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ABSTRACT

Sensor-equipped smartphones and wearables are transform-
ing a variety of mobile apps ranging from health monitoring
to digital assistants. However, reliably inferring user behav-
ior and context from noisy and complex sensor data collected
under mobile device constraints remains an open problem,
and a key bottleneck to sensor app development. In recent
years, advances in the field of deep learning have resulted in
nearly unprecedented gains in related inference tasks such
as speech and object recognition. However, although mobile
sensing shares many of the same data modeling challenges,
we have yet to see deep learning be systematically studied
within the sensing domain. If deep learning could lead to
significantly more robust and efficient mobile sensor infer-
ence it would revolutionize the field by rapidly expanding
the number of sensor apps ready for mainstream usage.

In this paper, we provide preliminary answers to this po-
tentially game-changing question by prototyping a low-power
Deep Neural Network (DNN) inference engine that exploits
both the CPU and DSP of a mobile device SoC. We use this
engine to study typical mobile sensing tasks (e.g., activity
recognition) using DNNs; and compare results to learning
techniques in more common usage. Our early findings pro-
vide illustrative examples of DNN usage that do not over-
burden modern mobile hardware, while also indicating how
they can improve inference accuracy. Moreover, we show
DNNs can gracefully scale to larger numbers of inference
classes and can be flexibly partitioned across mobile and
remote resources. Collectively, these results highlight the
critical need for further exploration as to how the field of
mobile sensing can best make use of advances in deep learn-
ing towards robust and efficient sensor inference.

Categories and Subject Descriptors: C.3 [Special-
Purpose and Application-Based Systems]: Real-time and
embedded systems.

General Terms: Design, Experimentation.

Keywords: Mobile Sensing, Deep Learning, Deep Neural
Network, Activity Recognition.

1. INTRODUCTION

By exploiting sensors in wearables and smartphones, apps
are exposing users to powerful new mobile experiences that
have the potential to change the way users live and interact
with each other. Advances in the area of mobile sensing en-
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able users to: quantify their sleep and exercise patterns [6],
monitor personal commute behaviors [26], track their emo-
tional state [25], or even measure how long they spend queu-
ing in retail stores [27]. The driving force underpinning these
innovations is the use of algorithms to infer behaviors and
contexts from sensor data collected by mobile devices.

However, critically today inferring many important be-
haviors from mobile sensor data under real-world conditions
remains brittle and unreliable (e.g., [6]); this in turn is acting
as a bottleneck to sensor app development, preventing many
apps from being ready for consumers — especially those that
require more difficult (but also powerful) forms of behav-
ior modeling. The field of mobile sensing would be trans-
formed overnight if a breakthrough in the level of robustness
and efficiency of mobile inference could be achieved — such
an advance would revolutionize the sensing app landscape
by broadening the number of inference categories accurate
enough for mainstream use. But challenges to robust sen-
sor inference are numerous and varied, including for exam-
ple: coping with uncontrolled device positions [21] (e.g., in
a pocket, in a bag); background noise (e.g., outdoors, while
driving) when sampling data [23]; and adapting to the dif-
ferences in data generated by a diverse user population [17]
(e.g., lifestyle, demographics). Although the mobile sensing
community continues to develop approaches that minimize
these effects, more fundamental advances in the machine
learning techniques used are also needed to close the gap
between the promise and actual reality of sensing apps.

A strong candidate for such fundamental advances in how
mobile sensor data is processed is deep learning; an emerging
area of machine learning that has recently generated signifi-
cant attention — enabling, for example, large leaps in the ac-
curacy of mature domains like speech recognition, where pre-
viously only incremental improvements were seen for many
years [2]. In a recent high-profile example [18], deep learning
algorithms were also shown to be capable of learning com-
plex concepts — such as the appearance of cats in videos —
with incredibly little supervision (i.e., example data manu-
ally labeled for each concept of interest). More broadly, deep
learning techniques are now key elements in achieving state-
of-the-art inference performance in a variety of applications
of learning [13] (e.g., computer vision, natural language pro-
cessing). Promisingly, achieving such levels of robust infer-
ence (as seen in speech) often requires overcoming similar
data modeling challenges (e.g., noisy data, intra-class diver-
sity) to those found in mobile sensing. In addition, many
of the instances where deep learning has been successful are
related to inference tasks of importance to mobile sensing
(e.g., emotion recognition, speaker identification).

