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SMALL SUBSET SUMS

GERGELY AMBRUS, IMRE BÁRÁNY, AND VICTOR GRINBERG

Abstract. Let ‖.‖ be a norm in R
d whose unit ball is B. Assume that

V ⊂ B is a finite set of cardinality n, with
∑

v∈V
v = 0. We show

that for every integer k with 0 ≤ k ≤ n, there exists a subset U of V
consisting of k elements such that ‖∑

v∈U
v‖ ≤ ⌈d/2⌉. We also prove

that this bound is sharp in general. We improve the estimate to O(
√
d)

for the Euclidean and the max norms. An application on vector sums
in the plane is also given.

1. Definitions, notation, results

We consider the real d-dimensional vector space Rd with a norm ‖.‖ whose
unit ball is B. For a finite set U ⊂ R

d, |U | stands for the cardinality of U ,
and s(U) for the sum of the elements of U , so s(U) =

∑

u∈U u, and s(∅) = 0
of course.

In 1914 Steinitz [12] proved that, in the case of the Euclidean norm, for
every finite set V ⊂ B with |V | = n and s(V ) = 0, there exists an ordering
v1, . . . , vn of the vectors in V such that all partial sums have norm at most
2d, that is

max
k=1,...,n

∥

∥

∥

k
∑

1

vi

∥

∥

∥
6 2d.

It is important here that the bound 2d does not depend on n, the size of V .
Steinitz’s result implies that for every norm and every finite V ⊂ B with
s(V ) = 0 there is an ordering along which all partial sums are bounded
by a constant that depends only on B. Let S(B) denote the smallest such
constant for a given norm with unit ball B, and set S(d) = supS(B) where
the supremum is taken over all norms in Rd. The best known bounds on S(d)
are: S(B) ≤ d, proved by Sevastyanov [9], and by Grinberg and Sevastyanov
[7], and S(d) ≥ d+1

2
, which is shown by an example coming from the ℓ1

norm [7]. For specific norms, stronger results may hold. In particular, for

ℓ2 and ℓ∞, it is conjectured that the right order of magnitude of S(B) is
√
d

– although not even o(d) is known.

Steinitz’s result immediately implies that for every finite set V ⊂ B with
s(V ) = 0 and every integer k, 0 ≤ k ≤ |V |, there is a subset U ⊂ V such that
|U | = k and ‖s(U)‖ is not greater than a constant depending only on d,B, k,
for instance S(B) is such a constant. Let T (B, k) be the smallest constant
with this property, set T (B) = supk T (B, k), and T (d) = supT (B) where
the supremum is taken over all norms in R

d. It is evident that T (B, k) ≤ k.
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In this paper we investigate T (B, k), T (B) and T (d). Here come our main
results. First, the estimate for general norms.

Theorem 1. Let B be the unit ball of an arbitrary norm on R
d. For any

finite set V ⊂ B with s(V ) = 0, and for any k 6 |V |, there exists a subset

U ⊂ V with k elements, so that

‖s(U)‖ 6

⌈

d

2

⌉

.

In other words, T (d) 6
⌈

d
2

⌉

.

Theorem 2. For every d > 1, there exists a norm in R
d with unit ball B,

so that T (B, k) =
⌈

d
2

⌉

for infinitely many values of k. Also, T (B, k) = k for

all k ≤
⌊

d
2

⌋

.

Theorems 1 and 2 imply that T (d) =
⌈

d
2

⌉

for all integers d ≥ 1.

One expects that for specific norms better estimates are valid. We have
proved this in some cases. The unit ball of the norm ℓdp will be denoted

by Bd
p . We have the following results in the cases p = 1, 2,∞.

Theorem 3. d
2
≤ T (Bd

1) ≤
⌈

d
2

⌉

.

Theorem 4. 1
2

√
d+ 2 ≤ T (Bd

2) ≤ 1+
√
5

2

√
d

Theorem 5. 1
3

√
d ≤ T (Bd

∞) ≤ O(
√
d)

We mention that in Theorems 4 and 5 the order of magnitude is the same
as the conjectured value of the Steinitz constant.

Remark 1. Note that there is a ”complementary” symmetry here. Namely,
for every U ⊂ V , s(U) = −s(V \ U), hence ‖s(U)‖ = ‖s(V \ U)‖, and the
cases k and n− k are symmetric. Hence, we may assume k ≤ n/2.

