED ALGORITHM

This section presents a decentralized joint power and sutmeh allocation scheme using the Stackelberg
game-theoretic model. Stackelberg game is a strategic gdnuh includes a leader and some followers
competing with each other on certain resources. The leatsrtse price of the resource rst and then
the followers compete with each other according to the price

Although the Stackelberg game model has been applied todtpeitove radio (CR) system [19], there
are two main differences between CR and D2D system. FirtsityD2D users are also authorized users
in D2D system. Secondly, in CR system, the secondary usersarcontrolled by any central controller.
But the D2D communication is dominated by the BS in D2D systeNote, although the BS dominates
the system, it is unwise to let BS decide the resource allmtacheme in the system completely unless
it is easy for BS to achieve the full CSI. Therefore, compaiedts application in the areas of CR for
designing distributed resource allocation methods, tlaek&iberg game is more effective to model the
semi-centralized structure of D2D systems, and the poweafiational inequality ¥ |) method is applied
to the analyze the model.

Stackelberg game has also been used for resource allogatieo-tier femtocell networks [20], where
the macrocell was viewed as a leader and the femtocell usefsllawers. The received interference

from the femtocell users was controlled through pricing thierference. In this case, the Stackelberg



game can be converted into a bargaining game due to the agsaoropignoring or xed cross-femtocell

interference.

A. Stackelberg Game Formulation for the D2D System

In our model, the BS plays the role as the leader to estabbst af “prices” for the received interference
power from the D2D transmission on each subchannel. Theogarpf setting the price is to maximize
its own pro t, meanwhile to protect the CUs by limiting thetémference caused by the D2D transmission
on each subchannel. Then according to the prices, the D2B paifollowers compete sel shly for the
available bandwidth in a non-cooperative game to maxintieé tindividual data rates.

The objective of the BS here is to maximize its “pro t” by saly the spectrum to the D2D pairs for

accepting “interference” on the subchannels. Mathemigtjaacan be formulated as

XX
Uss( ;P) = "k~ (11)
k=1 n=1
where , [ %;:::; N1 denotes the interference price vector on Mhesubchannels with" being the

interference price on subchanmelThe BS requires that the interference brought by the D2Bstrassion
will not violate the CUs' target rates. Therefore, the BSdseto derive the optimal price to maximize
its revenue, while satisfying the CUs' rate requirementse price can be in the form of real money
which can not only assist the decentralized implementaifadhe algorithm but also compensate the D2D

pairs for biasing the CUs. The game for the BS aims to solve

X
Problem 1: maxUgs( ;P) s.t. bi Ti;8CU;: (12)

n=1

As a follower, with the price ", the utility function of thekth D2D pair on subchannel is de ned as
U » Re(PiPR) PR (13)

whereRY (pr; Py) is the data rate achieved by D2D pé&iron thenth subchannel de ned in (3), arjol
denotes the power allocation vector of all D2D transmitexsept D2DT on thenth subchannel. In
addition, p; ~; represents the normalized interference caused by [R2DThe BS.

The utility function (13) for the D2D pairs includes two pairthe achievable data rate and the cost. On

one hand, with more transmit power utilized on subchanmne higher data rate can be achieved by D2D



pair k. On the other hand, however, more interference would berepeed at the BS so more money
should be paid by D2D paik. Thus, there exists a tradeoff between the data rates anttols€ for

D2D pairk. Hence, to maximize its utility, the optimization problemeach D2D paik is formulated as

8
X 20 o P (CY)
Problem 2 : max up s.t XN (14)
n=1 2 g P (C2)

n=1

The constraints C1 and C2 are similar to those in (8).

B. Stackelberg Equilibrium

Under the Stackelberg game model above, the Stackelberljpbeigm is de ned as follows.

De nition 1: Let be a solution for Problem 1 and, denote a solution for Problem 2 for theh
D2D pair withP = f P ., . Then the poin{ ;P ) (with the superscript specifying the corresponding
parameters at the equilibrium) is a Stackelberg equilirfar the game if for anyf ;P) with ;P 0,

the following conditions are satis ed:

Uss( ;P ) Uss( ;P); (15a)

U( ;P ) Ue( ;P);8k2f1;:::;Kg; (15b)

whereU,( ;P), i N, up.

