
Prime: A Framework for Co-located Multi-Device Apps
David Chu† Zengbin Zhang‡ Alec Wolman† Nicholas Lane�
†Microsoft Research ‡UC Santa Barbara �Bell Labs

davidchu@microsoft.com zengbin@cs.ucsb.edu alecw@microsoft.com niclane@acm.org

ABSTRACT
Even though mobile devices are ubiquitous, the concep-
tually simple endeavor of using co-located devices for
multi-user experiences is cumbersome. It may not even
be possible when certain apps are not widely available.

We introduce Prime, a thin-client framework for co-
located multi-device apps (MDAs). It leverages well-
established remote display protocols to enable sponta-
neous use of MDAs. One device acts as a host, executing
the app on behalf of connected clients.

The key challenges is dynamic scalability: providing
high framerates, low latency and fairness across clients.
Therefore, we have developed: an online scheduling al-
gorithm that provides frame rate, latency and fairness
guarantees; a modified 802.11 MAC protocol that pro-
vides low-latency and fairness; and an efficient video en-
coder pipeline that offers up to fourteen times higher
framerates. We show that Prime can scale a host up
to seven concurrent players for a commercially released
open source action game, achieving touch-to-pixel la-
tency below 100ms for all clients.

ACM Classification Keywords
C.2.4 Computer-Communication Networks: Distributed
Systems—Distributed Applications; I.6.8 Simulation and
Modeling: Types of Simulation—Gaming

Author Keywords
Thin client computing; Mobile resource scheduling

1. INTRODUCTION
Mobile devices are ubiquitous, and we often encounter
not only our own devices, but also those of family, friends
and new acquaintances. What if any app had the capa-
bility to instantaneously span all surrounding devices?
For example, a student might invite her classmates to
share in an interactive pedagogical music demonstra-
tion [46]. Colleagues might collaboratively share and
edit photos [25, 7]. A group of friends might explore a
new area through the lens of a game on their mobile de-
vice [2, 4, 5]. Fellow commuters might pass time gaming
together [45, 6]. Many such co-located Multi-Device Apps

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page.
Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.
UbiComp ’15 , September 7–11, 2015, Osaka, Japan.
Copyright c© 2015 ACM ISBN 978-1-4503-3574-4/15/09...$15.00.
http://dx.doi.org/10.1145/2750858.2806062

(MDAs) have been prototyped in the research commu-
nity.

Recent advances such as Wi-Fi Direct, Bluetooth Low
Energy and NFC make it very easy for mobile devices to
discover each other and communicate directly over short
range wireless links. With support for Miracast, AirPlay,
Chromecast and other similar protocols in recent oper-
ating systems, manufacturers recognize users’ desire to
harness co-located devices. These protocols enable basic
one-to-one streaming of passive content.

Beyond basic one-to-one screen streaming, a much more
interesting and general case is within reach: MDAs can
(1) enlarge the number of participating devices from two
to n, and (2) promote active interaction through any
device, instead of merely passive consumption.

One way to initiate such an MDA is to require every
co-located device to install the MDA from an app store.
However, devices run a mix of platforms (Android and its
various forks, iOS, Windows, etc.) and much anecdotal
evidence suggests that developers find it challenging to
support multiple platforms. We examined this issue em-
pirically and found that the likelihood of a popular app
from store X existing in store Y tends to be less than
50% and can be as low as 5% (§2). This situation is
especially dire for new mobile platforms trying to break
in to the market dominated by Android and iOS. Our
findings suggest that MDAs which rely on app stores are
likely to lock out potential MDA participants.

Our system Prime1 enables MDAs to achieve fluid inter-
action among n devices. Prime bypasses platform het-
erogeneity issues by using a remote display protocol, a
virtualization technique where clients relay input events
to the server, and then display an audio/video stream
from the server. In Prime, a host device runs applica-
tion instances on behalf of nearby client devices. To
join an MDA, clients merely need to have installed a
remote display client app once. Unlike other means of
MDA establishment (e.g., [29, 28]), clients need no per-
app software. With such minimal assumptions, Prime
enables spontaneous multi-device interactions.

While the basic building block of remote display is well-
studied [1, 20, 21, 34, 44, 23], scaling a mobile MDA to
even a moderate number of devices poses unique chal-
lenges because requirements on frame rate, response la-
tency and fairness must be satisfied while running on
a resource-constrained host device and wireless channel.

1Proximity Remoting for Instantaneous Multi-device
Execution

Frame rate and response latency are important for in-
teractive MDAs. Frame rate below 30 frames per second
(fps) or response latencies over 100ms cause user dissat-
isfaction for interactive multimedia apps and games [3,
10] For latency, we focus on end-to-end touch-to-pixel
latency, which is the latency between client input and a
correspondingly updated client screen. Fairness is par-
ticularly pertinent for competitive MDAs like games.

To address these challenges, we have built Prime to op-
timize MDAs for frame rate, latency and fairness. It
consists of the following components. First, we design
a lightweight Host Scheduler that is able to maintain
stochastic guarantees on end-to-end latency, throughput
and fairness even when scheduling across heterogeneous
subcomponents such as CPU, GPU, codec accelerators
and the wireless channel. Moreover, we show empirically
that it can more efficiently utilize such resources by up
to 1.4−2.3× as compared to standard implementations.

Second, we design a Wireless Scheduler that modifies
the wireless MAC to lower latency and improve fairness.
This is needed because we show 802.11 is vulnerable
to certain priority inversions, leading to user input de-
lays and reorderings, and inhibiting both responsiveness
and fairness. In response, we demonstrate an 802.11-
compatible MAC that overcomes this problem to provide
a 95th percentile input transmission latency of 3ms.

Third, we construct a video Encoder Pipeline that uses
hardware acceleration and eliminates data copy overhead
to improve frame rate by a factor of up to 14× as com-
pared to a software-only implementation.

While these improvements can help any potential MDA,
we demonstrate these benefits on MarbleMaze, a com-
mercially released open source game. We picked a game
because they are highly popular [13], and naturally place
emphasis on good frame rate, low latency and fairness.
With Prime, MarbleMaze can support up to seven con-
current users with a median latency of 54ms, and latency
divergence among users of no more than 6.5 ms. This
compares favorably to a basic remote display implemen-
tation which supports only three users with unaccept-
ably high variable response times.

2. MDAs USING EXISTING APPROACHES
Two seemingly reasonable avenues for enabling MDAs
are existing app stores and existing remote display im-
plementations. We first examine why these fall short.

2.1 App Store Analysis
A cursory inspection might suggest existing app stores
are sufficient for enabling MDAs. However, while com-
monplace, today’s app stores are fragmented, and there
are both technical and non-technical barriers that stop
app developers from distributing their apps on multiple
platforms. In this section, we confirm this observation
empirically.

We first quantify the likelihood of apps cross-listing,
i.e., appearing in multiple stores. This signals whether

From store... Top-k ... existing in another store
Google Apple Windows

Google 500 – 70% 5%
Apple 4320 42% – 10%
Windows 12300 15% 20% –
Amazon 21388 49% – –

Table 1. App Cross-Listing Frequency. Top-k is number
of apps crawled from a given store.

a given app is even available across platforms. We con-
sidered four major US app stores: Apple iTunes Store,
Google Play, Amazon App Store and Windows Phone
Store. We scoped our investigation to top-ranked apps
in the gaming category because these are popular and
are often multiplayer.

In particular, we crawled 4320 games from Apple iTunes
Store, 500 from Google’s Play store, 21388 from Ama-
zon’s App Store and 12300 from Microsoft’s Windows
Phone Store between September and October 2014.
From this data, we randomly selected a subset of apps
and performed existence checks: queries against other
app stores for an app’s existence to compute the likeli-
hood that the app is cross-listed in other stores. Matches
were based on loose app title string comparison and man-
ual verification. Due to API restrictions, we were not
able to perform cross-listing checks against the Amazon
store, nor were we able to crawl more than 500 Google
apps nor more than 4320 Apple apps. Note that an exis-
tence check is a query against a store’s entire database,
not merely the top-k that we crawled.