When establishing Helly-type theorems for sums of vectors in a normed
plane, Bárány and Jerónimo-Castro proved the following result [3, Lemma 5],
which matches our scheme: Given 6 vectors in the unit ball of a normed plane

whose sum is 0, there always exist 3 among them, whose sum has norm at

most 1. In fact, this statement served as the starting point for our current
research. An application of Theorem 1 implies an extension of one of the
Helly-type results [3, Theorem 3], which we formulate slightly differently
and prove in the last section.

Theorem 6. Let k > 2 be a positive integer, and n = m(k−1)+1 for some

m > 1. Assume B is the unit ball of a norm in R
2, V ⊂ B is of size n and

‖s(V )‖ ≤ 1. Then V contains a subset W of size k such that ‖s(W )‖ ≤ 1.

2. Proof of Theorem 1

We are to consider linear combinations
∑

v∈V α(v)v of the vectors in V .

The coefficients α(v) form a vector α ∈ R
V . Define the convex polytope

P (V, k) =
{

α ∈ R
V :

∑

v∈V

α(v)v = 0,
∑

v∈V

α(v) = k, 0 ≤ α(v) ≤ 1 (∀v ∈ V )
}

.
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P (V, k) is non-empty as α(v) ≡ k/n lies in it (here n = |V |). From now
on let α denote a fixed vertex of P (V, k). The basic idea is to choose U to
be the set of vectors from V that have the k largest coefficients α(v). This
works directly when d is odd, and some extra care is needed for even d.

We note first that P (V, k) is determined by d+1 linear equations and 2n
inequalities for the coefficients α(v), so at a vertex at most d+1 coefficients
are strictly between 0 and 1. Define U1 = {v ∈ V : α(v) = 1} and Q = {v ∈
V : 0 < α(v) < 1}. Set q =

∑

v∈Q α(v), q is an integer since q + |U1| = k.

Split now Q into two parts, E and F , so that |E| = q and E contains
the vectors with the q largest coefficients in Q, and F the rest (ties broken
arbitrarily). Then U = U1 ∪E has exactly k elements and

s(U) =
∑

v∈U1

v +
∑

v∈E

v

=
∑

v∈V

α(v)v +
∑

v∈E

(1− α(v))v −
∑

v∈F

α(v)v.

Here
∑

v∈V α(v)v = 0, so by the triangle inequality

||s(U)|| ≤
∑

v∈E

(1− α(v)) +
∑

v∈F

α(v).

The average of the coefficients in Q is a := q/|Q|. Thus, the average of
the coefficients is at least a in E, and it is at most a in F . Consequently,
the last sum is maximal when α(v) = a for all v ∈ Q:

||s(U)|| ≤ q(1− a) + (|Q| − q)a =
2

|Q| q (|Q| − q) ≤ |Q|
2

.

This finishes the proof when d is odd as |Q| ≤ d+1, and also when d is even
and |Q| ≤ d.

We are left with the case when d is even and |Q| = d+ 1. The vectors in
Q are linearly dependent, so there is a non-zero β ∈ R

V with β(v) = 0 when
v /∈ Q such that

∑

v∈Q β(v)v = 0. We can assume that
∑

v∈Q β(v) ≤ 0.

Then
∑

v∈V (α(v) + tβ(v))v = 0 for every t ∈ R. Choose t > 0 maximal so
that 0 ≤ γ(v) = α(v) + tβ(v)) ≤ 1 for every v ∈ V . This means that, for
some v∗ ∈ Q, γ(v∗) = 0 or 1.

Assume for the time being that q ≤ (d+ 1)/2.

Suppose first that γ(v∗) = 0. This time we split Q∗ := Q\v∗ again into E
and F so that |E| = q and E contains the vectors from Q∗ with the q largest
coefficients. Note that

∑

v∈Q∗ γ(v) ≤
∑

v∈Q α(v) = q and that |Q∗| = d, so

the average a∗ of γ(v) over Q∗ is at most q/d. We use again U = U1 ∪ E
and we have, the same way as before,

||s(U)|| ≤
∑

v∈E

(1− γ(v)) +
∑

v∈F

γ(v).

The right hand side is maximal again if every γ(v) equals their average a∗,
hence

||s(U)|| ≤ q(1− a∗) + (d− q)a∗ = q + (d− 2q)a∗ ≤ q + (d− 2q)
q

d
≤ d

2
,
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because d is even so q ≤ (d+ 1)/2 implies 2q ≤ d. Thus, ||s(U)|| ≤ d/2.

