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Abstract

Evaluation of evidence in forensic science is discussed using posterior dis-
tributions for likelihood ratios. Instead of eliminating the uncertainty by
integrating (Bayes factor) or by conditioning on parameter values, uncer-
tainty in the likelihood ratio is retained by parameter uncertainty derived
from posterior distributions. A posterior distribution for a likelihood ra-
tio can be summarised by the median and credible intervals. Using the
posterior mean of the distribution is not recommended. An analysis of
forensic data for body height estimation is undertaken. The posterior like-
lihood approach has been criticised both theoretically and with respect to
applicability. This paper addresses the latter and illustrates an interesting
application area.
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1 Introduction and terminology

Evaluation of evidence in forensic science can be undertaken using the likelihood

ratio framework. For a continuous random variable, the likelihood ratio (LR) is

the ratio of two values of the probability function p(x|θ), given two values of model

parameter θ, and data x. For values θ1 and θ2, we have LR = p(x|θ1)/p(x|θ2),
where function p(·) is a generic notation for a probability density function or a

probability mass function.

Given two hypotheses H1 and H2 for assumptions for models M1 and M2,

respectively, the Bayes factor (BF ) in favour of H1 is given by

BF =
p(x|H1)

p(x|H2)
=

∫
p(x|ϕ,H1)p(ϕ|H1)dϕ∫
p(x|ψ,H2)p(ψ|H2)dψ

. (1)

The BF is also called a marginal likelihood ratio as it is the ratio of two marginal

likelihoods. It is not necessarily the case that p(x|ϕ,H1) is the same function as

p(x|ψ,H2). These probability functions are defined by M1 and M2, respectively.

The same holds for p(ϕ|H1) and p(ψ|H2). It is because of this that the BF can

be used to compare non-nested models.

If, however, M1 and M2 are nested, i.e., one can be derived from the other by

restricting a subset of the parameters, then the BF is still different from the LR,

as the latter is defined for specific parameter values and the former is defined by

integrating out the parameters. It is only in the specific case where the priors

given by p(ϕ|H1) and p(ψ|H2) identify parameter values with probability 1 (have

a point mass 1 at those values), that the BF reduces to a LR.

The following example of a Bayes factor in forensic practice is taken from

Lucy [1](Section 12.5). An eyewitness height description of the male perpetrator is

modelled as a normal distribution with mean 1.816 metres and standard deviation

0.054. The prosecution’s hypothesis is Hp: perpetrator = suspect. The defence’s

hypothesis is Hd: perpetrator ̸= suspect. The assumed population distribution
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of men is normal with mean 1.775 and standard deviation 0.098. The evidence is

the height E = 1.855 of the suspect.

The Bayes factor is in this case equal to the probability density of E un-

der Hp divided by the probability density of E under Hd. That is, BF =

f(E|µp, σp)/f(E|µd, σd), where f is the density of a normal distribution with

mean µ and standard deviation σ [1]. For µp = 1.816, σp = 0.054, µd = 1.775, σd =

0.098 this leads to a Bayes Factor of 1.951.

We would like to add the following explanation in terms of the BF . The BF

in this case is defined as

BF =
p(E|Hp)

p(E|Hd)
=

∫
p(E|θ, Hp)p(θ|Hp)dθ∫
p(E|η, Hd)p(η|Hd)dη

. (2)

There are no background data, i.e., there are no sample data from the relevant

population. The models under both hypotheses are completely specified normal

distributions. This means that p(θ|Hp) specifies θ = (µp, σp) with probability

one. Likewise p(η|Hb) specifies η = (µd, σd) with probability one. As a result

both integrals disappear in (2) and we end up with p(E|θ, Hp) = f(E|µp, σp) and

p(E|η, Hd) = f(E|µd, σd).

Note that there is no uncertainty associated with the BF . Consider the case

where background data are used for the estimation of µd and σd. In that case,

the denominator of (2) would have been

p(E|Hd, B) =

∫
p(E|η, Hd, B)p(η|Hd, B)dη (3)

=

∫
p(E|η, Hd, B)

p(B|η, Hd)p(η|Hd)

p(B|Hd)
dη, (4)

where p(B|η, Hd) is the likelihood and p(η|Hd) is the prior density. Because

the BF is in this case defined conditional on background data B, there is still

no uncertainty associated with the BF . The uncertainty with respect to η is

integrated out. Nevertheless, if a new data setB were sampled, anotherBF would
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be the result. By conditioning on B, this sample uncertainty is not accounted

for.

