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Abstract. Small plastic clips are used in large numbers in automotive vehicles to connect 

interior trims to vehicle structures. The variability in their properties can contribute to the 

overall variability in noise and vibration response of the vehicle. The variability arises due to 

their material and manufacturing tolerances and more importantly due to the boundary 

condition. To measure their stiffness and damping, a simple experimental rig is used where a 

mass is supported by the clip which is modelled as a single degree of freedom system. The rig 

is designed in a way that it simulates the boundary condition as those of the real vehicle. The 

variability in clip and also due to the boundary condition at the structure side is first examined 

which is 7% for stiffness and 8% for damping. To simulate the connection of the trim side, a 

mount is built using a 3D printer. Rattling occurs in the response of the clips with loose 

connections, however by preloading the mount the effective stiffness increases and the rattling 

is eliminated. The variability due to the boundary condition at the trim side was as large as 

40% for stiffness and 52% for damping. 

1. Introduction 

The level of noise and vibration in automotive vehicles is a major concern for the luxury market where 

the level should be kept low to ensure the satisfaction of customers. Variability in noise and vibration 

is common in identical vehicles due to manufacturing tolerances and variations in material properties 

[1-6], which can result in vehicles with a Frequency Response Function (FRF) that exceeds the 

threshold set at the design stage. Generating tight manufacturing tolerances can reduce the variability, 

although this can apply to components which are not significant contributors to the noise and vibration 

paths. Indeed, while the macroscale components can be designed and manufactured with tight 

tolerances, the components which join them together can generate variability in noise and vibration 

frequency response functions.   

As an example, the plastic interior trim panels of an automotive vehicle can be attached to the 

metal door frame using small plastic clips. Ideally, the stiffness and loss factor of these clips would be 

highly consistent, however this can often contradict with the need for high speed manufacturing and 

assembly, or ease of assembly. While other authors have noted the importance of panel joints and 

connectors, few studies have been published on this subject. Further, the accurate knowledge of the 

connector stiffness and damping is required for implementation in a deterministic prediction program. 
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In this paper, the variability in stiffness and damping of small clips that are connecting vehicle 

cabin trims to the vehicle structure are measured and the possibility of reducing the variability is 

discussed. The variabilities due to the attachment design at the structural side and also at the trim side 

are measured separately. 

Clips usually are modelled by rigid connectors in Finite Element (FE) models of the automotive 

vehicles (for example RBE2 element in MSC-Nastran) [7]. When they are modelled by spring 

elements a dynamic pull out simulation is usually implemented in which the stiffness is approximated 

by the slope of the force-displacement curve for a clip that is removed from its mount [8].  In this 

paper, the stiffness is obtained through a dynamic test with simulated boundary condition of the clip in 

the vehicle which can provide a better evaluation of the equivalent stiffness of the clips when they are 

modelled by spring elements in FE models. 

Automotive trims are connected to the body-in-white with few bolts and a number of clips. The 

door of a Jaguar XJ is shown in Figure 1(a) and the associated trim in Figure 1(b). Eleven plastic clips 

are used to connect the trim to the door whose locations are marked with arrows in the figure.  The 

clip is pushed through a hole in the door structure which keeps them firmly in place and ensures a tight 

connection at the door side, see Figure 1(c). The clip slides in a slot at the trim side as shown in Figure 

1(d), ensuring easy assembly and also to compensate any misalignment that may arise during the 

assembly. However, such flexibility in the mounting position causes variation in the boundary 

condition resulting in variation of the dynamic response. In this paper, the variation in stiffness and 

damping of the mounts are measured using an experimental rig. The boundary conditions are 

simulated to have those of the real vehicle and the effect of tolerances in trim side connection on 

equivalent stiffness and damping of the mount are quantified. 

 

  

  
Figure 1. The vehicle door and the trim. a) The door when trim is removed. Clip mounting points are 

marked by arrows. b) Door trim. Clip mounting points are marked by arrows. c) The close-up view of 

the mounting point of the clip in the door. d) The close-up view of the slot in the trim which allows 

compensation in positioning of the trim during assembly. 
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The test methodology is described in the following section. The measurements on the rig that 

models only the door side connection are presented in section ‎3. The results obtained from 

measurements on rigs that model both boundary conditions are given in section ‎4. 