The case when γ(v∗) = 1 is similar: this time v∗ is added to U1, Q
∗ =

Q \ v∗ is split into E and F with |E| = q− 1 so that E contains the vectors
with the largest q−1 coefficients. Now

∑

v∈Q∗ γ(v) ≤
∑

v∈Q α(v)−1 = q−1,

and thus the average a∗ of γ(v) over Q∗ is at most (q − 1)/d. As above, we
are led to the inequality

||s(U)|| ≤ (q − 1)(1 − a∗) + (d− (q − 1))a∗ = (q − 1) + (d− 2(q − 1))a∗.

Using that d− 2(q − 1) ≥ 0 and a∗ ≤ (q − 1)/d, we conclude that ||s(U)|| ≤
d/2− 2/d < d/2.

Finally we consider the case q > (d+1)/2. By complementary symmetry
s(U) = −s(V \ U). For q > (d + 1)/2, we consider the complementary
problem of finding U ⊂ V with n − k elements so that ||s(U)|| ≤ ⌈d/2⌉.
It is easy to see that 1 − α(.) ∈ R

V is a vertex of P (V, n − k), for which
∑

v∈Q(1− α(v)) < (d+ 1)/2. �

The same proof yields a stronger statement.

Theorem 7. Let W ⊂ B finite. Then for every k 6 |W | and for every

vector w0 ∈ convW , there is a subset U ⊂ W of cardinality k, so that

‖s(U)− kw0‖ 6

⌈

d

2

⌉

.

The proof is the same as above, except that instead of the convex polytope
P (V, k), we consider the coefficient vectors α : W → [0, 1] satisfying

∑

w∈W

α(w)w = kw0 and
∑

w∈W

α(w) = k.

The condition w0 ∈ convW ensures that this set is a non-empty convex
polytope. The rest of the argument is unchanged.

Remark 2. For later reference we record the fact that the linear depen-
dence α defines the sets U1 and Q, and if |Q| = d + 1, then the new linear
dependence γ defines v∗ ∈ Q and Q∗. Note that this works for even and odd
d, we only need |Q| = d+ 1. For later use we define

(1) A = {v ∈ V : γ(v) = 1} and C = {v ∈ V : 0 < γ(v) < 1}.

3. Proof of Theorem 2

We are going to use the following fact. If the unit ball of a norm ‖.‖ is
the convex hull of the vectors v1, . . . , vm,−v1, . . . ,−vm ∈ R

d, then for every
vector x ∈ R

d,

‖x‖ = min
{

m
∑

1

|ai| :

m
∑

1

aivi = x
}

.

Let e1, . . . , ed be the standard basis vectors of Rd, and set e0 = −∑d
1 ei.

We define V to be s copies of {e0, e1, . . . , ed}, where s > 1 is an integer. The
unit ball is set to be B = conv {V,−V }. Let k < n = s(d+ 1) be a positive
integer congruent to

⌈

d
2

⌉

mod (d + 1). We claim that for every k-element

subset U of V , ‖s(U)‖ ≥
⌈

d
2

⌉

.
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Assume that U contains bi copies of ei for every i, so k =
∑d

0 bi. We have

to estimate the norm of the vector v =
∑d

0 biei. Assume that

v =

d
∑

0

aiei

for some ai ∈ R. Then
∑d

0(bi − ai)ei = 0. Since the only linear dependence

of the vectors e0, . . . , ed is x
∑d

0 ei = 0 for some constant x ∈ R, we obtain
that ai = bi − x for every i. Set

f(x) :=

d
∑

0

|bi − x|,

Then ‖v‖ = min f(x) by the fact from the beginning of this section. We
are going to estimate f(x). Since bi ∈ Z for every i, the function f(x)
is piecewise linear on R (it is affine on all intervals (q, q + 1) for q ∈ Z).
Therefore, there exists c ∈ Z so that the minimum of f(x) is attained at c.

The facts k =
∑d

0 bi ≡ ⌈d/2⌉mod (d + 1) and c ∈ Z imply that
∑d

0(bi −
c) ≡ ⌈d/2⌉mod (d+ 1). Thus,

⌈

d

2

⌉

6

∣

∣

∣

d
∑

0

(bi − c)
∣

∣

∣
6

d
∑

0

|bi − c|,

hence, ‖v‖ > ⌈d/2⌉.
We show next that T (B, k) = k when 1 ≤ k < ⌈d/2⌉. The unit ball B

is the same as above and V = {e0, . . . , ed}. Assume U ⊂ V with |U | = k
and ‖s(U)‖ < k. Add ⌈d/2⌉ − k vectors from V \ U to U to obtain a
subset W of ⌈d/2⌉ elements. Every addition increases the norm of the sum
by at most one (because of the triangle inequality), so we get ‖s(W )‖ ≤
‖s(U)‖+ ⌈d/2⌉ − k < ⌈d/2⌉, contrary to what was established above. Thus
T (B, k) ≥ k, while T (B, k) ≤ k follows from the triangle inequality. �

Further examples showing T (B, k) = ⌈d/2⌉ will be given in the next
section.