It is somewhat surprising that deep learning has yet to
have a widespread impact on mobile sensing. Only limited
usage exists today coming in the form of largely cloud-based
models that provide, for example, speech and object recog-
nition within mobile commercial services [2]. Little explo-
ration has been done into deep learning methods applied to



activity, behavior and context recognition. Deep learning
techniques are also absent from the vast majority of mobile
sensing prototypes that are deployed and evaluated. Per-
haps this is partially due to the computational overhead as-
sociated with deep learning, and the fact early mobile sens-
ing efforts were highly computationally constrained. How-
ever, mobile architectures have advanced enormously in re-
cent years (an iPhone 6, for instance, is a 10x computational
jump over a 5-year old iPhone 3GS). Such advances are rad-
ically changing what is possible to locally perform.

What is missing today are systematic studies to under-
stand how advances in deep learning can be applied to in-
ference tasks relevant to mobile sensing; in addition to the
development of new mobile runtimes that can perform in-
ference using these models in an energy-efficient low-latency
manner. In this paper, we begin to examine this timely issue
with an exploratory study into the potential for deep learn-
ing to address a range of core challenges to robust and re-
source efficient mobile sensing. To better understand the in-
teraction between modeling accuracy and system resources,
we prototype a mobile Deep Neural Network (DNN) classi-
fication engine capable of a variety of sensor inference tasks.
The role of the engine is to classify sensor data on the mo-
bile device, assuming deep model training is performed in an
offline manner with conventional tools. The design of the en-
gine exploits a broad range of modern mobile hardware and
executes most inference operations on the low-power DSPs
present in many already available smartphones (e.g., Sam-
sung Galaxy S5, Nexus 6). As a result, this engine achieves
resource efficiencies not possible if only using a CPU.

Our study findings show, as would be expected, benefits to
inference accuracy and robustness by adopting deep learn-
ing techniques. For example, we show our DNN engine can
achieve comparable accuracy levels for audio sensing using
significantly simpler features (a 71x reduction in features),
relative to modeling techniques more typically used. We
also discover a number of less expected results related to
mobile resource usage. For instance, we find that DNNs can
have a resource overhead close to the most simple compar-
ison models, yet simultaneously have accuracy levels equal
to any tested alternative. Moreover, our DNN implementa-
tion is able to scale gracefully to large numbers of inference
categories unlike the models used today. These results in-
dicate forms of deep learning (DNNs in this case) may also
provide important improvements in the resource-efficiency
of sensing algorithms on mobile devices. We anticipate this
preliminary study will provide a foundation for subsequent
research that explores the application of deep learning to
mobile sensing. More importantly, we believe the findings
of this work may even represent the start of transformative
changes in how mobile inference algorithms are designed and
operate — powered by concepts from deep learning.

2. DEEP LEARNING

Modeling data with neural networks is nothing new, with
the underlying technique being in use since the 1940s [22].
Yet this approach, in combination with a series of radical
advances (e.g., [16]) in how such networks can be utilized and
trained, forms the foundation of deep learning [13]; a new
area in machine learning that has recently revolutionized
many domains of signal and information processing — not
only speech and object recognition but also computer vision,
natural language processing, and information retrieval.
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Figure 1: Example phases of building a Deep Neural Network
with 3 hidden layers (hi1, he, and h3), input layer  and output
layer y. Shown are the pre-training, fine-tuning and classification
phases of a DNN variant called a Deep Belief Network.