Table 1 shows the cross-listing percentages. Despite the
fact that our analysis is based on the top-k most pop-
ular apps (which receive more developer attention than
less popular apps and are therefore more likely to be
cross-listed), the probability that an app shows up in an-
other store is typically below 50%. The highest ratio is
70% when searching Google Play games in iTunes store,
which is due in part to the fact that our Google Play
dataset is limited to the top 500 apps. Note that even in
this small top-500 set, there are still 150 games that do
not exist in the iTunes store. Another thing we found in-
teresting is the unexpectedly low ratio of Amazon Apps
in the Google Play Store. Google’s Android and Ama-
zon’s fork are nearly binary compatible, so there is al-
most no effort required to deploy an app to both stores.
Yet developers are only doing so at a rate of 49% which
is surprisingly low. Finally, a user that uses a less pop-
ular platform like Windows Phone is unlikely to be able
to use apps found on popular platforms (5-20%). This
makes it especially difficult for new platforms with new
innovations like Firefox OS to prosper.

Based on the above data, we also assessed how probable
it is for n co-located users to be able to download the
same game from their corresponding app stores. Given
the current market share of mobile OSes,2 with five co-

2
http://www.idc.com/prodserv/smartphone-os-market-

share.jsp:
Android:84%, iOS:12%, Windows:3%, Others:1%

http://www.idc.com/prodserv/smartphone-os-market-share.jsp
http://www.idc.com/prodserv/smartphone-os-market-share.jsp

located users, it is more likely that the MDA instanti-
ation will fail (53%) rather than succeed; larger groups
are even less likely. Note that this is a conservative es-
timate, since our analysis is based on only top-k apps.
These results suggest that the discrepancies among app
store catalogs are significantly large, and can seriously
limit deployment of MDAs.

2.2 Lessons from a Remote Display Strawman
On the surface, existing traditional remote display im-
plementations appear well-suited for MDAs. In fact, our
initial prototype was just that; we forked a traditional
implementation of remote rendering [26]. However, our
early prototype revealed three important lessons.

First, traditional systems offer only best-effort latency
and no frame rate guarantees because classic office
worker workloads are much less sensitive to latency and
frame rate variations [34]. In contrast, Prime needs to
process frames fast enough (>30fps), while meeting an
end-to-end touch-to-pixel latency target, λe2e, which can
be broken down as follows: λup, the wireless uplink from
client to host; λhost, the total processing time on the
host device, and; λdown, the wireless downlink from host
to client. While best-effort is sufficient for λdown because
the downlink flow is large, best-effort scheduling simply
does not provide stable latency for λup and λhost.

Second, traditional systems do not provide fairness
amongst users (nor do they need to). In contrast, clients
in close proximity to one another can quickly detect
imbalanced responsiveness, particularly in competitive
games (e.g., first to tap wins). Jitter in λup or λhost man-
ifests as event reordering, directly impacting the interac-
tion outcome experienced by users. Unfortunately, stan-
dard 802.11 can easily lead to priority inversion where
earlier messages are subject to exponential delay from
later messages, causing them to be even more tardy, as
we show in §5. Similarly, best-effort processor scheduling
on the host can exacerbate unfairness.

Lastly, in traditional remote display settings, servers and
networks are provisioned a priori to handle expected
workloads [34]. With the ability to carefully collect work-
load profiles offline, budget for necessary resources, and
incrementally add capacity, server administrators oper-
ate on long time scales. In contrast, we envision MDA
users engaging in ad hoc groups of co-located devices
where the only devices of relevance are those immedi-
ately available. Hence, scaling must happen dynami-
cally in response to the number of users that happen to
desire to join in. In such cases, best-effort scheduling
suffers for additional reasons. First, best-effort is not
aware of implicit dependencies among tasks. For exam-
ple, network encoding depends upon rendering; delaying
an earlier stages can mean later stages cannot make the
deadline. Second, best-effort is not aware of implicit con-
tention among system resources, namely the CPU, GPU
and codec accelerator. Without modeling implicit con-
tention, our early prototype suffered erratic performance
drops. Third, with traditional remote rendering systems,

Input

TX

View-Indep.

State Update

Render EncodeView-Dep.

State Update

User 1

Host

Display

Decode

Input RXFrame RX Display Frame

TX

Wireless Scheduler Host Scheduler

User 2

User N

User on Host

HostClients

standard remote display component Prime remote display component

Host

Input

Fig. 1. The Prime Framework. Clients connect di-
rectly to the Host using Wi-Fi. Apps are executed as
dataflow. Prime’s Host and Wireless Schedulers optimize
the dataflow for latency, throughput and fairness.

encoding frames is very CPU- and memory-intensive, in-
troducing large delays [34].

All told, our early prototype barely managed scale to
three total users, routinely hitting troughs of 10fps and
as much as tens of seconds of touch-to-pixel latency. In
the following sections, we discuss our solution to these
problems in detail.

3. Prime FRAMEWORK
Just like in traditional remote display, a host device runs
app instances on behalf of nearby client devices. In or-
der to overcome the limitations of traditional remote dis-
play systems, Prime introduces a dataflow programming
model to relieve developers from handling scaling com-
plexities. The Host Scheduler and Wireless Scheduler
are responsible for executing the dataflow to achieve the
best latency, throughput and fairness. The interplay of
the dataflow and schedulers is shown in Figure 1.

For each client, Prime manages the following dataflow:
(1) client input transmission and reception (λup), (2)
app-specific state update, (3) frame rendering, (4) frame
encoding, and (5) frame transmission back to the client
(λdown). Steps (2)–(4) compromise λhost. App-specific
state update can be divided into two stages: (a) View-
Independent State Update, which takes the input of all
users and updates the application logic, and (b) View-
Dependent State Update, which updates the scene for
each client. Developers only need to implement these
two stages. To meet an end-to-end touch-to-pixel latency
target of λe2e, Prime first computes λdown and λup from
the stochastic guarantees of the Wireless Scheduler pre-
sented in §5. The remainder λhost = λe2e − λdown − λup
is the latency optimization target provided to the Host
Scheduler presented in §4.

Beyond the communication channel which is handled
by the Wireless Scheduler, a participating client merely
needs a traditional thin client implementation that vir-
tualizes input, decodes frames and presents them to the
client’s display. Since many such client implementations
exist for a wide variety of operating systems, we note
that it is conceptually straightforward to reuse these for

Stage 1

Stage 2

Stage 3

Cohort Profiler

Cohort Set

Solver

Admission Controller

task queue

user

jobs

data flow

control flow
Stage 4

Fig. 2. Host Scheduler. Admission controller gates the
number of tasks that are permitted to run. The gate
policy is set by the Cohort Set Solver, which is in turn
fed data by the Profiler.

Prime to demonstrate broad cross-platform support. We
leave this porting effort for future work. Our focus for
this paper are the Host and Wireless Schedulers.

4. HOST SCHEDULING
To consistently meet performance targets on the host,
we design an online profile-driven scheduling framework,
which handles dataflow applications executing on het-
erogeneous processors (CPU, GPU, and codec accelera-
tors). The schedule combines a profiling step with a dy-
namic programming-based solution that can incremen-
tally search for (non-obvious) performant schedules at
runtime. Non-obvious yet optimal schedules often ex-
ist in practice due to surprising concurrency and hidden
contention.

Concurrency- and Contention-awareness. Elementary
pipelining principles would suggest scheduling one CPU
task concurrently with one GPU task. However, realistic
contention and concurrency conditions can be far more
complicated. For example, sometimes scheduling many
similar tasks at the same time can improve performance.
This is due to inherent core parallelism and load-based
DVFS supported by mobile CPUs, GPUs and accelera-
tors. Contention sometimes is also subtle and implicit.
For example, the CPU and GPU share the same memory
bus on most SoCs; and the H.264 video codec acceler-
ator and GPU share some of the same compute units
in a partially accelerated architecture (see §6). By pro-
filing for concurrency benefits and contention problems,
Prime’s host schedule is able to guarantee a stable state
frame rate with high throughput, low latency and fair-
ness amongst users.