Remark 3. We mention that for large enough n, there is no vector set
that works simultaneously for all k with d/2 6 k 6 n − d/2. This follows
from Steinitz’s theorem: let v1, . . . , vn be the ordering where all partial sums
lie in dB. Then necessarily two partial sums, with at least d/2 summands
whose cardinalities differ by at least d/2, are close to each other: a standard

volume estimate shows that their distance is bounded above by 4dn−1/d.
Then their difference, which is a k-sum with some d/2 6 k 6 n− d/2, must
be small.

4. The ℓ1 norm, proof of Theorem 3

The upper bound follows from Theorem 1. For the lower bound let V
consist of e1, . . . , ed and d copies of 1

de0 (with the same notation as in the
previous section). Assume U ⊂ V has exactly d elements. If U contains p
vectors out of e1, . . . , ed, then s(U) has p coordinates equal to p

d and d − p

coordinates equal to p
d − 1. Thus ‖s(U)‖1 = 1

d (p
2 + (d − p)2). The last
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expression is minimal when p = ⌊d
2
⌋. The minimum equals d

2
when d is even

and d
2
+ 1

2d when d is odd. This is slightly better (for d odd) than the stated
lower bound. �

This example shows that T (Bd
1) = T (Bd

1 , d) = d/2 for even d. A small
modification gives further examples implying T (Bd

1 , k) = d/2 for even d and
for all k ≥ d. Namely, given d ≥ 1 and k ≥ d, let V consist of the vectors
e1, . . . , ed, and 2k − d copies of 1

2k−de0. Then V ⊂ Bd
1 and s(V ) = 0. It

is not hard to check that this shows T (Bd
1 , k) = d/2 for every k > d (d is

even).

5. The ℓ2 norm, proof of Theorem 4

In this section, ‖.‖ stands for the Euclidean norm. For the upper bound
we will need two lemmas. The first is Lemma 2.2 in Beck’s paper [4]. A
similar result is given in [1, Theorem 4.1]. The second is a Steinitz type
statement.

Lemma 1. Let Q ⊂ Bd
2 be finite, and α : Q → [0, 1]. Then there exists

ε : Q → {0, 1} such that ‖∑v∈Q(ε(v) − α(v))v‖ ≤
√
d/2.

Lemma 2. Assume that V ⊂ Bd
2 is a finite set and ‖s(V )‖ = σ. Then there

exists an ordering v1, . . . , vn of the elements of V , such that, for all h 6 n,

∥

∥

∥

h
∑

1

vi

∥

∥

∥
6

√

σ2 + h.

Proof. Choose v1 ∈ V arbitrarily. For h > 2, we select vh inductively.

We set Sh =
∑h

1 vi. Assume that ‖Sh−1‖ 6
√
σ2 + h− 1, and set W =

V \ {v1, . . . , vh−1}. We consider three cases.

Case 1. If ‖Sh−1‖ 6 σ − 1, then choose vh ∈ W arbitrary: ‖Sh‖ 6 σ
holds by the triangle inequality.

Case 2. If ‖Sh−1‖ > σ, then by the assumption ‖S‖ = σ, there exists a
vector vh ∈ W , for which 〈Sh−1, vh〉 6 0. Therefore,

‖Sh‖2 = ‖Sh−1 + vh‖2 6 ‖Sh−1‖2 + ‖vh‖2 6 (σ2 + h− 1) + 1 = σ2 + h.

Case 3. If σ − 1 < ‖Sh−1‖ < σ, define ε = σ− ‖Sh−1‖, so 0 < ε < 1 and
ε ≤ σ. Then

∑

v∈W

〈v, Sh−1〉 = 〈Sh − Sh−1, Sh−1〉 6 σ(σ − ε)− (σ − ε)2 = ε(σ − ε).