From De nition 1, we see that in order to reach a Stackelbergldrium, a two-stage iterative algorithm
is required. In the rst stage, the leader sets a price anadwasts it in the system. Then the followers
compete in a non-cooperative fashion in the following sta&gter the NE (Nash Equilibrium) is reached,
leader will reset the price based on the strategies adoptabebfollowers and the interference on each
subchannel. This two-stage update will continue until the tonditions in De nition 1 are satis ed.

Therefore, for the proposed game de ned in Section IV-A,Bigesets the “price” " for each subchannel
n, and then the D2D pairs compete for the subchannel in a nopecative fashion. After the NE is
reached, the BS updates the priceaccording to the aggregate interference received at snbeha.
These two processes will be repeated until convergencehdrfdllowing sections, the non-cooperative

game for the D2D pairs and the price updating strategy of tBesl be studied, respectively.
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C. Non-Cooperative Game for D2D Pairs

After receiving the price vector broadcasted by the BS, the non-cooperative game for D23 =air
dened asG="f ; (P2 ;(Uc( ;P))k2 0, where = f1;:::;Kgis the player setP, is the D2D pair
k's admissible strategy set, andl( ;P) is the payoff function of D2D paik.

According to Problem 2, the game for each D2D paiims to

n;aXUk s.t. Py 2 Py (16)
k
where
( W )
Pk , Pk 2< N . pE Pk; 0 pE pE]aX . (17)
n=1

Since it is a non-cooperative game among the D2D pairs, fdn 82D pairk, the interference from other
D2D transmission is treated as noise. Therefore, the gagjefdl D2D pairk is a convex optimization

problem. To solve this, we de ne

8 9

< 1 =

F(P), r U(P)=, P + T : (18)

K
0+ = pt N+
Px k 1ok Pk

(P P Fi(P)  0:8Py 2 Py (19)

Then with the Lagrangian method, the solution of (16) for D2&rk has a water- lling interpretation
2 1 3 e

n-n 4

0
1 X
Pk = WF(Py; In s 97 k%} Bt Qi{% ;8n2f1;:::;Ng; (20)
k k j=1
k

j=
j6

0

where[al) = min(y; max(a; X)), and g is regarded as the Lagrange multiplier which is chosen tarens
R
that the total power constraint p; Py is satis ed.
n=1
Now, we study the suf cient condition for the existence amdqueness of NE irG. First, according

to [21], the gameG can be converted into the variation inequality problem. ©oso, de ne the joint
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strategy as the Cartesian product set of D2D pairs' strasegi
P, P Pk (21)

and the vector function

F(P), (Fu(P);:::Fw (P)": (22)

Since for each D2D pak, the game is a convex optimization problem, the conditi®) (ill be satis ed.
Therefore, ifP is an NE of the gamé&s, then for eachk 2 f 1;:::;K g, the inequality (19) must be
satis ed. The set of inequalities (19) can be treated as #ré&ational inequality problenV I(P; F(P))
according to [21], [22]. Therefore, to prove the existennd aniqueness of NE i, it is equivalent to
prove that there is one unique solution\il (P; F(P)). Therefore, we have the following theorem.
Theorem 1:Given 0, the gameG always admits NEs for any channel matrices and power
constraints of the D2D pairs. In addition, Every NE soluteetis es the following water- lling like

xed-point equation:

P =WF( P In=t: (23)

Proof: As we analyzed abov&is equivalent to/ | (P; F(P)). If there exists solutions i | (P; F(P)),
then G has NEs. According to [21], iP is compact and convex arfél is continuous, then there have
solutions forV I (P; F(P)). According to the de nitions olJy, (17) and (19), (22), it is easy to show that
P is compact and convex arfel is continuous. Hence, we can conclude that there always N&gein G.

Note the water- lling like solution for each D2D pak directly follows from the fact that for xed,,
there is only one unique solution to the optimization prabl6) as presented in (20). [ |

In the following theorem, the suf cient condition for the igmeness of the NE & is derived.

Theorem 2:Given 0, the gameG has a unique NE, if th& K matrix R is positive de nite,

where it is de ned that

8
< 1; if j = k;
Rl » . (24)
' maxy n nf ok % kG ifj 8K
where
pmax + P Ky, pmax n 4 0
i k o Pjo™ jox i

fk ; : (25)
k
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In this case, the mapping(P) is also a strongly monotonic function d¢h
Proof: See Appendix B. [ |
A distributed algorithm to reach the NE is possible, whemhgaayer inG updates its strategy according

to the best-response solution (23). The distributed schenfmmalized as Algorithm 2 below.