In Section 2, the posterior distribution of the likelihood ratio is explained

within the context of forensic science. Section 3 presents an evaluation of evidence

where the posterior distribution of the likelihood ratio is used for the measurement

of body height. Background data in this case consist of measurements on test

persons. A comparison is made with the Bayes factor approach. For the posterior

sampling we use WinBUGS (Lunn et al. [2]). Section 4 concludes the paper.

2 Posterior likelihood ratio

As an alternative method for simple null hypothesis testing, Aitkin [3] advocates

using a Bayesian framework and working with the posterior distribution of the

LR. Instead of eliminating the uncertainty by maximising (LR test) or by in-

tegrating (BF ), Aitkin proposes to retain uncertainty in the LR via parameter

uncertainty derived from the posterior distributions.

Bayesian inference focusses on the posterior density of parameters. If θ is

the parameter and x are the data, then the posterior is given by p(θ|x) =

p(x|θ)p(θ)/p(x), where p(x|θ) is the likelihood of the data and p(θ) is the prior

density of θ. Thus the posterior is proportional to the likelihood times the prior,

and this is written as p(θ|x) ∝ p(x|θ)p(θ).
The posterior likelihood ratio approach is readily explained in terms of sam-

pling. The LR is considered a function of the parameters under both hypotheses.

First, given H1: θ = θ1, the likelihood is a single value L(θ1) = p(x|θ1). Sec-

ond, given H2: θ ̸= θ1, S parameter values θ∗ are sampled from the posterior

p(θ|x) and for each value the likelihood L(θ∗) is computed. Next, the S ratios

L(θ1)/L(θ
∗) provide a random sample from the posterior of the LR.

At first sight, the setting in Aitkin [3] is different from the forensic science
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setting. For the former, there is a data set and a model, and the hypotheses

are about model parameters. For the latter, there is evidence E and background

data B, and the hypotheses are about E - not about the model for B.

For the forensic science setting, we can define an LR given an estimate of

model parameters for B. This only works if we assume that both the prosecution

and the defence accept the same model for B. If the model parameter vector is

denoted θ, then we can define a likelihood ratio as the ratio of two probability

densities for the evidence. This conditional ratio is given by

LR =
p(E|Hp,θ)

p(E|Hd,θ)
. (5)

For the forensic science setting, the BF is defined as

BF =
p(E|Hp, B)

p(E|Hd, B)
=

∫
p(E|Hp,θp)p(θp|B)dθp∫
p(E|Hd,θd)p(θd|B)dθd

, (6)

where p(θp|B) and p(θd|B) are posterior densities.

Given these definitions of BF and LR, we can apply the ideas of the posterior

likelihood ratio and achieve a middle way between BF and LR such that the

uncertainty in the LR is retained by parameter uncertainty derived from the

posterior distribution of the model parameter vector for the background data.

Thus we see LR as a function of sampled θ, and obtain its posterior by sampling

from the posterior p(θ|B).

The posterior LR distribution is very useful as it can be used to assess the

strength of evidence by way of posterior probabilities such as P (LR > c), for any

c > 0. In this way it is possible to not only have knowledge about the central

location of the LR, but also about the precision that is attached. For the end

user of the LR (trier of fact) it may be important to know whether for a reported

LR of 1000, a 5% lower bound is e.g. 20 or 990.

Care has to be taken not to summarise the posterior distribution of the likeli-

hood ratio by its posterior mean. The posterior mean is not invariant under the
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switching of the order of the hypotheses in the sense that

IEθ

[
p(E|Hp,θ)

p(E|Hd,θ)

]
̸=

(
IEθ

[
p(E|Hd,θ)

p(E|Hp,θ)

])−1

. (7)

This is important since the order of the hypotheses should not effect the statistical

inference. Instead of assessing the posterior mean, the posterior median and

credible intervals can be used for statistical inference.