2. Test methodology 

The stiffness and damping of the clip can be estimated by measuring the dynamic response of a mass 

that is supported by the clip provided internal resonances are high enough to allow it to be represented 

as a Single Degree Of Freedom (SDOF) system. The resonance frequency is used to obtain the 

stiffness of the mount and the half power method is used to obtain the damping ratio of the clip. The 

boundary condition of the clip to the mass and the clip to the shaker are designed in a way that they 

simulate the real boundary condition of the clips in vehicles which allows to assess their effect on the 

variability. 

The clip is shown in Figure 2 (a). Pushing the clip into the hole of the metal door frame applies a 

force to the rubber bush on the base of the clip. While the free rubber bush has a low stiffness when 

not assembled in the door, as soon as it is mounted in the door structure, the pre-loaded rubber ring 

forms a relatively stiff connection (replicated in the experiment). A series of measurements of clip 

stiffness with similar boundary condition to that on the door side connection can be used to obtain the 

variability in mount properties. 

 To simulate the door structure, a profile with the same thickness as the door structure is used. The 

hole in the profile has the same diameter as those on the door structure while the closed box shape of 

the profile ensures high enough internal resonances to consider it as a rigid mass in the frequency 

range of interest. The profile has been modelled in NASTRAN and it is found that the lowest natural 

frequency was above 4 kHz. The clip mounted on the bracket is shown in Figure 2(b) and the 

arrangement is shown in Figure 2(c) where the transmissibility (𝑇 = 𝑥̈2/𝑥̈1) is measured to estimate 

the stiffness and the damping of the clip. 

 

  

 
 

Figure 2. The experimental setup to measure the variability in stiffness and 

damping, door side boundary condition reproduced. a) A clip. b) A clip 

mounted in the profile that resembles the door side boundary condition. c) 

The experimental setup. 

To estimate the measurement error, a series of measurements are conducted where the 

accelerometers were removed and mounted again (performed in order to separate out measurement 

errors from the natural variability of the clip properties). The amplitude of transmissibility is shown in 

Figure 3(a). There is a dominant peak at about 1000 Hz which make it possible to model the rig as a 

SDOF system. The transmissibility phase is shown in Figure 3(b) where a 180 degree shift in phase is 

visible for the main peak. The coherence was generally over 0.9 for measurements of this paper. There 
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is a local maximum before the main peak at about 500 Hz which is due to a coupling of the rotational 

degree of freedom and is ignored for the purpose of this study. The normalized standard deviation of 

the measurement is less than 1% for the stiffness of the mount and is about 4% for the damping of the 

mount. 

 

 
Figure 3. Transmissibility of the experimental setup used to measure stiffness and damping of the 

clip. (a) Amplitude of transmissibility. b) Phase of transmissibility. 

 

The second series of experiments is conducted with the clip held at a position on the trim by an 

edge in the mounting point that is shown in Figure 4(a). To accurately replicate the attachment of the 

plastic clips in the plastic trim holders, a 3D printer was used to manufacture controlled samples with 

known tolerances. The design of the clip mount which is manufactured by a 3D printer is shown in 

Figure 4(b) and the experimental setup is shown in Figure 4(c). The clearance between the edge and 

the mounting surface forms different fits in practice. The equivalent distance on the mounting block is 

shown in Figure 4(d) and is marked with ℎ. Measurements on an existing door trim showed that the 

distance ℎ varies between 3.2 mm to 3.6 mm for different mounting points on the door trim. For those 

with a wider opening, the fit is loose which results in a reduced effective stiffness and the clip may 

rattle at extreme cases (although is easier and quicker to assemble in a factory). A series of these 

mounts with different tolerances are produced to model different boundary condition of the clips. 

Tolerances are checked manually and a block with a tighter fit (ℎ = 3.05 mm) is also produced to 

measure the stiffness of a modified design where a tight fit is used to reduce the variability. The 

measurements on trim side are presented in section ‎4. 
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Figure 4. The experimental setup to measure the variability in stiffness and damping, both boundary 

conditions resembled. (a) Mounting boundary condition of the clip on trim. (b) Experimental mount 

model of trim side connection. (c) Experimental setup to measure the variability due to both boundary 

conditions. (d) Front view of the mount. 