Algorithm 2 Distributed Asynchronous lIterative Water-Filling Algtinm (AIWA)
1: Given the price vector, initialize the power allocation strated¥x(2 Px);

repeat
Updatem ;= m+1;

until kP(m) P(m 1)k & for some prescribed
return P(m)

No g Men

Theorem 3:The AIWA algorithm will converge to the unique NE @ if
(S™) < 1; (26)

whereS™ js aK K matrix with

T .
[Smax]k;j = k MaXy o 15N g Jnk erlp—ax, |f] 6 ka (27)

o) otherwise

and (S™®) denotes the spectral radius 8.

Proof: The basic idea of the proof is to treat (20) as a projector, thed based on the contraction
property of the projector, we can show that the nesting d¢ardi synchronous convergence condition
and the box condition of the asynchronous convergence eéhef24] in AIWA are all satis ed under the
condition (26). For more details regarding the proof, thedegs are referred to [25]. [ |

Then comparing Theorem 2 with Theorem 3, we have the follgvdorollary.
Corollary 1: The condition (26) for the convergence of AIWA is less giant than the suf cient
condition (24) for the uniqueness of NE in Theorem 2.

Proof: According to Theorem 2, iR is positive de nite, the NE irGis unique. Since the positive def-
inite matrix is also &@-matrix, (I R) < 1[26], wherel is the identity matrix. Thetim;; (I R)'=
0 [27]. Since [y > Eg—z thenlim;; (S™)' = 0. Because (S™) < 1 if only if lim,; (S™)' =
0 [27], we conclude that the condition in Theorem 2 is morengent than that in Theorem 3. As such,

if the condition in Theorem 2 is satis ed, then both the urgass of NE and the convergence to NE by
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AIWA will be guaranteed, which completes the proof. [ |

The suf cient conditions for Theorems 2 and 3 can be derivagel on the inequality [26], [27]:
(1 R)= (I R)") kI RKk; (28)

wherek k can be any matrix norm. Therefore, a suf cient condition @6) iskl Rk; 1, with k k7

denoting the weighted block maximum norm, de ned as

" 1 X _
ki Rk, max - W, [ RIy; (29)
j6i
wherew , [wy;:::;Wk] is any positive vector.
With (28) and (29), the suf cient conditions for Theorem Zar
max — X wi max f % Lg<1l (30)
kK Wy . Jn2f 1:5Ng k ik j;kg '
6k
and
max1x we max f N .g<1 (31)
i Wi . k n2f 1;::N g k ko gk 9 '
k6 j
Similarly, the suf cient conditions for Theorem 3 can be aibed as
1 X o
— - h—-—— < 1
max Wy W n2frrl];:a::);(Ng « Ik PR L (32)
j6k
and
1 X max
n B < 1 (33)

k i
n2f 1;:5N g Ik pE‘aX

The set of conditions (30)—(33) have the same physical egpilan that the uniqueness of NE éand
the convergence of AIWA are ensured if the interference antbe D2D pairs is suf ciently small. The
price set by the BS and the interference brought by the CUsdad2D transmission do not affect the
suf cient conditions. These conditions presented abovelmtreated as the admission conditions to allow

users to communicate with each other on D2D mode when thdrapecare to be reused.

D. Pricing Mechanism at the BS

In this subsection, the pricing strategy of the BS is studidt: BS sets the price primarily to maximize

its own pro t. Another function of the pricing at the BS is tofferentiate the D2D pairs from the CUs.
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In our model, as the CUs have priority over the D2D users, tiwecharged for the communications
among the D2D pairs should be less when the channels are dimtated to the CUs. Substituting (20)

into Problem 1, the optimization problem for the BS side carfdrmulated as

8 2 0 1 3
1 X
m=9—1 B o+ K5
~k+ k j=1 ,
I ]Jsk 0
X X X ekl BN .
max an~E S.t. k Pk Pk —O,8k2fl,...,Kg,8n2f1,...,Ng, (CZ)
k=1 n=1 n=t

Rpi ri;8CU;; (C3)
n=1
k 0;8k2f1;:::;Kg: (C4)
(34)
Note that the constraints in (34) are coupled. In C2, the pailecation strategy of each D2D pair is
coupled across the subchannels by its total power constiai€3, the power allocation strategies of all
the D2D pairs are coupled across the subchannels underttheamastraints of the CUs.