Thus, there exists vh ∈ W , for which 〈vh, Sh−1〉 6 ε(σ − ε). Then

‖Sh‖2 = ‖Sh−1 + vh‖2 6 (σ − ε)2 + 2 ε(σ − ε) + 1

= σ2 + 1− ε2 < σ2 + h. �

Proof of Theorem 4. For the lower bound let V be the set of vertices of a
regular simplex inscribed in Bd

2 . Then s(V ) = 0. Let U ⊂ V have
⌈

d
2

⌉

elements. A routine computation shows that ‖s(U)‖ equals
√
d+2
2

when d

is even and d+1

2
√
d

>
√
d+2
2

when d is odd. This implies the lower bound

T (Bd
2) ≥

√
d+2
2

.
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For the upper bound we have to prove the existence of U ⊂ V with

|U | = k and ‖s(U)‖ ≤ 1+
√
5

2

√
d. From the proof of Theorem 1 recall the

definition of P (V, k) and its vertex α ∈ R
V and U1 = {v ∈ V : α(v) = 1}

and Q = {v ∈ V : 0 < α(v) < 1}. Here |Q| ≤ d+ 1.

If |Q| = 0, then |U1| = k and s(U1) = 0, so we can set U = U1. The
case |Q| = 1 is impossible because the sum of all α(v) is an integer. From
now on we assume that 2 ≤ |Q| implying |U1| + 1 ≤ k ≤ |U1| + |Q| − 1.
Using Lemma 1 for α restricted to Q we find ε : Q → {0, 1} such that

‖∑v∈Q(ε(v) − α(v))v|| ≤
√
d/2.

Define W = U1 ∪ {v ∈ Q : ε(v) = 1}, then W has the properties that

‖s(W )‖ ≤
√
d/2 and ||W | − k| ≤ d. Because of the complementary symme-

try, we can assume that k ≤ |W | ≤ k+ d. Set h = |W | − k. Then Lemma 2

applies to W : writing σ = ‖s(W )‖ we have σ ≤
√
d/2 and so the elements

of W can be ordered as w1, w2, . . . so that ‖∑m
1 wi‖ ≤

√
σ2 +m for every

m. In particular, with m = h ≤ d, ‖∑h
1 wi‖ ≤

√
σ2 + h ≤

√

d/4 + d. Then

for U = W \ {w1, ...wh}, we have |U | = k and ‖s(U)‖ ≤ 1+
√
5

2

√
d. �

6. The ℓ∞ norm, proof of Theorem 5

Here, ‖.‖ denotes the maximum norm. We need two lemmas again, the
first is similar to Lemma 1.

Lemma 3. If C ⊂ Bd
∞ consists of d linearly independent vectors, then for

every point z of the parallelotope P =
∑

v∈C [0, v], there is a vertex u of P

with ‖z − u‖∞ = O(
√
d).

This is a result of Spencer [10, Corollary 8], and also of Gluskin [6] whose
work relies on that of Kashin [8]. Spencer’s proof gives the estimate ‖z−u‖ ≤
6
√
d. The linear independence condition is only needed to ensure that P is

a parallelotope, and so its vertices are of the form s(D) =
∑

v∈D v for some
subset D ⊂ C.

The next statement is the (weaker) analogue of Lemma 2 for the l∞ norm.
Note that we require the set W to contain only a few vectors. The proof is
longer and it uses Chobanyan’s transference theorem (for the ℓ∞ norm) so
we postpone it to Section 7.

Lemma 4. Assume W ⊂ Bd
∞, |W | = m ≤ 5d, and ‖s(W )‖∞ = O(

√
d).

Then there is an ordering w1, . . . , wm of the vectors in W such that

max
h=1,...,m

∥

∥

h
∑

1

wi

∥

∥

∞ = O(
√
d).

Proof of Theorem 5. The lower bound uses Hadamard matrices and is given
in [1].

For the upper bound we assume, rather for convenience than necessity,
that the set V ⊂ R

d is in general position, for instance, no d vectors from
V are linearly dependent. The general case follows from this by a limit
argument. We assume further that |V | = n > 5d since for n ≤ 5d the result
is a consequence of Lemma 4. Set m = ⌊n/(2d)⌋.
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We are going to define linear dependencies γi, for i = 1, 2, . . . ,m − 1 so
that the sets

Ai = {v ∈ V : γi(v) = 1}, Ci = {v ∈ V : 0 < γi(v) < 1}
satisfy the conditions

Ai ⊂ Ai+1, (2i− 1)d ≤ |Ai| < hi :=
∑

v∈V

γi(v) ≤ 2di, |Ci| = d.