 

3. Variability due to door side connection 

The first series of tests conducted to measure the variability of the clips in the door side connection 

which was assumed to have less variability due to its connection design. When clips are mounted and 

dismounted on the profile, the wear can cause a change in effective stiffness. In the first series of the 

tests a single slightly worn clip is mounted and dismounted to simulate the effect of the wear and 

ageing. Each time the transmissibility measured for three times where the profile was rotated slightly 

each time. The amplitudes of the transmissibility are shown in Figure 5. The resonance frequency of 

the system occurs at a range between 750 Hz to 850 Hz. The estimated average stiffness is 724 kN/m 

with a normalised standard deviation of 8%. The estimated damping ratio is 0.04 with a normalised 

standard deviation of 15%. Although this stiffness is relatively high, it is not as rigid as the metal 

structure and thus modelling in finite element programs should be undertaken using spring elements 

and not rigid connectors. 

 

 
Figure 5. Amplitudes of transmissibility for a worn mount for a series of measurements where 

mounted and dismounted when measurement conducted three times, each time with a small rotation in 

the supporting profile.  
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The second series of measurements are conducted on new clips with no or slight sign of wear. This 

was to simulate the variability in stiffness of the mounts of a new vehicle. Five measurements on each 

clip were conducted where the supporting profile were rotated between each measurement. The 

measurements are shown in Figure 6 where the resonances cover a frequency span mainly between 

1000 Hz and 1080 Hz which is higher than the resonance frequency of the worn clip shown in Figure 

5 which suggest a reduction in stiffness due to usage for a worn clip. This can be due to a decrease in 

preload as the mounting becomes looser by usage. The average estimated stiffness is 1250 kN/m with 

a normalised standard deviation of 7% which is lower than that of the worn clip. The estimated 

damping ratio is 0.03 with a normalised variation of 8%. 

   

 
Figure 6. Amplitudes of transmissibility for ten different clips, each one measured five time with the 

supported profile rotated between measurements.  

 

4. Variability due to connections on two sides 

The design of the mounting on the trim side makes the position of the clip uncertain in practice. 

Furthermore, there is a large variability in the size of the gap, marked by ℎ in Figure 4, in 

manufactured door’s trims. Three set of measurements were conducted in order to examine the effect 

of the gap ℎ on the effective stiffness and damping of the clips. First, measurements were conducted 

on the tightest fit of the mounting block (ℎ = 3.05 mm) which was slightly tighter than the real fits on 

the existing door trim and is referred hereafter as “extra tight fit”. This set is used as guidance to what 

is achievable in practice for a modified design, even if it would prove more difficult to fit on a 

production line within tight timeframes. Second the measurements on a fit that is equivalent to the 

tightest fit on the existing trim are presented and finally the effect of loose fits on the response are 

shown.  

The amplitudes of transmissibility for five measurements for a tight fit at the trim side are 

presented in Figure 7. The clip was moved slightly for each measurement inside the mounting block of 

the trim side connection. It can be seen that there is another small peak at a frequency of about 940 Hz 

which is due to rotating degree of freedom and is more visible in this graph comparing to the previous 

cases as the mounting block is not symmetric and the clip is not placed exactly at the centre of the 

mounting block. However, there is still a dominant peak which can be modelled as a SDOF system 

and the stiffness of the mount and the damping can be estimated from it with the same method as used 

before. 

The average estimated stiffness is 760 kN/m with a normalised standard deviation of about 4%. 

The stiffness is nevertheless lower than the average stiffness obtained when only door side connection 

is considered which is due to the flexibility of the trim side mount. As the fit is tighter than what was 

measured on the existing door, the assembly of the clip in the door mount was not as easy as it was on 
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the vehicle trim, however it is still an achievable fit in practice that allows assembling the clips on the 

door trim without requirement for any tool. 

 
Figure 7. Amplitudes of transmissibility for the extra tight fit (ℎ = 3.05 mm) for five different 

position of the clip in the trim side mount.  

 

The measurement on the tightest fit that was measured on the existing door is presented in Figure 8. 

The FRF are measured for positioning the clip in the trim side mounting block at five different 

positions. The spread of the fundamental resonance frequency is wider in this case. There is additional 

peak at about 850 Hz for two sets of measurements which is due to rotational degree of freedom which 

is more significant for the mounts that is positioned further away from the centre of the trim side 

mounting block. The main peak can still be distinguished through its amplitude which is higher than 

other peaks. Also, the phase angle is changing almost 180 degree for this peak which does not happen 

for other peaks. The main peak can still be modelled by a SDOF system. The estimated average 

stiffness of the clip is 670 kN/m with a normalised standard deviation of 12%. The estimated average 

damping ratio is 0.025 with a variation of 21%. 