Overview and Nomenclature. We define a job as the
host’s work to generate one frame of output for one user.
Users submit job requests to the scheduler in round robin
order. Requests may include input if the host received
new client input since the last request was started. A
job consists of multiple tasks where each task is the work
performed by one dataflow stage in Figure 1, excluding
input RX and output TX. Within a job, the task at stage
i+1 is dependent upon completion of the task at stage i.
Note that a single user may have multiple jobs in flight
at the same time e.g. at different stages of the dataflow.

C1 C2 C3

Stage 1

Stage 2

Stage 3

C1 C2 C3

cohort set K = {C1,C2,C3}

Job 1

Job 2

Job 3

Task

dep.

time

Stage 4

K runs repeatedly

t1 t2

Ks1=3, s2,s3,s4

Fig. 3. Cohort Scheduling Example, n = 4 stages. The
cohort set K which starts j = 3 jobs consists of cohorts
C1 = 〈2, 0, 1, 0〉, C2 = 〈1, 0, 2, 1〉 and C3 = 〈0, 3, 0, 2〉. Two
sequential executions of K are shown.

The Host Scheduler employs a cohort-based approach.
A cohort is a set of tasks which are scheduled all at
once, and no other tasks are scheduled until all the tasks
within the cohort are finished. In other words, a co-
hort is scheduled with mutual exclusion relative to all
other cohorts. The rationale behind cohorts is that they
can be independently profiled and combined into larger
cohort sets with readily analyzable throughput proper-
ties. Tasks in successive cohorts satisfy the dependencies
and thus form a valid processing stream. Our algorithm
searches for the best cohort set such that the tasks can
make best use of the resources, achieving concurrency
and avoiding contention. The cohort setting is adapted
over time to handle task variations.

Specifically, our scheduler has two components, a Pro-
filer and a Solver as shown in Figure 2. The Profiler em-
pirically profiles the dataflow during runtime to monitor
task completion time as a function of concurrency (§4.1).
The Solver uses profiling data and dynamic program-
ming to construct a schedule that optimizes throughput
as well as the response time (§4.2). The Solver also as-
signs users to jobs so as to ensure fairness across users.

4.1 Profiling
The Profiler evaluates the performance for each poten-
tial composition of a cohort of tasks, and feeds this in-
formation into the Solver for optimization. Let a cohort
C = {si}i=1..n consist of si tasks at stage i with a total of
n stages. Using Figure 3 as a running example, cohort C1

consists of three tasks: 〈s1 = 2, s2 = 0, s3 = 1, s4 = 0〉,
meaning this cohort has two concurrent stage-1 tasks and
one stage-3 task. Profiling returns the finishing time of
the cohort f(C) as the time it takes for all tasks in the
cohort to complete. For example, in Figure 3 t1 is less

than C1’s finishing time whereas t2 equals C2’s finishing
time because the two tasks in stage three of C2 are the
last to complete.

With different combinations of tasks in a cohort, the
Profiler can evaluate how tasks (from the same stage
or different stages) compete for resources. With this
information fed into the Solver, potential bottlenecks of
the system can be identified, and task concurrency can
be maximized.

4.2 The Solver
The Solver finds a cohort set K that consists of m co-
horts: K = {Ci}i=1..m. The cohort set represents a
sequence of cohorts executed one after the other ad in-
finitum. For example, in Figure 3, the cohort set K
consists of three cohorts, which are run repeatedly. The
finishing time of the cohort set is f(K) =

∑
C∈K f(C).

We extend the notation for K to Ks1,..,sn where si is the
number of tasks at stage i across all the cohorts in K
(see Figure 3 for a visual representation of this).

Ks1,..,sn is stable if each stage si is servicing the same
number of tasks j. A stable cohort set neither overloads
nor starves any stage of tasks. For stable cohort sets, the
job throughput is tp = j/f(Ks1,..,sn). Our first objective
is to identify the stable cohort set K∗s1,..,sn with the best
throughput. In order to find K∗s1=j,..,sn=j , we construct
a dynamic program which takes j as input.

Notice that in this scenario, K∗s1,..,sn can be split into
subproblems K∗t1,..,tn and K∗s1−t1,..,sn−tn where 0 ≤ ti ≤
si. We construct an n-dimensional dynamic program-
ming data structure with each entry computed as fol-
lows:

f(K∗s1,..,sn) = min
[
f(K∗t1,..,tn) + f(K∗s1−t1,..,sn−tn)

]
t1=0..s1,...,tn=0..sn

Note that when t1 = t2 = ... = tn = 0, the profiling-
based measurements for a single cohort Cs1,...,sn are used
in place ofKs1,...,sn on the right hand side in the equation
above.

Throughput Maximization: The dynamic program
starts from j = 1 and explores increasing values of j and
has two natural terminating conditions which are quickly
reached in practice: (1) either a schedule is found which
satisfies 30fps, or (2) the solution of j + 1 yields no ad-
ditional throughput gain over that of j, implying there
is no further benefit of task parallelism. Formally, the
complexity of computing a single data structure entry
is jn and the number of entries to be computed is jn,
resulting in a complexity of O(j2n) for the dynamic pro-
gram. The number of dataflow stages n is constant for
the dataflow, so the optimization overhead is polynomial
in j.

A convenient property of the Profiler and Solver is that
job throughput is directly proportional to user frame
rate. Given the job throughput tp above, the user frame
rate is tpu = tp

u for u users. When new users join, tpu

is simply compared against the threshold 30fps to deter-
mine whether additional dynamic programming is nec-
essary.

Latency Reduction: Now that we have identified the
cohort set K∗ with the best throughput, we aim to mini-
mize the latency of jobs in K∗. For example, in Figure 3,
Job 1 starts at C1 and finishes in the next cohort set it-
eration at C2. Note that the worst case latency is at
most n × j.3 We reduce average latency by sorting the
cohorts in K∗ to produce a cohort sequence K∗∗. Dur-
ing runtime, the cohorts are then scheduled in succession
according to this sequence.

Our sorting criteria are twofold: (a) cohorts that have
tasks in earlier stages of the dataflow are scheduled ear-
lier, and (b) cohorts that have fewer tasks in later stages
of the dataflow are scheduled earlier. Based on these two
criteria, a decimal-valued key x.y can be constructed for
each C ∈ K∗ where x = i for the first non-zero value of
si and y =

∑n
j=i+1 sj . A sort over the keys yields the

cohort sequence K∗∗ that reduces latency significantly
in practice. If the target λhost ms latency is not reached,
we continue exploring additional schedules with larger j.

Fairness: K∗∗ is a cohort set with good throughput and
latency, but it does not guarantee low variance in job la-
tency. For example, if K∗∗ consists of two jobs, the first
job may finish in n cohorts whereas the second job may
finish in 2n cohorts. Such extreme job latency differences
can sometimes lead to persistent user-perceived response
time unfairness when the number of users is the same as
(or a multiple of) the number of jobs in K∗∗. Extend-
ing upon the above example, if there are two users, User
Two will be consistently assigned to the same slow job.
To mitigate this pathological case when the number of
users u is a multiple of the number of jobs, we intention-
ally desynchronize job assignment with users by assign-
ing each job in j to user id u + 1 if it was previously
assigned to user id u. Desynchronized job assignment is
both low cost and guaranteed to be fair in expectation.