The construction is recursive and is similar to how α and γ ∈ R
V were

constructed. For i = 1 we take an arbitrary vertex α of the convex polytope
P (V, 2d), then |Q| = d+1 (because of the general position assumption) and
d ≤ |U1| < 2d follows. We construct γ as specified in Remark 2 and (1).
Then define γ1 = γ, set A1 = {v ∈ V : γ1(v) = 1}, C1 = {v ∈ V : 0 <
γ1(v) < 1}. General position implies that |C1| = d and then d ≤ |A1| <
h1 =

∑

v∈V γ1(v) ≤ 2d.

Assume next that γ1, . . . , γi have been constructed (1 < i < m− 1), and
the sets Aj , Cj for j ≤ i satisfy the required conditions. Define the convex
polytope

Pi+1 = {α ∈ P (V, 2d(i + 1)) : α(v) = 1 (∀v ∈ Ai)}
We check that Pi+1 is non-empty. As |Ai| < hi ≤ 2di, the linear dependence
α = γi + t(1 − γi) lies in Pi+1 for a suitable t, we only have to check that
0 < t < 1 as this implies 0 ≤ α(v) = γi(v) + t(1− γi(v)) ≤ 1. To fulfill the
condition

∑

v∈V α(v) = 2d(i + 1), we must set

t =
2d(i+ 1)− hi

n− hi
= 1− n− 2d(i + 1)

n− hi
.

Thus 0 < t < 1 indeed as hi ≤ 2di.

Next, let αi+1 be a fixed vertex of Pi+1. The method recorded in Remark
2 gives another linear dependence γi+1 with |Ci+1| = d. Ai ⊂ Ai+1 by the
construction. All v ∈ V with αi+1(v) = 1 are in Ai+1, and there are at
least 2d(i+ 1)− d of them. Thus (2i + 1)d ≤ |Ai+1|. Further |Ai+1| < hi+1

follows since γi+1(v) = 1 for every v ∈ Ai+1 and hi+1 ≤ 2d(i + 1) because
hi+1 =

∑

v∈V γi+1(v) ≤
∑

v∈V αi+1(v) = 2d(i + 1).

The construction is almost finished, as a last step we define A0 = C0 = ∅.
We use Lemma 3 next. The parallelotope P :=

∑

v∈Ci
[0, v] contains the

point −s(Ai), since 0 = s(Ai) +
∑

v∈Ci
γi(v)v. A vertex of P is of the form

s(D) =
∑

v∈D v, where D is a subset of Ci. By Lemma 3, there is a Di ⊂ Ci

such that the vertex s(Di) is at distance O(
√
d) from −s(Ai). Thus the

vector zi = s(Ai ∪Di) is short, namely, ‖zi‖ = O(
√
d). Note that by setting

D0 = ∅, we have z0 = 0 which is again of norm O(
√
d).

For the next step of the proof we first check that the size of the symmetric
difference (Ai+1 ∪Di+1)△(Ai ∪Di) is at most 5d. This holds for i = 0. For
larger i, Di+1 and Ai+1 are disjoint, and Ai+1 contains Ai, so the symmetric
difference is the same a X△Di, where X = (Ai+1 \Ai)∪Di+1. Here |Ai+1 \
Ai| < 3d, and both Di and Di+1 have at most d elements, which gives the
upper bound 5d.
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Now zi− s(Di)+ s(X) = zi+1. Thus, adding at most 5d vectors from Bd
∞

to zi one arrives at zi+1, and both zi, zi+1 are short. Define

W = {−u : u ∈ Di \X}
⋃

(X \Di).

Then W is a subset of Bd
∞, of at most 5d elements, such that s(W ) =

∑

w∈W w = zi+1 − zi. Thus ‖s(W )‖ = O(
√
d). By applying Lemma 4 to

W we get an ordering w1, . . . , wm such that every partial sum along this
ordering is O(

√
d). Then for every h = 1, . . . ,m.

‖zi +
h
∑

1

wj‖ ≤ ‖zi‖+ ‖
h
∑

1

wj‖ = O(
√
d).