The data rate requirement of CU; can be decomposed into the data rate requirements on eatsh of i

occupied subchannels as: 8
) o
log. 1+ —p— R
' ~i k=1 pE ~E + ~in ' (35)
X

Il ©

i=1

Since the subchannels allocated to each CU are preset amchtisenission powers on these subchannels

the sum interference caused by the D2D transmission on anbeln should be lower bounded by

8 9
2 3
of oy N A
log_ 1+ R ) P~ =50 i (36)

§ T pp~n +~" § k=1 (2" 1)

! k k i f
k=1
Since —h— ~' is xed, we nd it convenient to de neT" , S - ~n,
i1 1) i@ 1)

)
According to the constraint C2 in(34), for ea&h either = 0 or Py = pe. If « =0;8k 2
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8
X
% p~ T (C1)
X k=1
max " pi~f st 2 0 1 3 -
n k k 1 )((
k=1 . . ) |
E pk—g n-n k% B okt kgg ; (C2)
. K (=1
6k

0

However, (37) is a non-convex optimization problem. Whea timique NE is achieved i, the group

0 1

1 X
o = @ o hr K (38)
k J'.zukl’]
6

If k2U", thenpy = 0. As a result, the objective function of (37) is rewritten as

0 1
X 1 X X
TR - S A ¢ (39)

kaun Kk k2un jaun

j6k
0 1
P P
Since @ Pkt nA - 0;8U", then (39) is a monotonic decreasing function with respect

k2un jaun
j6k
to the price ". According to the constraint C1 in (37), the following inedjty is derived:

0 0 11

X X
?@in k~E%D Bkt Egg T

k2un j6k
jaun

) " = P‘ , (40)

Corollary 2:1f (=0;8k 2f 1;:::;Kgand the NE achieved i is unique, then the optimal solution
of (37) is reached when the interference from D2DC0; on subchanneh equals the constrairit".

Note that if the NE inG is not unique, Corollary 2 will not apply.

The direction to update the pricé can be decided according to Corollary 2. Sin€eis a scalar for

each subchannel, the bisection method can be employed to nd its optimal galu
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each subchannel (i.e., C2 in (34)) is so stringent that ea@DT cannot use all its transmission power.
If for somek 2f1;:::;Kg, «60 andPy = P Ezl pr, then (34) cannot be decoupled. One suboptimal
method is to rst assume thaty = 0. With the same approach, the BS updates its price. Howevesr, t
time, at the D2D pairs side, the sum of the solutigs on the N subchannels may be greater than

Px. New solutions(py)new = PNpk—pn Pk, can be used to replag®;8n 2 f 1,:::;Ng. However, the
k

n=1

optimality of the solution for problem (34) cannot be guadema using this manipulation.

E. Distributed Scheme

Based on the above analysis in Sections IV-C and IV-D, aidiged algorithm namely Algorithm
3, is developed. In this scheme, there are two loops. In therihoop, the D2D pairs compete for
the subchannels via a non-cooperative game. For the outpr the BS updates the pricé for each
subchannel to maximize its prot based on the interferenmastraint on the corresponding subchannel.
Since Algorithm 2 is implemented in the inner loop, its cagence is not affected by the price according
to Theorem 2 and Theorem 3. In other words, the inner loop dvoahverge with any price as long as the
suf cient conditions in Theorem 2 are satis ed. On the otlvand, based on (19), the power allocation
function for each D2D pair is a monotonic decreasing fumctigth the price. Therefore, in the outer
loop, the BS can coordinate the interference from the CUs&éo2D pairs through updating the price.
In the paper, the bisection method has been applied to ndofitenal price. Since the inner loop will
converge with any price, the convergence of Algorithm 3 iargateed.

It is noteworthy that the BS needs to sense the aggregatdeirgiece in Algorithm 3 to update the
price since the bisection method is applied to nd the optipréce value. As a result, the BS does not

need to have available each individual CSI, sucthasg’, , f{', or fj .