Deep Neural Network Primer. Many forms of deep
learning have been developed with example techniques in-
cluding Boltzmann Machines, Deep Belief Networks, and
Deep Autoencoders (each detailed in [13]). Figure 1 illus-
trates a common example of deep learning; specifically a
Deep Neural Network (or DNN). A DNN is a feed-forward
neural network (i.e., the network does not form a cycle) that
maps provided inputs (e.g., audio or accelerometer data or
features derived from them) to required outputs (e.g., cate-
gories of behavior or context). The network consists of nodes
organized into a series of fully connected layers; in-between
the input and output layers the DNN contains additional
bridging layers (called “hidden” layers). Each node uses an
activation function to transform the data/state in the prior
layer that in turn is exposed to the next layer. Commonly
used node activation functions are drawn from the sigmoid
family. A logistic sigmoid y = H%7 for instance, has the
property of returning values in the range (0,1) making it
suitable for representing probabilities. Output nodes are an
exception, these typically use a softmax function in which
the final inference is determined by the node with the largest
value (i.e., the conditional probability). See [13] for more.
A DNN is trained usually in two stages. First, an un-
supervised process referred to as “pre-training” is applied
to bootstrap hidden node and edge parameters. This stage
was a significant breakthrough in deep learning, when it was
discovered that this can be effectively done in a greedy layer-
wise fashion without labeled data — simplifying the learning
when multiple hidden layers are present. Second, a super-
vised process occurs, referred to as “fine-tuning”, that uses
backpropagation algorithms to adjust the parameter values
initialized in the previous stage. Parameters are adjusted
to minimize a loss function that captures the difference be-
tween network inferences and ground-truth labeled data.
Of course, many variations on this training process have
been proposed; and similarly DNNs themselves can be uti-
lized in various ways to perform inference. Not only are they
used simply as classifiers in isolation (as we do in our study)
but they are also chained together to interpret data of dif-
fering modalities (e.g., [9]) , or combined with other types of
models (e.g., HMMs, GMMs) to form hybrids (e.g., [15]) or
act as front-end feature selection phase (e.g., [24]). Similarly,
beyond a basic DNN is a rich family of approaches and ma-
chinery such as (the aforementioned) Deep Belief Networks
and Boltzmann Machines or others like Convolutional Neu-
ral Networks. However, we limit this work to a relatively
simple form of deep learning (single DNNs), leaving the ex-
ploration of additional techniques for future study.



stand up chair  sit down chair

get up bed lie down bed
climb stairs descend stairs

eat meat eat soup
drink glass brush teeth
use phone walk

comb hair pour water

Figure 2:
dragon 800 MDP/S [1].

Qualcomm Snap- Table 1: Activities of daily liv-
ing (ADL).

Existing Mobile Use of Deep Learning. As pre-
viously described, there are some early examples of deep
learning being applied in mobile settings. For instance, the
speech recognition models used by phones today exploit deep
learning techniques (e.g., [2]); but crucially they operate off-
device, in the cloud. Some existing application domains of
deep learning (such as emotion recognition [15] and others
related to audio) are very similar to requirements of mo-
bile sensing and should be able to be adapted for sensor
app purposes. Other important sensing tasks like activity
recognition are largely unexplored in terms of deep learn-
ing, with only isolated examples being available (such as for
feature selection [24] or non-mobile activity recognition in
controlled or instrumented environments [12, 3]). These in-
ference tasks will require more fundamental study as they
lack clear analogs in the deep learning literature. Moreover,
significant systems research is required to understand how
the full range of deep learning techniques can be used lo-
cally on mobile devices while respecting energy and latency
constraints. For example, mobile OS resource control al-
gorithms aware of how to regulate the execution of one or
more instances of deep learning inference are currently miss-
ing; as are new deep learning inference algorithms tailored
to mobile SoC components like GPUs and DSPs.

3. PRELIMINARY INVESTIGATION

We now detail our initial study into the suitability and ben-
efits of deep learning when applied to mobile sensing.

Study Aims. Three key issues are investigated:

e Accuracy: Are there indications that deep learning can
improve inference accuracy and robustness to noisy com-
plex environments? Especially when sensor data is lim-
ited, either by features or sampling rates. (See §4).

e Feasibility: How practical is it to use deep learning for
commonly required sensing tasks on today’s mobile de-
vices? Can we push today’s hardware to provide accept-
able levels of energy efficiency and latency when com-
pared with conventional modeling approaches? (See §5).

o Scalability: What are the implications for common scal-
ability challenges to mobile sensing if deep learning is
adopted? For example, how well does it perform as the
number of monitored categories of activities expands?
(A common bottleneck in forms of mobile sensing such
as audio [20]). Moreover, how easily can deep learning in-
ference algorithms be partitioned across computational
units (i.e., cloud offloading), a frequently needed tech-
nique to manage mobile resources [11]. (Also see §5).