In the original problem we have to show that for every k ≤ n there is a set
U ⊂ V of size k with ‖s(U)‖ = O(

√
d). This is clear when k equals the size

of some Ai ∪Di, but what is to be done for the other k? Well, such a k lies
between |Ai ∪Di| and |Ai+1 ∪Di+1| for some i. Note that zi = s(Ai ∪Di).
Moreover, each sum zi + w1 + . . . + wh is the sum of vectors in a subset
of V . This can be seen by induction on h. The case h = 0 is clear. The
induction step h − 1 → h is clear again when wh does not come from Di,
simply one more term appears in the sum. If however wh comes from Di,
then it cancels the previous −wh that is a unique term in s(Ai ∪ Di). So
each partial sum is a subset-sum. The number of elements in these subsets
increases or decreases by one when the next wh is added. Then for every k
between |Ai∪Di| and |Ai+1∪Di+1| there is a partial sum containing exactly
k terms. �

Remark 4. The above proof yields a slightly stronger statement: we con-
struct a chain of subsets of V , each with sum of order of magnitude O(

√
d),

so that the cardinality of two consecutive subsets differ by one, and the chain
traverses from the empty set to V . We have hoped to give a better value
for the Steinitz constant S(Bd

2) or S(B
d
∞) by a suitable modification of the

argument (we would need an increasing chain of subsets with the previous
properties), but our efforts have failed so far.

Remark 5. A simpler proof may be given if one only aims for the existence
a k-element subset with small sum. We may assume that k 6 n−d. Starting
from a vertex of P (v, k − d) and using Lemma 3, similarly to the proof of

Theorem 4, we can construct a set W so that ‖s(W )‖ 6 6
√
d, and k− 2d 6

|W | 6 k. Let α be the characteristic function of W , i. e. α(v) = 1 if v ∈ W ,
and 0 otherwise. Let l = |W |, and set t so that l + t(n − l) = k + d. Then
t 6 1.

Next, consider the set P of the linear dependencies β : V → [0, 1] with
∑

v∈V

β(v)v = (1− t)s(W ),
∑

v∈V

β(v) = k + d, β(v) = 1(∀v ∈ W ).

Then P is a non-empty convex polytope, since α+ t(1− α) satisfies all the
above conditions. Take an arbitrary a vertex of P . As before, invoking
Lemma 3, we find a set Y so that ‖s(Y ) − (1 − t)s(W )‖∞ = O(

√
d), and
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||Y | − (k + d)| 6 d. Furthermore, the construction implies that W ⊂ Y .
Hence,

k − 2d 6 |W | 6 k 6 |Y | 6 k + 2d,

and ‖s(W )‖ = O(
√
d) as well as ‖s(Y )‖ = O(

√
d). We finish the proof by

applying Lemma 4 to the set Y \W .

Remark 6. The above proofs translate for arbitrary norms as long as
the analogues of Lemmas 1 and 2 (or Lemmas 3 and 4) may be established.

7. Proof of Lemma 4

For this lemma it is natural to use Chobanyan’s transference theorem [5]
(see also [1]), which connects Steinitz’s theorem with sign assignments to
vectors in a sequence.

Assume v1, . . . , vn is a sequence of vectors from the unit ball B of an
arbitrary norm on R

d. It is proved in [2] that there are signs ε1, . . . , εn = ±1
such that

(2) max
k=1,...,n

∥

∥

∥

k
∑

i=1

εivi

∥

∥

∥
≤ 2d− 1.

This is a general bound that does not depend on n and the norm. But
better estimates are valid for specific norms and some (small) values of n.
For fixed B and n let F (B,n), the sign sequence constant of B, be defined
as the smallest number that one can write on the right hand side of (2),
and let F (B) = supn F (B,n). It is quite easy to see for instance that
F (Bd

2 , n) ≤
√
n for all n (but we don’t need this). What we need is a result

of Spencer [11, Theorem 1.4]:

Fact 1. F (Bd
∞, d) ≤ K

√
d where K is a universal constant.

Chobanyan’s transference theorem [5] says that, for every norm with unit
ball B, S(B) ≤ F (B), that is, the Steinitz constant is at most as large
as the sign sequence constant. We need a slightly stronger variant, so we
define S(B,n) as the smallest number R such that for every set V ⊂ B with
s(V ) = 0 and |V | = n there is an ordering v1, . . . , vn of the elements in V
such that

max
k=1,...,n

∥

∥

∥

k
∑

i=1

vi

∥

∥

∥
≤ R.

Of course, S(B) = supn S(B,n). Here comes the stronger version of Choba-
nyan’s theorem, and comes without proof as the proof is identical with the
original one.

Theorem 8. For every norm in R
d with unit ball B, S(B,n) ≤ F (B,n).