V. IMPLEMENTATION OVERHEAD

In this section, we demonstrate the difference in terms efitiplementation overhead between Algo-
rithm 1 (the centralized scheme) and Algorithm 3 (the deedimed scheme). As presented in Section lll,
the BS, as the central controller, needs to acquire full Gbre the resource allocation. This acquisition
includes the CSI between D2DTs and BS, between all D2DTs &lidR3, the interference CSls among
the D2D pairs, and the interference CSI from the CUs to the R&and from D2DTs to the BS.
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Algorithm 3 Decentralized Scheme
1: Initialize g, =0 and ., for some suf ciently large valu&n 2f 1;:::;Ng;
2: repeat
3 Compute "= {he’ mn):gn2f1;:::;Ng;
4:  Run AIWA with the price vector ;
5

@

if  pg~¢ <T" then

Kt n
7: max =
8: else
. n - n
9: min =
10: end if

11:  end for
12: until Convergence
13: return ( ;P)

In comparison, the overhead for feeding back the CSI in tleentealized scheme is considerably less.
After the BS broadcasts the price, each D2D pair optimize®own resource allocation scheme, while
treating its interference as noise. Therefore, the CSliredwat each D2DT is only the CSI on its own
transmission link. At the BS, since the price is updated ating to the aggregate interference caused by
the D2D transmission, the individual CSI between each D2Bd BS is not needed. The following table

summarizes the difference of the signaling overhead betwlee centralized and decentralized schemes.

Overhead | Decentralized Centralized
Interference CSID2DT ! D2DR;;8k 6 ] and8n
Direct CSI:D2DT ! D2DRy;8k;n
Interference CSI: CUs D2DRy: 8k: n
Cross CSID2DT ! BS,8k;n
Iterations

< ZZI<Z
<|<|=<|=<| <

TABLE |
OVERHEAD COMPARISON FOR CHANNEL ESTIMATION

It is worth pointing out that not only the amount of the regadiiCSI in the centralized scheme is much
higher than that for the decentralized one, but the dif guti obtain the CSI is higher. In the centralized
scheme, the interference CSI among the D2D pairs and thdaregace CSI from the CUs to the D2DRs
are required but they are too complex to obtain in practicetl@ contrary, in the decentralized scheme,
the CSI between the D2DT and the D2DR is typical and not dit ¢o acquire.

Note that the iterations may bring extra signalling ovethagathe decentralized scheme. Yet even so,

during the iteration, only BS needs to broadcast the updatied vector in the system and the necessary



18

iterations for the convergence is also quite low (examingdhie simulations in Section VI). Therefore,
both the amount and the dif culty in accomplishing it are kmthan those in the centralized scheme.
The amount of overhead from iterations is still limited. Asesult, the iterations would not affect the

effectiveness of the Algorithm 3 too much.

VI. SIMULATION RESULTS

In this Section the numerical results are demonstrated tifyvilne proposed algorithms. In the sim-
ulations, the subchannels are assumed frequency- at. Weehtbe small-scale fading by a three-path
Rayleigh fading channel with an exponential power delayl@rdhe D2D pairs are randomly located in
an area at leastOOmaway from the BS. The distances between any two D2D pairs are than100m
while the distance between a D2DT and its receiver is less 8 Other simulation parameters are

provided in Table II.

Parameters | Value
Number of D2D pairK 5
Number of subchanneN 16
Path loss exponent 3
Radius of the cell 500m
CU transmit power 24dBmwW
Total transmit power at D2DT 24dBmwW
Maximum transmit power at D2DT on each subchann&DdBmw
AWGN noise power 174dBm
BER requirement on each subchannel 10 ¢
& 10 ©
10 ©
TABLE I

SIMULATION PARAMETERS

In Fig. 2, results for the spectral ef ciencies (SE) for Alghms 1 and 3 are shown. Theaxis
corresponds to the data rate requirements of the CUs on eachannel. Obviously, the higher the data
rate requirement, the more stringent the interferencetngin (12). For this reason, the performance
of both algorithms is decreasing as the target rate incsedse expected, the performance of Algorithm
1 is always superior than that of Algorithm 3 because it istredized. Nevertheless, one interesting
observation is that as the interference constraint becontee and more stringent, the performance of

the decentralized scheme (Algorithm 3) actually approschere and more closer to Algorithm 1.
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B ~(gorithm 1

[ |Algorithm 3

Fig. 2. The spectrum ef ciency results for the D2D pairs agaithe rate requirements of the CUs.