User Churn: As mentioned above, when new users join,
tpu may already satisfy the throughput requirements, in
which case K∗∗ can continue to be used without issue
(note that users leaving is not a problem). If it does not,
the profiling and search for a new schedule is initiated
while K∗∗ continues to temporarily serve as the active
schedule (albeit with substandard user experience). To
generate the new schedule, it is only necessary to profile
for larger cohorts starting at j+1 tasks per stage because
existing profiling data up to j can be reused. Rerunning
the Solver is very inexpensive, and is done whenever the
incremental profile data is ready. If the Solver fails to
find a satisfying schedule, the new user is evicted.

On the very first run (e.g. after the host user initially
acquires the app), there is a delay to collect sufficient

3To see this, consider example K =
〈〈0, 0, 1〉, 〈0, 1, 0〉, 〈1, 0, 0〉〉.

profile information. We show in §8 that the overhead
of new profiling from scratch is very low at under 30s,
during which time users may still continue to play, albeit
with suboptimal performance.

5. WIRELESS SCHEDULING
The wireless channel plays an important role in the in-
teraction between the host and clients. All input from
a client – whether continuous such as accelerometer or
event-based such as multi-touch – must transit the wire-
less uplink, and the resulting video frame must transit
the downlink before the player sees the effect of the in-
put on her own screen. Late or lost input degrade user
experience. Therefore, we wish to guarantee that input
data’s transmission latency is low. In addition, clients
should respect deadlines, in the sense that input issued
earlier by a first client should not be delayed due to con-
tention with input issued later by a second client.

Satisfying these goals is challenging with standard
802.11n because a Prime host sends large volumes of
downlink video traffic. Therefore, contention among
clients and the host can incur large delays. As we will
show in §8, the existence of downlink traffic significantly
alters the delay and jitter of uplink traffic with regular
802.11. While 802.11e (QoS Mode) provides facilities
for prioritized transmissions, §8 will show that it is in
fact very unfair to early transmitters which are forced to
backoff quickly upon contention.

802.11 Background: With the default CSMA setting,
a client is required to sense the channel for DIFS time
after the last packet transmission before starting a count
down timer. If the client senses that the channel is busy
before the count down timer expires, then the timer is
paused until the channel is free again andDIFS time has
passed. Upon expiration of the count down timer, the
client sends its packet. If the transmission fails, a retry
is initiated by restarting the above process. The count
down timer is set as n× SlotT ime where SlotT ime is a
constant and n is a random number uniformly selected
from the range [0, CW] where CW represents the range
of the contention window. CW starts off as CWMin and
doubles in size up to CWMax whenever a retry occurs.
In summary, the main parameters that impact the trans-
mission latency are DIFS, CWMin and CWMax. In
standard 802.11, these parameters are fixed. In 802.11e,
these parameters are fixed per each of seven predefined
classes of traffic [15].

5.1 Protocol Design
The Wireless Scheduler enforces stochastic earliest dead-
line first job completion on a lossy channel among unco-
ordinated job submitters. The MAC design is shown in
Figure 4 and is described next.

Low Latency: To provide low latency input, we start
by prioritizing input traffic over downlink traffic. We
alter the default contention mechanism to give uplink
traffic a more aggressive contention window size. Specif-
ically, input traffic uses lower DIFS and CW values,

DIFS_R3 DIFS_R1 DIFS_UP DIFSDIFS_R2

End of

Previous

Packet

Packet

Prioritized Retries Input DownlinkAccess

Priority

Timeline

SIFS

CW_R3 CW_R1 CW_UP CWCW_R2

Overlap Represents

Potential Contention

Overlap Represents

Potential Contention

Fig. 4. Wireless Scheduler’s Low Latency 802.11-
compatible MAC. Input and its retries receive priority
over video downlink traffic. Colored bars represent the
time window of opportunity to acquire the channel.

DIFS UP and CW UP . As shown in Figure 4, input
traffic wait time is probabilistically lower than downlink
wait time, and therefore has a greater chance of acquir-
ing the channel. Prioritizing uplink traffic has negligible
impact on downlink performance simply because uplink
traffic is low volume compared to downlink traffic, which
we will show in §8. Also, downlink traffic is naturally re-
silient to late or lost packets by virtue of the fact that
H.264 video has built-in loss compensation.

Fairness to Avoid Priority Inversion: Even though
input streams are low volume and prioritized over down-
link streams, input packet delivery may still fail due to
channel fading and external interference. Default packet
retransmission can provide reliability, but exponential
backoff not only quickly increases total transmission la-
tency, it creates opportunities for deadline priority in-
version. Consider a first client’s transmission of input
packet p1, which fails on the first attempt. If the retry
of p1 must compete for the channel with a new input
packet p2 from a second client, the retry will have a lower
probability of acquiring the channel due to exponential
backoff. In this case, p1 has suffered priority inversion
since it was ready for transmission earlier than p2 but
is now ordered after p2. In fact, the greater number of
times a packet is retransmitted, the worse its latency,
which is exactly counter to our design goal where we are
attempting to provide low transmission latency. Prior-
ity inversion afflicts both standard 802.11 and 802.11e
since retransmitted packets inherit the priority of the
initial transmission. The severity of priority inversion
increases when clients are synchronized in their desire
to transmit input, which is a naturally occurring phe-
nomenon in competitive MDAs (such as users competing
to answer a quiz question first). Therefore, despite a low
average input bitrate, clustering of input transmissions
causes significant priority inversion.

To solve priority inversion, input packets employ priority
escalation: the earlier a packet is created, the higher
the priority it is assigned during channel contention. We
accomplish this by changing the priority of retransmitted
packets. We design three additional priority levels for
retransmitted packets. Priorities are defined by DIFS
and CW levels, where: CW R1 > CW R2 > CW R3
and DIFS R1 > DIFS R2 > DIFS R3. As shown

Priority Levels AIFSN† CWMin CWMax
Output Video‡ 3 15 1023
Input Initial 2 7 15

Input Retry #1 1 7 15
Input Retry #2 1 3 7
Input Retry #3 0 1 3

†
DIFS=AIFSN×SlotT ime+SIFS

‡ Downlink settings are the same as standard 802.11n.

Table 2. Prime MAC configuration parameters.

in Figure 4, this mechanism probabilistically guarantees
that packets created earlier acquire the channel.

Fairness Despite Link Quality Variance: An addi-
tional advantage of priority escalation is that it provides
fairness among clients by mitigating the impact of im-
balances in clients’ link quality to the host. Even in the
same room, clients may have significantly varying link
qualities to a host or AP, as we found when looking at
empirical wireless data traces [35]. Clients with lower
link qualities experience higher packet error rates and
undergo more retransmissions. By prioritizing retrans-
missions, Prime ensures that clients with high packet
error rates are not unduly penalized, thereby providing
an additional measure of fairness among clients.

802.11 Compatibility: Prime’s modified MAC not
only co-exists with existing 802.11 traffic, it can be
built with existing 802.11 device support so that ex-
isting clients can easily adopt it. Specifically, we re-
purpose NIC components specified by 802.11e which ex-
poses seven queues, each of which can have separate
DIFS and CW parameters. We modify this existing
functionality to implement our five priority levels. Con-
trol logic in the wireless driver decides the priority for
each packet by placing it into the appropriate queue.
Whenever a client input packet is needing retransmis-
sion, it is moved to the next higher priority queue. The
parameter settings for each queue are shown in Table 2.
Note that the minimum setting for our DIFS is SIFS,
which is the minimum wait time that allows for acknowl-
edgments. The embodiment of these 802.11 modifica-
tions is a modified Wi-Fi driver which can be installed as
part of the one time Prime client software installation.

6. SCALABLE VIDEO ENCODING
Our early investigations revealed that despite multi-core
CPUs on devices, encoding was a significant barrier to
scalability. This section discusses the techniques Prime
uses to alleviate encoding bottlenecks. We first review
existing encoding methods and highlight their deficien-
cies which are exacerbated when a single host supports
multiple clients. Then, we review codec accelerators and
describe how the Prime Encoder uses them as building
blocks for relieving encoding overhead.