Theorem 8 and Fact 1 imply the following.

Fact 2. Given V ⊂ Bd
∞ with |V | = m where m ≤ 5d and s(V ) = 0, there

is an ordering v1, . . . , vm of V such that maxh=1,...,m ‖∑h
1 vi‖∞ ≤ K1

√
d,

where K1 is a universal constant.
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Proof. We note first that for m ≤ d this follows directly from Fact 1 and
Theorem 8 with K1 = K. For m ≥ d, take the natural embedding of Rd into
R
m, the set V lies in the ℓ∞ unit ball of Rm. Apply Fact 1 and Theorem 8

there, and you get an ordering of V in R
d along which all partial sums have

norm at most K
√
m ≤ K

√
5d. Thus Fact 2 holds with K1 =

√
5K. �

Proof of Lemma 4. We need a concrete bound on ‖s(W )‖∞, so suppose that

‖s(W )‖∞ ≤ K2

√
d. For w ∈ W define w∗ = w − 1

ms(W ). Then ‖w∗‖∞ ≤
‖w‖∞+ 1

m‖s(W )‖∞ ≤ 2 as s(W ), being the sum of m vectors from Bd
∞, has

norm at most m. Further,
∑

w∈W w∗ = 0 and W ⊂ 2Bd
∞. By Fact 2 there

is an ordering w1, . . . , wm of the vectors in W such that for every h

∥

∥

∥

h
∑

1

w∗
i

∥

∥

∥

∞
≤ 2K1

√
d.

We check that
∑h

1 wi =
∑h

1 w
∗
i +

h
ms(W ) and so for every h

∥

∥

∥

h
∑

1

wi

∥

∥

∥

∞
≤

∥

∥

∥

h
∑

1

w∗
i

∥

∥

∥

∞
+

∥

∥

∥
s(W )

∥

∥

∥

∞
≤ 2K1

√
d+K2

√
d = O(

√
d). �

8. An application: proof of Theorem 6

We proceed by induction on m. For m = 1, the assertion is clearly true.
For the induction step (m − 1) → m let V ⊂ B with |V | = (k − 1)m + 1
and ‖s(V )‖ ≤ 1. Set v0 = −s(V ) so ‖v0‖ ≤ 1. Define V0 = V ∪ {v0}. Then
V0 ⊂ B and s(V0) = 0. So by Theorem 1, there exists a subset U of V0 of
size k, with ‖s(U)‖ 6 1. We are done if v0 /∈ U . So suppose that v0 ∈ U .
Then v0 /∈ W := V \ U , and ‖s(W )‖ ≤ 1 because

s(U) = −s(W ).

Here W is of size (m − 1)(k − 1) + 1, so the induction hypothesis implies
that W contains a subset U of size k with ‖s(U)‖ ≤ 1. �

We mention finally that Theorem 6 is equivalent to the following Helly
type statement. If V ⊂ B and |V | = (k− 1)m+1, and ‖s(U)‖ > 1 for every
set U ⊂ V of size k, then ‖s(V )‖ > 1.
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et al.), Prog. Probab (Birkhäuser Boston), bf 35 (1994), 3–29.

[6] E. D. Gluskin, Extremal properties of orthogonal parallelepipeds and their applications

to the geometry of Banach spaces, Mat. Sb. 136 (1988), 85–96 (in Russian), English
translation in Mathematics in the USSR-Sbornik 64 (1989), 85–96.

[7] V. S. Grinberg, S. V. Sevastyanov, Value of the Steinitz constant, Funk. Anal. Prilozh.
14 (1980), no. 2., 56–57. (in Russian). English translation: Functional analysis and
its applications 14 (1980), 125–126.

[8] B. S. Kashin, An isometric operator in L2(0, 1), C. R. Acad. Bulgare Sci. 38 (1985),
1613–1616 (in Russian).

[9] S. V. Sevastyanov, Approximate solution of some problems of scheduling theory,
Diskretnyi Analiz 32 (1978), 66–75 (in Russian).

[10] J. Spencer, Six standard deviations suffice, Trans. Amer. Math. Soc. 289 (1985),
679–706.

[11] J. Spencer, Balancing vectors in the max norm, Combinatorica 6 (1986), 55–65.
[12] E. Steinitz, Bedingt konvergente Reihen und konvexe Systeme, J. Reine Ang. Mathe-

matik 143 (1913), 128–175, ibid, 144 (1914), 1–40., ibid, 146 (1916), 1–52.

Gergely Ambrus
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