Results in Figs. 3 and 4 demonstrate the average system SEespect to the number of D2D pairs and
subchannels when the data rate requirements of CUs on ebchaswnel is 3bits/s/Hz. As the number of
D2D pairs increases, the system performance is increadaeatlinalgorithms due to the inherent multiuser
diversity gain. On the contrary, since the total transmisgpower of each D2D pair is limited, as the
number of spectrums increases, the system SE decreasesforéethe SE in Fig. 4 wheN = 32 is
lower than that in Fig. 3 wheih = 16.

Fig. 5 is one snapshot of the simulation for the spectrumeaeusenK =5 D2D pairs sharéN = 16
subchannels with CUs. In the gure, the subchannels reuse®2D pairs in Algorithms 1 and 3 are
demonstrated, respectively. It is shown that, optimallye @2D pair would reuse multiple channels of
CUs in Algorithm 1. In comparison, one D2D pair also reusetipld channels in Algorithm 3, but the
reuse pattern is different from Algorithm 1. In conclusighe assumption that each D2D pair is only
allowed to share the spectrums with one CU in the traditiomaks would limit the improvement on the
system performance.

Results in Fig. 6 show the convergence speed for the D2D jpeireir rates on a particular subchannel,

while Fig. 7 illustrates the change in the interference ti&rBceives due to the D2D transmission on a
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subchannel, all for Algorithm 3. Although the interfereratethe BS is properly controlled, the data rates
achieved by the D2D pairs are not balanced and fairness ¢eulth issue for the decentralized scheme.

The updating process of the pric& (for somen) is examined by the results in Fig. 8, for various target
rates of the CU. As is expected, the higher the target rate higher the price the D2D transmission.
As we mentioned in Section IV-D, since the CUs have priomityaccessing the subchannels, users in the
D2D mode should be compensated when the BS sets the pricedanterference.

As far as the convergence speed of Algorithm 3 is concerrtesl,convergence processes of inner
loop with different number of D2D pairs are demonstrated igsF9 and 10, respectively. We observe
that the convergence speed of inner loop (hence AlgorithwiR)oe decreased as the number of D2D
pairs increases. For the outer loop, the BS updates the pased on the sensed interference on each
subchannel. Therefore, its convergence speed would rexttdffy the number of D2D pairs, as shown in
Fig. 11.

Finally, the convergence of the parametegsandh, (hence Algorithm 1) is demonstrated in Fig. 12.

As we can observe, they converge quickly with less th@nterations required to reach a steady state.

VII. CONCLUSION

This paper has studied the resource allocation problemeiddD communications underlaying cellular
networks. We rst propose a centralized scheme, referreabtalgorithm 1, which is formulated as a non-
convex optimization problem that is solved by using a corapgroximation method. The corresponding
results serve as a performance benchmark. Then utilize@tackelberg model, we proposed a distributed
resource allocation strategy, and design an iterativerigihgo (Algorithm 3) to solve the proposed game.
Moreover, the signaling overheads for both algorithms Heeen analyzed and compared. Finally, numer-
ical results are provided to verify the convergence ratéhefgroposed algorithms and their performance.
Our results have demonstrated that the distributed Algori8 achieves good performance with signi cant

reduction on the signaling overhead, illustrating its paitd for a practical design.

APPENDIX A

THE ANALYSIS ON CONVERGENCE AND THE ACCURACY OFALGORITHM 1

The following non-convex optimization problem is studied[18]:

minWy(x) s.t. Wi(x) L,i=1;2, ;m;
X
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where the objective functiow/y(x) and the constrainté/;(x); 8 =1;2; ;m are either convex or non-
convex. If a series of convex approximations(x) W;(x) are applied for any non-convé¥/y(x) and
Wi, (x) if they are non-convex, then the problem could be solved e optimization methods. Based
on the analysis in [18], if the approximations satisfy thiéoleing three conditions, then the solutions of
this series of approximations converge to a point satightime Karush-Kuhn-Tucker (KKT) conditions
of the original problem:

(@ Wi(x) W;(x), for any non-convexV;(x);

(b) Wi(xo) = W;i(Xo), Wherexg is the optimal solution of the approximated problem in thevppus

iteration, for any non-conveW,(x);

(©) r Wi(xo) = r W;(Xop), for any non-convexV;(x);

Herein, condition (a) guarantees that the approximaiip(x);8i =1;2; ;m tightens the constraints,
and any solution of the approximated problem will also be asitdde solution to the original one.
Condition (b) guarantees that the solution of each apprateéch problem will decrease the objective
function. Condition (c) guarantees that the KKT conditi@fighe original problem will be satis ed after
the series of approximations converges.