CPU Encoding: Figure 5(a) shows the processing and
data transfer operations when CPU-based software en-
coding is used [34]. The app first generates geometry
(refer to 1 in Figure 5(a)), queues these for graphics pro-
cessing 2 , which the GPU uses to generate a frame 3 .

The frame buffer is copied back to system memory 4

for the CPU to initiate frame encoding 5 . The en-
coded result is a bitstream that is transmitted to the
client. Two main inefficiencies exist in this design. First,
memory copy overhead from frame buffers 4 is problem-
atic because the data volume is substantial compared
to the memory bus bandwidth. Each frame is trans-
ferred uncompressed because of the GPU’s data format
requirements, and transfers happen continuously as fast
as frames can be rendered (nominally 30fps). Second,
CPU saturation occurs because encoding on the CPU is
slow (even with media-targeted ISAs such as AVX), and
blocks other work such as application state update.

Prime Encoding: The ubiquity of cameras on devices
has led to mainstream popularity of recording mobile
video clips. In response, all major SoC vendors includ-
ing Qualcomm, Samsung, NVIDIA and Intel have intro-
duced dedicated encoding logic to address the common
case of compressing mobile video clips (e.g., for local
storage or email transmission). Prime re-purposes these
codec accelerators to greatly reduce the overhead of en-
coding of multiple streams rendered in real-time. As an
illustrative example, Intel places dedicated encoding sil-
icon alongside existing GPU and CPU cores. The dedi-
cated encoder handles only the serial stages of the encode
process (entropy encoding) while the GPU handles the
parallelizable encoding operations.

The Prime Encoder starts by replacing CPU encoding
with dedicated encoding logic, as shown in 8 of Fig-
ure 5(b). Next, since the input to the encoder is a ren-
dered frame buffer already in GPU memory, we take ad-
vantage of this opportunity to bypass expensive frame
buffer memory copying as incurred in 4 . Rather, we
modified the codec accelerator data structures to di-
rectly accept and frame buffers in video memory as in-
put as shown in 7 . Afterward, the accelerator transfers
the final, compressed bitstream to system memory. Fi-
nally, the CPU only performs a lightweight network send,
which eliminates encoding overhead on the CPU. These
changes address the limitations of standard software en-
coders. Note that contention may still occur between
encoding and rendering since both utilize GPU cores;
the Host Scheduler manages this implicit contention.

7. PROTOTYPE IMPLEMENTATION
The Prime prototype is implemented as a dataflow ap-
plication framework. The Prime framework is 5,100 loc
written in C++ for Windows. The scalable encoder is
2,300 loc and interfaces with Intel’s family of on-chip
codec accelerators [16]. Additionally, the codec accel-
erator also performs transcoding to upsample or down-
sample from the host resolution to the client resolution
should they differ. The MAC protocol is implemented
as a modification of the wireless NIC driver, with the
required changes touching 70 loc. The wireless band-
width is monitored in realtime using packet pairs [43],
and each client stream’s bitrate is set to 1

n of the band-
width. Clients communicate over Wi-Fi Direct initiated

time

CPU

Sys Mem

Vid Mem

GPU

Geometry

Frame

Buffer
Geometry

RENDER

SIMULATE ENCODE

Bitstream

SEND

Frame Buffer

2

1

3

4

5

6

CPU

Sys Mem

Vid Mem

GPU

Geometry

Frame

Buffer
Geometry

RENDER ENCODEP

SIMULATE ENCODES

Bitstream

SEND

Bitstream’

Bitstream’

7

8

9

10

CODEC
PROCESSOR

CPU

Sys Mem

Vid Mem

GPU

Geometry

Frame

Buffer
BitstreamGeometry

Bitstream

RENDER ENCODE

SIMULATE SEND

12

11

13

14

time time

Memory Allocation

Processing

Inefficient Processing/Allocation

(a) Software Encoder

time

CPU

Sys Mem

Vid Mem

GPU

Geometry

Frame

Buffer
Geometry

RENDER

SIMULATE ENCODE

Bitstream

SEND

Frame Buffer

2

1

3

4

5

6

CPU

Sys Mem

Vid Mem

GPU

Geometry

Frame

Buffer
Geometry

RENDER ENCODEP

SIMULATE ENCODES

Bitstream

SEND

Bitstream’

Bitstream’

7

8

9

10

CODEC
PROCESSOR

CPU

Sys Mem

Vid Mem

GPU

Geometry

Frame

Buffer
BitstreamGeometry

Bitstream

RENDER ENCODE

SIMULATE SEND

12

11

13

14

time time

Memory Allocation

Processing

Inefficient Processing/Allocation
time

CODEC
PROCESSOR

CPU

Sys Mem

Vid Mem

GPU

Geometry

Frame

Buffer
BitstreamGeometry

Bitstream

RENDER ENCODE

SIMULATE SEND

8

7

(b) Prime Encoder

Fig. 5. Encoder Pipeline Comparison
Fig. 6. Users playing Marble-
Maze with Prime

by NFC tap using a VNC-like client terminal app that
is 5,300 loc. We next describe several additional salient
elements of the implementation.

Workload. As an example workload, we have taken Mar-
bleMaze, a production 3D game for ARM tablets [27],
and ported it to run on the Prime framework. In the
game, the player’s objective is to guide a marble (via
touch and accelerometer-based tilt) through a labyrinth
without succumbing to any of the various snares en route
(see Figure 6 for shots of engaged players); players care
about responsiveness because fast reaction times deter-
mine who wins. In its original form as a single player
game, MarbleMaze is 9,200 lines of code (loc). We modi-
fied it to support head-to-head simultaneous multiplayer,
which increased its complexity to 12,000 loc.

Dataflow API. MarbleMaze implements Prime’s
dataflow by exposing view-independent and view-
dependent dataflow components that are responsible for
handling a limited set of upcalls: viewIndependentReady

indicates that new input is available and that the
application should start processing a new task for the
view independent stage. Similarly, viewDependentReady

indicates that player-specific task processing is ready
to start. viewIndependentDone and viewDependentDone

are the matching downcalls to indicate corresponding
completion events. Lastly clientJoin is triggered when
a new client joins and app-specific state initialization
should be undertaken. While we have yet to port
other games to this API, dataflow maps particularly
well to games where the vast majority are already built
on game engines that structure user code according to
dataflow-like stages of input processing, simulation and
rendering [11, 39].

8. EVALUATION
The objective of our evaluation is to answer the following
question: how many users can Prime scale to while main-
taining high frame rate, responsiveness and fairness? A
summary of our findings is as follows.

• The Host Scheduler finds schedules that can support
frame rates that are from 1.4 − 2.3× more than with
näıve schedules, with a median latency of 22ms and
good fairness.

• The Wireless Scheduler both reduces input latency
and degrades downlink throughput less than standard

802.11n and 802.11e, especially during periods of high
activity when input traffic is abundant.

• The Encoder Pipeline increases encoding throughput
by 5.5 − 14× over software encoding, eliminating en-
coding as an obvious bottleneck.

• The end-to-end touch-to-pixel latency is below 100ms,
with a median of 54ms and 99%-tile of 94ms.

Methodology: The metrics for assessing successful
scalability are (1) throughput as measured by per user
frame rate, (2) latency as measured by the time required
for generating a single frame which consists of both wire-
less latency and host device processing latency, and (3)
fairness as measured by variance in latency across users.
As is standard for gaming scenarios, we assume that all
devices are only running the immersive MDA in the fore-
ground. Performance of background apps is not a central
concern.

Our host device is a Windows Surface Pro tablet with In-
tel Core i5, 4GB memory, an integrated Intel HD Graph-
ics 4000 GPU, and 1920×1080 pixel display. Our client
devices are Samsung Series 7 Slate tablets running Win-
dows with Intel Core i5 CPU, 4GB memory, integrated
Intel HD Graphics 3000 GPU, 1366×768 pixels. We use
these host and client devices to evaluate encoding perfor-
mance and the Host Scheduler. To evaluate the Wireless
Scheduler, we use Linux because the Linux Qualcomm
ath9k wireless drivers are open source. Our wireless per-
formance evaluation uses the TP-LINK TL-WDN4800
802.11n NIC hardware. We perform our experiments by
collecting user input traces, and replaying these on the
production system for repeatability.