By examining these important first-order questions regard-
ing deep learning in the context of mobile sensing our study
highlights new directions for the community, as well as pro-
vides the foundation for follow-up investigations.

Mobile DNN Implementation. In the proceeding
two sections, we report experiments performed with a work-
ing deep learning implementation developed for an Android
smartphone with a Jelly Bean 4.3 OS. The implementation
is targeted towards DNN models used in typical continuous
sensing tasks such as keyword spotting [5] and activity recog-
nition rather than intermittent workloads, such as speech or
image recognition, which require more complex cloud-only
models due to their that significant memory and compute
requirements. To maximize the mobile resource efficiency,
we take advantage of a low power co-processor similarly to
[8]: we use the Hexagon DSP of the Qualcomm Snapdragon
SoC available in off-the-shelf smartphones and wearables.
This Qualcomm SoC is particularly suitable for always-on
sensing tasks since the sensors can be continuously moni-
tored at a low cost by the DSP allowing the power-hungry
CPU to often remain in low-energy sleep mode. To give a
perspective on the possible energy savings, we observe on
average an 8x to 14x reduction in the energy consumption
when the DNN inference algorithms run on the DSP instead
of the CPU. These benefits come at the expense of several
DSP limitations including: constraints on the size and com-
plexity of the DNN (due to the small program and memory
space of the DSP); as well as only the more simple inference
algorithms having acceptable runtime latency (partially due
to these algorithms not being fully optimized for the DSP).
Naturally, well-known cloud-based models like DeepFace [7]
(used by Facebook for face recognition) can not be supported
locally with this prototype; rather at this point we can only
use carefully constructed simple models.

The co-processor is programmable through the publicly
released C/assembly Hexagon SDK but development is en-
abled only on special boards such as the Snapdragon 800
MDP/S (Figure 2) which we use for the classification en-
gine implementation. We implement the sensing framework
and algorithms in C: interfacing between the Android OS
and the DSP is achieved through a general computational
offloading mechanism (FastRPC) mediated through the An-
droid Native Development Kit (NDK). Our DNN version
for the DSP allows several key parameters to be changed,
namely the number of hidden layers and their size, the num-
ber of features in the input layer, the number of classes in
the output layer, as well as the node activation function.
In the following sections, we tune these parameters accord-
ingly and report smartphone results. However, the findings
can be generalized to other mobile devices since the same
Snapdragon architecture, featuring a DSP in addition to the
CPU, is present on new consumer wearables like the Android
LG G Watch with a Qualcomm Snapdragon 400 SoC.

4. INFERENCE ACCURACY

We begin by investigating the potential for more robust and
accurate mobile inference by adopting techniques from deep
learning. The two key results from our experiments are:

e Basic DNN techniques do well with noisy accelerometer
activities: we observe a 10% accuracy gain over the next
best comparison method, even when no deep learning
pre-training methods are used to additionally boost the
accuracy by initializing the weights of the network;

e For audio sensing (speaker and emotion recognition), a
simple DNN model with a 71x reduction in the number
of input features provides comparable or superior accu-
racy against learning techniques in common usage.



Behavioral Context Dataset Description

Activity Recognition
Emotion Recognition
Speaker Identification

wrist-worn accelerometer activities [10]
emotional prosody speech [19]
10-minute speech from 23 speakers each

Table 2: Sensing datasets overview.

Such preliminary findings are indications of the possible ben-
efits by adopting techniques from deep learning. Here we
have only applied some of the most basic DNN-related ma-
chinery. Consequently, we believe more comprehensive ex-
ploration will lead to even larger performance gains.