In the problem (8), the objective function is to maximize #wm rates of D2D pairs. Therefore, when
examining the effectiveness of approximation (9), the eésponding condition (a) should be changed to
(@) W;(x) W,(x), for any non-convexV;(x);

Then, based on the inequality (9), equality (10) and the dien of parametersy andly, it is easily
veri ed that the convex approximation employed in Algorihl satis es conditions a*, b, and c si-
multaneously. Therefore, the proposed successive appabixin method would converge to the solution
satisfying the KKT conditions of the original problem. Théare it at least guarantees a local optimum

solution.

APPENDIX B

PROOF OFTHEOREM 2
According to the properties of I (P; F(P)), if F(P) is strongly monotonic o, thenV | (P; F(P))
admits one unique solution. Sin€gis equivalent toV I (P; F(P)), the suf cient condition under which
G has a unique solution is equivalent to the suf cient comfitfor the strongly monotonic condition on

P of VI(P;F(P)). Here, we use the method in [26], [29], and [30] to derive thicgent condition.
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The mapping is strongly monotonic dn if there exists a constart > 0 such that for all pairs

P=1fP, 2 PandP%= fPdS, 2 P, the following inequality is satis ed:

(P PYT(F(P) F(PY) kP P%* (41)

U 5 %
u
u X
E’Ppﬂ"' k% p] Jnk+ Eg
1ok
N 0 1
u
u X
F PR+ « ED (pjn)o kT Eg, (42a)
j=1
j6k

R o (pE)O:

k (42b)
k
Then from (41), we can derive that
(P PY(F(P) F(PY) o
AR N (=) S < N ) O T YO 1 (o L O
k=1 n=1 E lr<] |r<]
|
XX X X Lo
( n)2 n ik 1 n
k k n j
k=1 n=1 j6k n=1 k |
X X n o n |
()7 & max g
1 n N
k=1 n=1 jsk k
X X ' .
& [Rlkg =e Re
k=1 j=1
min(R) 2
: : 4
max; k k maxg n n( o )2 kP Pl; (43)
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where 8 -
X 2
& = (0
n=1
e=[al; 0 1 (44)
X
§ R R A LR §
' Jok
and min(R) denotes the smallest eigenvalueRof The third inequality of (43) follows from the Cauchy-

Shwarz inequality. The last inequality of (43) comes frora thct that if the matribR is positive de nite,

it is

1xT

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

also a P-matriX. According to Theorem 3.3.4 in [28] and Lemma 2 in [26], withcta x; kxk, =

Rx min (R). Then the last inequality can be derived, which completesptioof.
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Bl The average SE achieved by D2D pairs in Algorithm 1
B The average SE achieved by D2D pairs in Algorithm 3

[ ]The SE achieved by CUs in Algorithm 1
| |The SE achieved by CUs in Algorithm 3

Fig. 3. The average system spectrum ef ciency against thebeu of D2D pairs wheMN = 16.
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Bl The average SE achieved by D2D pairs in Algorithm 1
B The average SE achieved by D2D pairs in Algorithm 3

|___IThe SE achieved by CUs in Algorithm 1
|___|The SE achieved by CUs in Algorithm 3

Fig. 4. The average system spectrum ef ciency against thebeu of D2D pairs wheiN = 32.



Fig. 5. The indication for the subchannels reused in Algaonitl and Algorithm 3.

C Achievable data rate of D2D pair one
Achievable data rate of D2D pair two

Achievable data rate of D2D pair three
Achievable data rate of D2D pair four
Achievable data rate of D2D pair five
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Fig. 6. The convergence behavior for the rates of the D2Dspasing (decentralized) Algorithm 3.
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Fig. 7. The convergence behavior for the interference poeegived at the BS in the case of Algorithm 3.

The data rate requirement is 2bits/s/Hz
The data rate requirement is 3bits/s/Hz

The data rate requirement is 4bits/s/Hz
The data rate requirement is 5bits/s/Hz
The data rate requirement is 6bits/s/Hz

Fig. 8. The price updating process on a subchannel in the afaékgorithm 3.
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Fig. 12.

Parameter a
Parameter b

The convergence behavior for the paramedgls and b 's in the case of (centralized) Algorithm 1.
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