Host Scheduling Performance: We compared Host
Scheduler against two baselines. Baseline-1 a näıve
scheduler which issues one task to every stage at reg-
ular intervals, cycling through clients in a round-robin
fashion (or equivalently, identifying the bottleneck stage
and scheduling tasks at the rate of task completion at
the bottleneck). Baseline-N is also similar to the näıve
schedule except stages may process up to n tasks con-
currently, where n is the number of users. Baseline-1 is
conservative in that it exploits no intra-stage parallelism
whereas Baseline-N is aggressive in that it assumes every
stage is capable of n-way intra-stage parallelism. Both
permit inter-stage parallelism by concurrently schedul-

0

20

40

60

80

100

120

2 3 4 5 6 7 8

Fr
am

es
 P

er
 S

ec
o

n
d

 (
fp

s)
 P

e
r

U
se

r

Number of Concurrent Users

Prime Scheduler

Baseline-1

Baseline-N

30 FPS cutoff

Fig. 7. User Framerate w/
Scheduling

0

50

100

150

200

250

1 2 3 4 5 6

Jo
b

s
P

e
r

Se
co

n
d

Number of Concurrent Tasks

Prime Scheduler

Baseline-1

Baseline-N

Fig. 8. Scheduler Job
Throughput

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80

C
D

F
(%

)

Latency (ms) Per Frame

Prime Scheduler

Baseline-1

Baseline-N

Fig. 9. Frame Generation La-
tency

0

2

4

6

8

10

12

2 3 4 5 6 7

A
ve

ra
ge

 U
se

r-
-t

o
-U

se
r

D
if

fe
re

n
ce

in

 F
ra

m
e

 L
at

en
ci

es
 (

m
s)

Number of Concurrent Users

Prime Scheduler

Baseline-1

Baseline-N

max # users @ 30 fps

Fig. 10. Fairness Across
Users

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50

C
D

F

Throughput (Mb/s)

802.11n

802.11e

Prime

Fig. 11. Input TX Latency

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60

C
D

F

Delay (ms)

Prime

Prime w/ 10% PER

802.11e

802.11e w/ 10% PER

802.11n

802.11n w/ 10% PER

Fig. 12. TX Latency with PER

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50

C
D

F

Throughput (Mb/s)

802.11n

802.11e

Prime

Fig. 13. Downlink Throughput

1

10

100

1000

1 3 5 7

Fr
a

m
e

s
P

e
r

S
e

co
n

d
 (

fp
s)

 P
e

r
S

tr
e

a
m

Number of Concurrent Encode Streams

Prime Encoder

CPU Only

30fps

Fig. 14. Encoding Throughput

ing work across stages. Note that our early prototype
already showed the shortcomings of best-effort sched-
ulers (§2).

Figure 7 shows each scheduler’s frame rate per player as
the number of players increases. Prime Scheduler is able
to support 7 players above 32fps whereas Baseline-N and
Baseline-1 can only support 5 and 3 respectively, an im-
provement of 1.4× and 2.3×. Note that these measure-
ments are with the improved Encoder Pipeline installed.
Taking a closer look at the underlying schedulers’ per-
formance, Figure 8 shows the job throughput of Prime
Scheduler versus baselines. Recall one job corresponds
to one instance of converting user input to a frame.
The benefits of parallelism peak at two concurrent tasks.
Prime Scheduler is much better able to take advantage
of parallelism than either Baseline-1 or Baseline-N. Fig-
ure 9 shows responsiveness in terms of the time required
to generate one frame. Prime Scheduler shows respon-
siveness with a median latency of 21ms as compared to
Baseline-1 and Baseline-N with 13ms and 38ms, respec-
tively. Even though Prime supports more simultaneous
players, its latency is comparable to baseline schemes.
Prime Scheduler delivers fairness across users as well.
Figure 10 shows the difference in latencies between each
pair of users, averaged across all pairs. The difference
is calculated as the Euclidean distance. As the number
of users increases from two to seven, Prime Scheduler is
able to maintain all users with latencies within 6.5ms of
each other. Baseline schemes provide similar or better
latencies, but scale to fewer number of users.

The overhead of Prime Scheduler is its need to perform
profiling and run the dynamic program scheduler. Initial
profiling takes 22.5 seconds on the host device, which is
a very modest one time cost and not incurred whenever
a game is started nor when a player joins (see §4). After
initial profiles are collected, maintaining profiling data is

a negligible runtime cost. The cost to run the dynamic
program is also negligible.

Wireless Scheduling Performance: We evaluate
Wireless Scheduler and find that it delivers lower la-
tency and better fairness with the same reliability and
less degradation on downlink throughput compared to
standard 802.11n and 802.11e. Input consists of an
accelerometer sampled at 8Hz continuously, and touch
which is sampled at 8Hz upon activation of a touch event.
We first note two operating regimes. When there is little
input traffic, e.g. when players are in a quiescent part
of the game, all three protocols perform similarly. Con-
versely, when there is substantial input traffic, e.g. when
players are in an active part of the game and aggressively
submitting input, the advantages of Wireless Scheduler
are well articulated. Figure 11 shows the input trans-
mission latency measured during several such periods of
high activity with six clients. First, we see that regular
802.11n performs extremely poorly, with 5% of latencies
exceeding 26ms and 1% of latencies over 110ms. Second,
while 802.11e performs better than standard 802.11n, 5%
still exceed 10ms and 1% exceed 90ms. The implication
is that more than a dozen input readings are delayed by
tens of milliseconds every second, which is a delay that is
cumulative with host processing latency. In contrast, our
Wireless Scheduler’s escalated priorities for retries mit-
igates priority inversion, resulting in short input trans-
mission latencies with 95% finishing in under 3ms and
99% finishing within 14ms.

Next, we look at fairness among clients when clients may
have different link qualities to the host. Figure 12 shows
the impact when one client out of six has a 10% Packet
Error Rate (PER). Despite the PER, all six Prime clients
have similar input transmission latencies with a 80th per-
centile of 4ms. However, with 802.11e, five other clients’
transmission latencies suffer with a 80th percentile trans-

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200

C
D

F
 (

%
)

Encode Latency Per Frame (ms)

1 Stream

3 Streams

5 Streams

7 Streams

Fig. 15. Encoding Latency
w/o Scheduling

Touch-to-Pixel
%-tile Latency
50th 53ms
95th 78ms
99th 94ms

Fig. 16. End to End Touch-
to-Pixel Latency.

mission latency of 12ms. Standard 802.11n is even worse
with high PER at 19ms.

Lastly, our Wireless Scheduler impacts downlink traffic
less than 802.11e and 802.11n. Figure 13 shows that
Prime median downlink throughput is 49Mbps versus
47Mbps and 45Mbps for 802.11e and 802.11n respec-
tively. This result can be explained by the fact that
Prime tends to quickly acquire the channel and finish
transmitting, avoiding the back and forth rounds of col-
lisions that can plague protocols whose input traffic com-
petes with downlink traffic.

Encoding Performance: CPU-based encoding
severely limits frame throughput and is easily identified
as the first bottleneck to scalability. Fortunately,
the Encoder Pipeline increases frame throughput by
5.5 − 14×. Figure 14 shows the large frame rate
improvement on input of 1920×1080. Software encoding
of just one stream barely achieves 30fps with CPU
utilization at 100%, retarding any other useful work.
In contrast, our encoding pipeline can simultaneously
service seven clients at 32fps while lightly loading the
CPU.