Experiment Setup. We examine three inference do-
mains commonly studied within mobile sensing, one based
on accelerometer data and the others using the microphone.
Specifically these are: activity recognition, emotion recog-
nition, and speaker identification. The particular classes of
behavior we study appear in a wide range of proposed and
existing sensor-based mobile apps, for example: mHealth [6,
25], digital assistants (e.g., Microsoft’s Cortana or Apple’s
Siri) and life-logging [20, 21]. The complexities of recogniz-
ing the categories of behavior evaluated in the wild — using
conventional modeling — are well recognized [6, 17].

Datasets. Table 2 details the three datasets we use and
specifies the classes of behavior they contain. Two of the
datasets are audio-based (for speaker identification and emo-
tion recognition) provided by the authors of [25] and one is
accelerometer-based [10] containing a general set of Activi-
ties of Daily Life (ADL) shown in Table 1. The ADL dataset
is composed of the labeled recordings of 14 simple activi-
ties performed by 16 volunteers wearing a single tri-axial
accelerometer attached to the right wrist of the volunteer
and sampled at a rate of 32Hz. The emotions corpus [19]
contains the emotional speech of 7 professional actors deliv-
ering a set of 14 distinct emotions grouped by Rachuri et al.
[25] into 5 broad categories: happiness, sadness, fear, anger
and neutral speech. The speaker data consists of 10-minute
voice recordings of 23 speakers reading article excerpts. The
microphone sampling rate is set to 8kHz in the datasets.

DNN Design. For the accuracy benchmarks we evaluate a
DNN with fairly standard parameters that can be trained
fast with a basic backpropagation algorithm. The DNN has
1 hidden layer with nodes equal to (f + ¢)/2 where f is
the number of input features and c¢ is the number of output
classes. A sigmoid activation function is employed for the
hidden layer and a softmax function for the output layer.
In the sound processing scenarios, the traditionally adopted
Gaussian Mixture Models (GMMs) [4] accept as input fea-
tures a series of 32 Perceptual Linear Predictive (PLP) coef-
ficients [25] extracted from 30ms audio frames every 10ms for
a total of 5 seconds. Consequently, the emotions and speaker
inferences are performed on 5-second long utterances. The
DNN uses instead summary features (mean, median, std,
min, max, 25 percentile, 75 percentile) derived from the orig-
inal ones to succinctly represent the distribution of each of
the 32 PLP coefficients over the window. Thus, the DNN
uses 7 x 32 features in total as opposed to 500 x 32 which
significantly reduces the descriptiveness of the acoustic ob-
servations leading to potential accuracy losses.

Benchmark Classifiers. Comparison benchmarks are pro-
vided by a set of baseline classifiers commonly adopted in
mobile sensing scenarios. Gaussian Mixture Models (GMMs)
with diagonal covariance matrices are often used for sound
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Figure 3: Accuracy results for several popular classifiers applied
to typical mobile sensing tasks: (a) activity recognition and (b)
audio sensing. For the voice-related inferences, the DNN works
with much simpler features (a 71x reduction in the total number
of features compared to the GMM case) while still yielding com-
parable or better accuracy results. This demonstrates the highly
discriminative and robust nature of the DNN modeling.

processing [21, 23] which have proven particularly effective
for speaker-related inferences [25, 20]. The classifier works
with a maximum likelihood principle: each class to be recog-
nized is represented by a single GMM and the classification
computes the probability of each class in turn. Other tech-
niques that generally yield good results are Support Vector
Machines (SVM) [4] which have successfully been incorpo-
rated in emotion recognition systems [14]. Last, Decision
Trees (DT) virtually dominate the activity recognition and
transportation mode detection landscape [21, 26]. Like the
DNN, for audio inference the SVM and DT operate on the
summary features instead of those used by the GMM.

Experiment Results. In Figure 3a we display the various
classifiers performance on the ADL dataset. We note that
distinguishing between the 14 activities is a challenging task
as some of them such as eating meat are fairly complex to
be identified with a single accelerometer. The problem diffi-
culty justifies the relatively low (< 60%) accuracy achieved
by the classification models with default parameters; yet,
the DNN outperforms the DT leader by 10%. In this case,
the DNN appears capable of uncovering hidden feature de-
pendencies not easily captured by the DT branching logic.