3 Evaluation of evidence

In this section, the posterior of the likelihood ratio (5) is used for forensic data

for height estimation of a perpetrator. A comparison with the Bayes factor (6) is

made.

A perpetrator was well visible on a security camera and one image was cho-

sen as the basis of height measuring. Background data B consist of additional

measurements of six test persons who were positioned in the same stance as the

perpetrator in front of the original camera (Edelman et al. [4]).

We use the following notation. Background data are measurements mi, for

test persons i = 1, 2, ..., 6, and known true heights hi. The model for the height

estimation is

mi = α + hi + ϵi with ϵi ∼ N(0, σ2), (8)

where α is the systematic measurement error, see Van den Hout and Alberink [5]

for an extended model and details of the data. Let θ = (α, log(σ)).

The evidence is the measured height mp of the perpetrator. The height of

the suspect is hs. The prosecution’s hypothesis is Hp: perpetrator is suspect

(hp = hs). The defence’s hypothesis is Hd: perpetrator is not suspect (hp ̸= hs).

Assume that both the prosecution and the defence accept model (8). The BF is
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given by

BF =
p(mp|Hp, B)

p(mp|Hd, B)
=

p(mp|hp = hs, B)∫
p(mp|hp = h,B)p(h)dh

(9)

=

∫
p(mp|θ, hp = hs)p(θ|B)dθ∫ [∫

p(mp|θ, hp = h)p(h)dh
]
p(θ|B)dθ

. (10)

Let us assume that the height distribution of the population is given by

p(h|µh, σh), a normal distribution with known mean µh and known standard

deviation σh. The conditional LR is given by

LR =
p(mp|hp = hs,θ)∫

p(mp|hp = h,θ)p(h|µh, σh)dh
. (11)

The numerator of (11) is a normal density and is given by

p(mp|hp = hs,θ) =
1√
2πσ2

exp

[
−1

2

(mp − α− hs)
2

σ2

]
(12)

Since p(h|µh, σh) is a normal distribution, there is a closed-form solution for the

integral in the denominator of (11). The integrand is a convolution of two normal

distributions and the denominator is given by∫
p(mp|hp = h,θ)p(h|µh, σh)dh =

1√
2π(σ2 + σ2

h)
exp

(
−1

2

(mp − α− µh)
2

σ2 + σ2
h

)
,

(13)

see, e.g., Gelman et al. [6] (Section 2.6) for a similar computation. If θ is treated

as a fixed value, then there is no uncertainty associated with LR.

For the posterior of LR, firstly, we sample θ∗ from the posterior p(θ|B).

Secondly we compute LR for each sampled θ∗.

To obtain the posterior p(θ|B), we have to specify the prior of the model

parameter vector θ. Gelman et al. [6] discuss the definition of the prior density

in the context of the normal distribution, and also the sampling from the result-

ing posterior. Various levels of informativeness and conjugacy are presented by

Gelman et al.
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Table 1: Background data on measured heights and true heights of test persons,
and measured height of perpetrator.

Test persons Perpetrator

Measured height 1.964 1.832 1.900 1.780 1.937 1.865 1.885
True height 1.950 1.795 1.865 1.755 1.910 1.825 -

For the evaluation of evidence in the present setting, we specify an informa-

tive proper prior p(θ) without worrying about conjugacy as we will rely on the

automatic MCMC procedures in WinBUGS to do the sampling.

To compare the posterior likelihood ratio approach with the Bayes Factor (10),

we approximate the integrals in the latter by using the trapezoidal rule (with 500

nodes). This computation includes the estimation of the marginal density p(B)

since the posterior for θ is given by p(θ|B) = p(B|θ)p(θ)/p(B). In general, the

estimation of marginal density can be complex (Carlin and Louis [7] ). Since θ

consists of only two parameters, numerical approximation of the integrals works

fine. Sampling from the posterior of LR is undertaken in WinBUGS (Lunn

et al. [2]). WinBUGS is freely available software for the Bayesian analysis of

statistical models using Markov chain Monte Carlo (MCMC) methods, see also

www.mrc-bsu.cam.ac.uk/bugs. Code is provided in the Appendix. For the

inference in this application, the MCMC consisted of two chains, each with a

burn-in of 10000, and a further 10000 updates for inference. Convergence of the

MCMC was checked by using the diagnostic tools provided within WinBUGS.