In addition, Figure 15 shows that our Encoder Pipeline
also delivers a median response latency of 32ms for five
clients and 45ms for seven clients. However, the response
latency becomes highly variable as the number of clients
increases, with very large maximum response times pos-
sible. The Host Scheduler’s profiling observes this vari-
ance and accommodates it in its scheduling decisions.

Energy Overhead: The host device spends additional
energy to host client instances. We measured the host
device power draw with a WattsUp power meter. Start-
ing from a baseline of 16.9 Watts for the host device to
service a single player (itself), the additional power re-
quired to host seven players is 3.2 Watts. This reduces
the host’s 42Wh battery by an acceptable 4% over the
course of a 30 minute gaming session.

End-to-End Latency: Lastly, we evaluate the overall
touch-to-pixel latency λe2e. We evaluate this by com-
bining results of our wireless testbed and host scheduler.
As shown in Table 16, our final system can achieve a me-
dian latency of 54ms and 99%-tile of 94ms, which is well
below the latency budget of 100ms [3, 10]. This ensures

that all seven users’ interactions with the MDA will be
smooth and responsive.

9. RELATED WORK
One longstanding theme of ubiquitous computing has
been to enable physically co-located users to participate
in the same digital setting. One thread of this work
is that on large shared displays where researchers have
sought to enable better impromptu collaborations and
effective contextualization of digital artifacts [36, 37, 14,
42, 41]. The popularity of mobile devices has meant that
for small groups, it is usually a collection of moderate
displays rather than a single large display which is often
the most readily available. In this vein, several works
have prototyped systems infrastructure for MDAs [29,
28]. Unlike Prime, these early works do not tackle plat-
form heterogeneity, nor do they address quality metrics
such as frame rate, response latency and fairness.

Much work has looked at using mobile devices as VNC
clients [22, 8, 23, 9, 47, 38, 18]. Our work is distinct in
proposing devices as hosts. The overall MDA scheduling
problem across host and clients belongs to the class of
“flexible flow shop” problems in which a set of jobs must
transit through a sequence of fixed processing stages,
each of which may have multiple processors available.
Common optimization objectives are either throughput
or latency (see [30, 31] for surveys). Our work addresses
a more challenging problem than this prior work be-
cause it must satisfy both throughput and latency re-
quirements, in addition to fairness. Also as discussed
extensively in §4, the idealized flow shop model is in-
accurate because simple assumptions about concurrency
and contention between stages are grossly misguided in
practice.

The Wireless Scheduler’s multiple objectives of providing
low latency, reliability, fairness across link qualities, and
compatibility with 802.11 is a novel design point in the
wireless community. Several wireless MACs are targeted
at low latency alone [17, 33, 24, 12]. A number of 2.4Ghz
TDMA approaches exist that address latency and reli-
ability [19, 32], but they are not backward-compatible
with 802.11. With regards to 802.11-compatible MAC
modifications, SoftSpeak [40] addresses latency of wire-
less channel acquisition for IP telephony. It assumes reli-
ability without retransmissions, and hence is best suited
for data streams which already contain loss compensa-
tion, such as encoded audio.

10. CONCLUSION
As mobile devices proliferate, users will naturally imag-
ine interacting not just with one device at a time, but
with a host of nearby devices – both their own and those
of other users. With a simple remote display abstrac-
tion, multi-device apps can instantly span an ad hoc set
of nearby devices. Prime’s improvements to real-time
encoding, wireless latency, and host resource scheduling
enable as many as seven players to participate simul-
taneously while maintaining reasonable frame rate, low
response latency and fairness for all users.

11. REFERENCES
1. R. A. Baratto, L. N. Kim, and J. Nieh. Thinc: a

virtual display architecture for thin-client
computing. SIGOPS Operating System Review,
39(5):277–290, Oct. 2005.

2. L. Barkhuus, M. Chalmers, P. Tennent, M. Hall,
M. Bell, S. Sherwood, and B. Brown. Picking
pockets on the lawn: The development of tactics
and strategies in a mobile game. In Proc. of the 7th
International Conference on Ubiquitous Computing,
UbiComp’05, pages 358–374, Berlin, Heidelberg,
2005. Springer-Verlag.

3. T. Beigbeder, R. Coughlan, C. Lusher, J. Plunkett,
E. Agu, and M. Claypool. The effects of loss and
latency on user performance in unreal tournament
2003. In Proc. of NetGames, 2004.

4. M. Bell, M. Chalmers, L. Barkhuus, M. Hall,
S. Sherwood, P. Tennent, B. Brown, D. Rowland,
S. Benford, M. Capra, and A. Hampshire.
Interweaving mobile games with everyday life. In
Proc. of the SIGCHI Conference on Human Factors
in Computing Systems, CHI ’06, pages 417–426,
New York, NY, USA, 2006. ACM.

5. S. Bjrk, J. Falk, R. Hansson, and P. Ljungstrand.
Pirates! using the physical world as a game board.
In Proc. of Interact 2001, pages 9–13, 2001.

6. L. Brunnberg and O. Juhlin. Keep your eyes on the
road and your finger on the trigger - designing for
mixed focus of attention in a mobile game for brief
encounters. In Proc. of the 4th International
Conference on Pervasive Computing,
PERVASIVE’06, pages 169–186, Berlin, Heidelberg,
2006. Springer-Verlag.

7. J. Clawson, A. Voida, N. Patel, and K. Lyons.
Mobiphos: A collocated-synchronous mobile photo
sharing application. In Proc. of the 10th
International Conference on Human Computer
Interaction with Mobile Devices and Services,
MobileHCI ’08, pages 187–195, New York, NY,
USA, 2008. ACM.

8. E. Cuervo, A. Wolman, L. P. Cox, K. Lebeck,
A. Razeen, S. Saroiu, and M. Musuvathi. Kahawai:
High-quality mobile gaming using gpu offload. In
Proceedings of the 13th Annual International
Conference on Mobile Systems, Applications, and
Services, MobiSys ’15, pages 121–135, New York,
NY, USA, 2015. ACM.

9. D. De Winter, P. Simoens, L. Deboosere,
F. De Turck, J. Moreau, B. Dhoedt, and
P. Demeester. A hybrid thin-client protocol for
multimedia streaming and interactive gaming
applications. In Proc. of the 2006 international
workshop on Network and operating systems
support for digital audio and video, NOSSDAV ’06,
pages 15:1–15:6, New York, NY, USA, 2006. ACM.

10. M. Dick, O. Wellnitz, and L. Wolf. Analysis of
factors affecting players’ performance and
perception in multiplayer games. In Proc. of
NetGames, 2005.

11. Epic Games. Unreal engine.
http://www.unrealengine.com.

12. E. Felemban, C.-G. Lee, and E. Ekici. Mmspeed:
multipath multi-speed protocol for qos guarantee of
reliability and. timeliness in wireless sensor
networks. IEEE Transactions on Mobile
Computing, 5(6):738–754, June 2006.

13. Flurry. Apps solidify leadership six years into the
mobile revolution.
http://www.flurry.com/bid/109749/Apps-Solidify-

Leadership-Six-Years-into-the-Mobile-Revolution.

14. E. M. Huang and E. D. Mynatt. Semi-public
displays for small, co-located groups. In Proc. of
the SIGCHI Conference on Human Factors in
Computing Systems, CHI ’03, pages 49–56, New
York, NY, USA, 2003. ACM.

15. IEEE. Part 11 amendment 8: Mac qos
enhancements. http://standards.ieee.org/getieee802/

download/802.11e-2005.pdf.

16. Intel Corp. QuickSync Programmable Video
Processor.
http://www.intel.com/content/www/us/en/architecture-

and-technology/quick-sync-video/quick-sync-video-

general.html.

17. K. Jamieson, H. Balakrishnan, and Y. C. Tay. Sift:
A mac protocol for event-driven wireless sensor
networks. In Proc. of EWSN, 2006.