In Figure 3b we compare the accuracy of the DNN using
the weaker summary feature set for the emotion/speech pro-
cessing. Here, even with the significant loss of feature com-
plexity, the DNN provides superior accuracy results of 73%
for the emotion recognition example and comparable 89 % ac-
curacy for the speaker identification. We highlight that these
results are obtained when the DNN is trained without a pre-
training step and further accuracy improvements are likely
when restricted Boltzmann machines (or similar) are used
for the initialization of network weights [13].

5. RESOURCE EFFICIENCY

In our next set of results we examine energy and latency
properties of DNNs applied to common behavioral inference
tasks. The three key results from our experiments are:

e DNN use is feasible on the DSP and has a low energy and
runtime overhead allowing complex tasks such as emo-
tion detection or speaker identification to be performed
in real time while preserving or improving the accuracy;

e DNN solutions are significantly more scalable as the num-
ber of recognized classes increase;

e Splitting models between computational units (e.g., a
local device and cloud) is more flexible with a DNN that
offers energy/latency trade-offs at a finer granularity.
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Figure 4: Latency and energy of the emotion recognition and
speaker identification when deployed on the DSP. The example
DNNs have a low latency/energy overhead similar to a DT.

Our early results point to the ability of DNNs to provide en-
ergy and latency trade-offs that will be suitable for a wide-
range of mobile sensing scenarios; while also having bene-
ficial resource characteristics not found in any other com-
monly used model.

Experiment Setup. We use the implementation detailed
in §3 to evaluate the energy and latency characteristics of the
three inference domains from §4. Unless otherwise specified,
the adopted default DNN parameters are 3 hidden layers,
128 nodes per layer, and a rectified linear unit (ReLU) [28§]
activation function. These settings closely match recently
applied DNNs to speech and emotion recognition tasks [5,
15]. The DNN model is further used to implement a key-
word spotting example [5] illustrating one of the key DNN
approaches, namely hybridizing the classification with post-
processing. The example brings to light cloud offloading
benefits studied in the third of our experiments. The GMMs
are set up with 128 mixture components [25]. The classifi-
cation models (DT, GMM, DNN) and derived sensing appli-
cations used in the experiments are all deployed on a smart-
phone’s DSP so that comparisons are put into a low-power
context suitable for mobile sensing tasks.

Feasibility Results. In this first experiment we pro-
vide insights with respect to the DSP runtime and energy
footprint of DNNs compared against other techniques (DT,
GMM) widely used in the mobile sensing literature. In Fig-
ure 4 we plot the latency and energy profiles of the sound-
related apps detailed in §4. The emotion recognition task
with GMMs, for example, runs for approximately 9 seconds
and requires 350mJ on the DSP to process 5 seconds of au-
dio data. A most notable observation is that the DNN clas-
sification overhead is extremely low compared to a GMM-
based inference and matches the overhead of a simple Deci-
sion Tree. We recall that both the emotion recognition and
speaker identification operate on acoustic features extracted
from 5 seconds of audio samples which means that the DNN
versions of the applications, unlike the GMM-based imple-
mentations, can perform complex sound-related inferences
in real time with comparable or superior accuracy. The pro-
hibitively high GMM overhead stems from both the large
amounts of features (500 x 32) serving as acoustic observa-
tions and the additive nature of the classification where one
full GMM is required per class. In the activity recognition
scenario examined in Figure 5, the results are similar: the
DNN has a lower overhead compared to GMMs and infer-
ences can be performed in real time. The runtime values
for all models are reported for processing 4 seconds of ac-
celerometer data and 24 features so that the low runtimes of
barely 16ms indicate how cheap accelerometer-based sensor
apps are.
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Figure 5: Latency and energy of the activity recognition when
deployed on the DSP. The accelerometer pipelines are extremely
cheap and DNNss still have a lower overhead compared to GMMs.
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Figure 6: DSP runtime of the inference stage of the various clas-
sifiers as a function of the number of classes. The results suggest
that DNNs scale extremely well with the increase in the number
of classes, in a manner similar to a DT, while often providing
superior accuracy.