Evidence mp and background data for the height estimation are presented

in Table 1. The population distribution of Dutch Caucasian men is assumed to

be normal with mean µh = 1.806 and standard deviation σh = 0.1 (Statistics

Netherlands, www.cbs.nl, 2006). This specifies p(h|µh, σh). For the prior of θ we
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Figure 1: Posterior density p(θ|B) = p(α, log(σ)|B).

assume p(θ) = p(α, log(σ)) = p(α)p(log(σ)), and furthermore α ∼ N(0, 0.1) and

log(σ) ∼ U(−10, 0). These priors are informative and take into account that the

measurements are in meters.

Bayesian inference using WinBUGS yields a posterior mean 0.029 for α with

95% credible interval (CI) (0.017, 0.042). So there is a systematic overestimation

of the height of about 3cm. For σ the figures are 0.012 (0.006, 0.024). The

posterior density p(θ|B) has a regular shape and is depicted in Figure 1.

We will illustrate the evaluation of the evidence mp = 1.885 for various values

of the height of the suspect hs. Say that the suspect has the same height as the

perpetrator. The height of the perpetrator is of course unknown, but this is the

situation which would pertain if the suspect were the perpetrator. In that case

mp−α ≈ 1.885−0.029 = 1.856 = hs. The posterior distribution of the likelihood

ratio for this situation is depicted in Figure 2. If the suspect has the same height
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Figure 2: For the situation where the suspect has the same height as the perpe-
trator (hs = 1.856), the posterior distribution of the likelihood ratio (top panel)
and the posterior distribution of the logarithm of the likelihood ratio (bottom
panel). Reference values 1 and 0 indicated by grey lines.

as the perpetrator, we would expect the likelihood ratio value 1 to be located

in the left tail of the density of LR because it is likely that the suspect is the

perpetrator and hence the mean of LR should be larger than 1. In other words,

P (LR < 1) should be small. For the same reason, we would expect BF to be

larger than 1. This is indeed the case, the posterior median of LR is 10.03 with

95% CI (4.25, 17.69), and the BF is estimated at 10.28 . The big advantage of

the posterior of LR is clear: we have estimated its distribution. The 95% CI for

instance shows immediately that LR = 1 is not very likely. This is information
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that the computation of BF does not provide. The evidence is clearly in favour

of the prosecution’s hypothesis.

Next we consider two values of hs that are clearly in favour of the defence’s

hypothesis. Both values hs = 1.7 and hs = 2.0 yield a posterior median of LR

smaller than 0.01 and P (LR < 1) > 0.99. The corresponding BF are both

smaller than 0.001. For both theses values of the suspect’s height, the evidence

is clearly in favour of the defence’s hypothesis.

The value hs = 1.825 illustrates a situation where the extra information of the

posterior of the LR is of particular use. The BF is estimated at 0.53. This is dis-

similar to the posterior median 0.15 of the LR, whereas the posterior mean 0.521

of the LR is close to the BF . Where the BF gives no uncertainty information,

the sampled values of the LR allow many possible quantities to be estimated to

assess whether the evidence is in favour of the defence’s hypothesis. The latter is

not the case. The 95% CI for the LR is (< 0.01, 2.86) which includes the value

1. Probability P (LR < 1) is estimated at 0.82.

For the value hs = 1.825, we investigate the sensitivity of the results with

regard to the specification of the prior p(θ) = p(α, log(σ)). First, we use priors

which are less informative. We specify α ∼ N(0, 1) and log(σ) ∼ U(−10, 5).

Given that measurements are in meters, these priors do not contain much infor-

mation. For the LR, we obtain median 0.150 and 95% CI (< 0.01, 3.03), the BF

is estimated at 0.54. Next we specify α ∼ N(0, 0.05) and log(σ) ∼ U(−10,−3).