18. J. Kim, R. A. Baratto, and J. Nieh. An application
streaming service for mobile handheld devices. 2012
SC Companion: High Performance Computing,
Networking Storage and Analysis, 0:323–326, 2006.

19. R. R. Kompella, S. Ramabhadran, I. Ramani, and
A. C. Snoeren. Cooperative packet scheduling via
pipelining in 802.11 wireless networks. In Proc. of
SIGCOMM E-WIND, 2005.

20. A. Lai and J. Nieh. Limits of wide-area thin-client
computing. In Proc. of SIGMETRICS, 2002.

21. J. R. Lange, P. A. Dinda, and S. Rossoff.
Experiences with client-based speculative remote
display. In Proc. of ATC, 2008.

22. K. Lee, D. Chu, E. Cuervo, J. Kopf, Y. Degtyarev,
S. Grizan, A. Wolman, and J. Flinn. Outatime:
Using speculation to enable low-latency continuous
interaction for mobile cloud gaming. In Proceedings
of the 13th Annual International Conference on
Mobile Systems, Applications, and Services,
MobiSys ’15, pages 151–165, New York, NY, USA,
2015. ACM.

http://www.unrealengine.com
http://www.flurry.com/bid/109749/Apps-Solidify-Leadership-Six-Years-into-the-Mobile-Revolution
http://www.flurry.com/bid/109749/Apps-Solidify-Leadership-Six-Years-into-the-Mobile-Revolution
http://standards.ieee.org/getieee802/download/802.11e-2005.pdf
http://standards.ieee.org/getieee802/download/802.11e-2005.pdf
http://www.intel.com/content/www/us/en/architecture-and-technology/quick-sync-video/quick-sync-video-general.html
http://www.intel.com/content/www/us/en/architecture-and-technology/quick-sync-video/quick-sync-video-general.html
http://www.intel.com/content/www/us/en/architecture-and-technology/quick-sync-video/quick-sync-video-general.html

23. S. F. Li, Q. Stafford-Fraser, and A. Hopper.
Integrating synchronous and asynchronous
collaboration with virtual network computing.
IEEE Internet Computing, 4(3):26–33, May 2000.

24. G. Lu, B. Krishnamachari, and C. Raghavendra.
An adaptive energy-efficient and low-latency mac
for data gathering in wireless sensor networks. In
Proc. of 18th International Parallel and Distributed
Processing Symposium, 2004., April 2004.

25. A. Lucero, J. Holopainen, and T. Jokela.
Pass-them-around: Collaborative use of mobile
phones for photo sharing. In Proc. of the SIGCHI
Conference on Human Factors in Computing
Systems, CHI ’11, pages 1787–1796, New York, NY,
USA, 2011. ACM.

26. Microsoft. Microsoft Remote Desktop Protocol.
http://msdn.microsoft.com/en-

us/library/aa383015.aspx.

27. Microsoft. Developing marblemaze, a windows store
game. http://msdn.microsoft.com/en-

us/library/windows/apps/br230257%28v=vs.110%29.aspx,
2011.

28. T. Pering, K. Lyons, R. Want, M. Murphy-Hoye,
M. Baloga, P. Noll, J. Branc, and N. De Benoist.
What do you bring to the table?: Investigations of
a collaborative workspace. In Proc. of the 12th
ACM International Conference on Ubiquitous
Computing, UbiComp ’10, pages 183–192, New
York, NY, USA, 2010. ACM.

29. T. Pering, R. Want, B. Rosario, S. Sud, and
K. Lyons. Enabling pervasive collaboration with
platform composition. In Proc. of the 7th
International Conference on Pervasive Computing,
Pervasive ’09, pages 184–201, Berlin, Heidelberg,
2009. Springer-Verlag.

30. M. L. Pinedo. Scheduling: Theory, Algorithms, and
Systems. Springer, 3rd edition, 2008.

31. K. Pruhs, E. Torng, and J. Sgall. Online
scheduling. Handbook of Scheduling: Algorithms,
Models, and Performance Analysis, 2004.

32. A. Rao and I. Stoica. An overlay mac layer for
802.11 networks. In Proc. of MobiSys, 2005.

33. I. Rhee, A. Warrier, M. Aia, and J. Min. Z-mac: a
hybrid mac for wireless sensor networks. In Proc. of
SenSys, 2005.

34. T. Richardson, Q. Stafford-Fraser, K. R. Wood,
and A. Hopper. Virtual network computing.
Internet Computing, 2(1):33–38, 1998.

35. M. Rodrig, C. Reis, R. Mahajan, D. Wetherall, and
J. Zahorjan. Measurement-based characterization of
802.11 in a hotspot setting. In Proc. of SIGCOMM
E-WIND, 2005.

36. D. M. Russell, C. Drews, and A. Sue. Social aspects
of using large public interactive displays for
collaboration. In Proc. of the 4th International
Conference on Ubiquitous Computing, UbiComp
’02, pages 229–236, London, UK, UK, 2002.
Springer-Verlag.

37. C. Shen, K. Everitt, and K. Ryall. Ubitable:
Impromptu face-to-face collaboration on horizontal
interactive surfaces. In In Proc. UbiComp 2003,
pages 281–288, 2003.

38. S. Shi, C.-H. Hsu, K. Nahrstedt, and R. Campbell.
Using graphics rendering contexts to enhance the
real-time video coding for mobile cloud gaming. In
Proc. of MM, 2011.

39. Unity Technologies. Unity Game Engine.
http://unity3d.com/.

40. P. Verkaik, Y. Agarwal, R. Gupta, and A. C.
Snoeren. Softspeak: making voip play well in
existing 802.11 deployments. In Proc. of NSDI,
2009.

41. D. Vogel and R. Balakrishnan. Interactive public
ambient displays: Transitioning from implicit to
explicit, public to personal, interaction with
multiple users. In Proc. of the 17th Annual ACM
Symposium on User Interface Software and
Technology, UIST ’04, pages 137–146, New York,
NY, USA, 2004. ACM.

42. D. Wigdor, H. Jiang, C. Forlines, M. Borkin, and
C. Shen. Wespace: the design development and
deployment of a walk-up and share multi-surface
visual collaboration system. In Proc. of SIGCHI,
2009.

43. Q. Xu, S. Mehrotra, Z. Mao, and J. Li. Proteus:
network performance forecast for real-time,
interactive mobile applications. In Proc. of
MobiSys, 2013.

44. S. J. Yang, J. Nieh, M. Selsky, and N. Tiwari. The
performance of remote display mechanisms for
thin-client computing. In Proc. of ATEC, 2002.

45. N. Zhang, Y. Lee, M. Radhakrishnan, and
R. Balan. Gameon: p2p gaming on public
transport. In MobiSys 2015, 2015.

46. Y. Zhou, G. Percival, X. Wang, Y. Wang, and
S. Zhao. Mogclass: Evaluation of a collaborative
system of mobile devices for classroom music
education of young children. In Proc. of the
SIGCHI Conference on Human Factors in
Computing Systems, CHI ’11, pages 523–532, New
York, NY, USA, 2011. ACM.

47. M. Zhu, S. Mondet, G. Morin, W. T. Ooi, and
W. Cheng. Towards peer-assisted rendering in
networked virtual environments. In Proc. of MM,
2011.

http://msdn.microsoft.com/en-us/library/aa383015.aspx
http://msdn.microsoft.com/en-us/library/aa383015.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/br230257%28v=vs.110%29.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/br230257%28v=vs.110%29.aspx
http://unity3d.com/

	1 Introduction
	2 MDAs Using Existing Approaches
	2.1 App Store Analysis
	2.2 Lessons from a Remote Display Strawman

	3 Prime Framework
	4 Host Scheduling
	4.1 Profiling
	4.2 The Solver

	5 Wireless Scheduling
	5.1 Protocol Design

	6 Scalable Video Encoding
	7 Prototype Implementation
	8 Evaluation
	9 Related Work
	10 Conclusion
	11 REFERENCES