 

 

 
Figure 8. Amplitudes of transmissibility for the tight trim side fit (ℎ = 3.24 mm) for five different 

position of the clip in the trim side mount.  

 

The amplitudes of transmissibility for the loosest fit (ℎ = 3.65 mm) of the door trim are shown in 

Figure 9. The clip rattles as a result of the loose fit for which the transmissibility is shown in Figure 9 

(a) for two different position of the clip in the mounting bock. However, the clips are loaded by the 

trim weight in the vehicle which can cause a more stiff connection and eliminate the rattling. In the 
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current experiment the clips are loaded by tensioning the thread that the profile was suspended on. The 

measurements for three different positions of the clip in the trim side mount are shown in Figure 9 (b) 

where the rattling is eliminated completely. The clip will move from the centre of the mounting block 

as a result of the preload. In this arrangement, the rotational degree of freedoms of the system are 

excited and, thus, a single degree of freedom FRF cannot exactly model the system. However, the 

transmissibility peak at the shaker loading direction is clearly distinguishable which allows the 

estimation of the stiffness to be 271 kN/m. The estimate of the damping is not given as it is affected by 

close peaks.  

An estimate of the stiffness and damping ratio of the clip is obtained by conducting a series of 

measurements on the test rig where both door side and trim side boundary condition are modelled. The 

rattling in these measurements is eliminated by preloading the threads and different fits are used for 

the trim side boundary condition. The estimated average stiffness is 520 kN/m with a range between 

208 kN/m and 829 kN/m and a normalised variability of 40% although this does not imply a normal 

distribution. The stiffness is lower than where only the door side boundary condition is considered and 

the variability is much higher as a result of the effect of variation of fit on the equivalent stiffness. 

Excluding measurements with two close peaks, the estimated damping ratio is 0.03 with a normalised 

standard deviation of 36%, with a range between 0.02 and 0.06. The damping ratio is equivalent for 

the average that has been obtained for the door side but its variation is much higher. The variation in 

damping ratio is obtained by excluding some measurements and it should be treated carefully. 

 

 
Figure 9. Amplitude of transmissibility for the loosest trim side fit (ℎ = 3.65 mm). (a) Two different 

position of the clip in the trim side mounting block. (b) Applying preload by tensioning the threads 

holding the profile, three different position of the clip in the trim side mounting block.  
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Conclusions 

The variability in the clip mount stiffness and damping is assessed through a series of tests. The test 

setup is designed in a way that allows modelling it as a SDOF system in the frequency range of 

interest. The measurement variability of the test setup is less than 1% for the estimated stiffness and 

about 4% for the estimated damping. The stiffness and damping of the clip is estimated by measuring 

transmissibility which allows modelling the clips as spring and damper element in Finite Element 

models of automotive vehicle to predict their NVH performance.  

The boundary condition that forms within the connection of the clip to the vehicle structure and 

trim affecting the variability and effective stiffness and damping of the clip. In the first set of 

measurements the door side boundary condition is represented. The average estimated stiffness was 

obtained as 1250 kN/m with a normalised standard deviation of 7%. The estimated damping ratio is 

0.03 with a normalised variation of 8%. If a clip is worn and used as a result of mounting and 

dismounting, a decrease in average stiffness to 724 kN/m is observed and the variability increased 

slightly to 8%.  

The mounting point of the clip on the trim provides some degree of adjustment through its design, 

which can result in uncertainty in the exact position of the clip in its mount. Furthermore, the fit was 

varying from tight to loose on different mounting points of a vehicle door trim. The boundary 

conditions were replicated by building a mounting block with a 3D printer with different gaps that 

allows a variation in the resultant fit. The average estimated stiffness for the clips with both boundary 

conditions was 520 kN/m with a normalised variability of 40%. The stiffness was considerably lower 

than the average estimated stiffness when only the door side boundary condition is resembled. A 

tighter fit is proposed to reduce the variability which resulted in an estimated stiffness of 760 kN/m 

with a normalised standard deviation of about 4%. 
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