Scalability Results. In this part of the analysis we shed
light on how the DNN scales with the increase in the num-
ber of inferred classes. Mobile context inference tasks often
require a larger number of behaviors or activities being rec-
ognized such as multiple activity categories [21] (e.g. still,
running, walking with phone in pocket, backpack, or belt
etc.), multiple words, emotional states or speakers [25]. In
Figure 6 we plot the runtime of the classification stage of the
three models (DT, GMM, DNN) as a function of the num-
ber of recognized contextual categories. Again, the DNN
behaves in manner similar to a simple Decision Tree where
the larger number of supported classes does not significantly
affect the overall inference performance. The runtime of the
feed-forward stage of a deep neural network is dominated by
the propagation from the input and multiple hidden layers
which are invariant to the number of classes in the output
layer. The GMM-based classification computes probability
scores for each class represented by an entire GMM so that
an inference with 25 added categories/classes is 25X more
expensive than one with a single class. This justifies the
more than 11X slower inference compared to a 256-node
DNN [15] for 25 recognized categories and an identical num-
ber (750 = 25 x 30) of input features for all models.

Cloud Partitioning Results. In this experiment we
investigate the benefits of DNN-based inference usage with
respect to cloud offloading. To set up the experiment we
consider a speech recognition scenario where a set of key-
words need to be detected from voice on the mobile device.
A common DNN approach adopted in speech processing [5,
15] is repeatedly invoking the DNN feed-forward stage on
short segments, such as once every 10ms in a keyword spot-
ting application [5], and then performing post-processing on
the sequence of extracted DNN scores for obtaining the final
inference, such as the probability of encountering a keyword.
In Figure 7b we demonstrate that the high frequency of DNN
propagations facilitates cloud offloading decisions to be per-
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Figure 7: Energy footprint of a speech recognition inference
model based on GMMs or DNNs when a proportion of the classi-
fications are performed in the cloud. For the GMM case a zoom-in
for the 6% to 20% partition range is also provided. Experiment
duration is 15 seconds with a WiFi connection assumed (5Mbps
uplink). DNN usage allows for a graceful reduction in the energy
consumption unlike the choppy GMM offloading.

formed at a fine level of granularity with a graceful reduction
in the total energy consumption when a larger proportion of
the DNN inferences are performed in the cloud.

In contrast, a GMM-based approach would usually in-
crease the total amount of time acoustic observations (fea-
tures) are accumulated before resorting to an inference. This
together with the overhead of evaluating the probability of
multiple GMMs (e.g. one per keyword) for a single inference,
lead to the much choppier falls in the energy consumption
for this model when a percentage of the GMM computa-
tions are offloaded to the cloud, as illustrated in Figure 7a.
This phenomenon is portrayed in Figure 7a with the saw-like
shape of the energy curve. We highlight that such a curve
is harder to control to a specific energy budget. Situations
where a certain number of the per-class GMM inferences
need to be performed remotely may often be encountered
because of latency/resource constraints, for instance, which
introduces the above mentioned local-remote split inefficien-
cies. The DNN energy curve with a smoother gradient is
therefore largely preferable.

6. CONCLUSION

In this paper, we have investigated the potential for tech-
niques from deep learning to address a number of critical
barriers to mobile sensing surrounding inference accuracy,
robustness and resource efficiency. Significantly, we per-
formed this study by implementing a DNN inference engine
by broadly using the capabilities of modern mobile SoCs,
and heavily use the DSP in addition to the CPU. Our find-
ings show likely increases to inference robustness, and ac-
ceptable levels of resource usage, when DNNs are applied to
a variety of mobile sensing tasks such as activity, emotion
and speaker recognition. Furthermore, we highlight bene-
ficial resource characteristics (e.g., class scaling, cloud of-
floading) missing from models in common use today (e.g.,
GMMs).

We believe this first step in understanding how deep learn-
ing can be used in mobile contexts provides a foundation for
more complete studies, and will lead to the development of
important innovative classifier designs for sensing apps. Our
study only scratches the surface of potentially a revolution
in the widespread adoption of consumer-ready sensing apps
powered by deep learning.
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