The prior for α implies that about 95% of the systematic error falls with the

interval (-10cm, 10cm), the prior for σ implies that σ is less than 10cm. These

priors are informative, but are still reasonable for this case. For the LR, we obtain

median 0.145 and CI (< 0.01, 2.80), the BF is estimated at 0.51. Given these

alternative specifications of the priors, results are very similar to the previous

results.
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4 Conclusion

A fully Bayesian evaluation of evidence requires the computation of a Bayes

factor. For complex models, this factor may be hard to compute. Using the ideas

in Dempster [8] and Aitkin [3], the posterior distribution of the likelihood ratio

is used in a forensic science setting as an alternative to the Bayes factor. Using

the posterior likelihood ratio is not frequentist as sampling from a posterior is

required, but it is also not fully Bayesian since it does not use the Bayes factor

for hypothesis testing.

The application discussed forensic data where heights were estimated on the

bases of images from a security camera. The posterior mean of the likelihood ratio

was similar to the Bayes factor. With samples available from the posterior of the

likelihood ratio, an all-round inference was possible by investigating posterior

percentiles and credible intervals.

Gelman et al. [6] criticise the posterior likelihood ratio approach by arguing

that it is incompatible with a Bayesian perspective, and that it does not seem to

be useful for common applications in statistics. We hope to have shown in this

paper that forensic science is an area where the approach seems useful. The points

raised by Gelman et al. with respect to using vague priors, comparing discrete

hypotheses, and the problem with product of posteriors, are not applicable in

our setting: In forensic science, it make sense to use vague prior densities for the

parameters in the model for the background data, researchers are interested in

comparing discrete hypotheses, and – at least in the current application – there

is no assessment of a product of posteriors.

Nevertheless, we acknowledge that there are still important issues in the pos-

terior likelihood ratio approach that need further attention. Using the posterior

distribution of LR for evidence evaluation can be seen as a hybrid of Bayesian

and frequentist methods. It is not fully Bayesian, but it is also not a frequentist
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analysis. This ambiguity causes interpretation problems. For example, in a fully

Bayesian framework, a 95% credible interval of a parameter means that the pos-

terior probability that the parameter lies in that interval is 0.95. A frequentist

95% confidence interval means that given a large number of repeated samples,

95% of the estimated confidence intervals includes the true value of the parame-

ter. What are the properties of the credible intervals for LR that we computed

in the current application?

In this paper the situation is considered in which there is only one piece of

evidence. If there is more than one piece of evidence, a posterior distribution may

be determined of the LR of the combination of the evidence. This topic may be

explored elsewhere.

Using the posterior likelihood ratio has a wide range of possible applications

in forensic practice. Computationally it is a feasible method to evaluate evidence.

It takes into account the uncertainty with regard to inference from background

and at the same time allows to model prior knowledge.

Appendix

WinBUGS code used in the evaluation of evidence. For more information on the
software and MCMC sampling see www.mrc-bsu.cam.ac.uk/bugs.

## Data:

list(h = c(1.950, 1.795, 1.865, 1.755 ,1.910, 1.825) ,

m = c(1.964, 1.832, 1.900, 1.780, 1.937, 1.865))

## Inits:

list(alpha=0, logsigma= -4)

list(alpha=0.02, logsigma= -5)

## Model:

model{

# Model for measurement:

for(i in 1:6){

mu[i] <- h[i]+alpha

m[i] ~ dnorm(mu[i], tau)
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}

# Evaluation of evidence:

h_s <- 1.825

m.p <- 1.885

# Under H_p:

pi <- 3.141593

p_Hp <- 1/(sqrt(2*pi)*sigma)*exp(-1/2*tau*pow(m.p-(h_s+alpha),2))

# Under H_d:

mu_h.pop <- 1.806

var_h.pop <- 0.01

tau_h.pop <- 1/var_h.pop

p_Hd <- 1/sqrt(2*pi*(var+var_h.pop) )*exp(-1/(2*(var+var_h.pop))

*pow(m.p-alpha-mu_h.pop,2))

# LR:

LR <- p_Hp/p_Hd

# Strength of evidence:

c <- 1

pprob <- step(c-LR)

# Converting precision to sd and var:

tau <- pow(sigma,-2)

var <- pow(tau,-1)

# Priors:

alpha ~ dnorm(0,0.1)

logsigma ~ dunif(-10,0)

sigma <- exp(logsigma)

}
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