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Abstract

In recent years, Internet Service Providers (ISPs) have started to deploy Telco Content Delivery Networks (Telco CDNs)
to reduce the pressure on their network resources. The deployment of Telco CDNs results in reduced ISP bandwidth
utilization and improved service quality by bringing the content closer to the end-users. Furthermore, virtualization
of storage and networking resources can open up new business models by enabling the ISP to simultaneously lease
its Telco CDN infrastructure to multiple third parties. Previous work has shown that multi-tenant proactive resource
allocation and content placement can significantly reduce the load on the ISP network. However, the performance of
this approach strongly depends on the prediction accuracy for future content requests. In this paper, a hybrid cache
management approach is proposed where proactive content placement and traditional reactive caching strategies are
combined. In this way, content placement and server selection can be optimized across tenants and users, based on
predicted content popularity and the geographical distribution of requests, while simultaneously providing reactivity to
unexpected changes in the request pattern. Based on a Video-on-Demand (VoD) production request trace, it is shown
that the total hit ratio can be increased by 43% while using 5% less bandwidth compared to the traditional Least Recently
Used (LRU) caching strategy. Furthermore, the proposed approach requires 39% less migration overhead compared to
the proactive placement approach we previously proposed in Claeys et al. (2014b) and achieves a hit ratio increase of
19% and bandwidth usage reduction of 7% in the evaluated VoD scenarios and topology.

Keywords: Cache management, Hybrid management, Content placement

1. Introduction

Over the last decade, video streaming services have be-
come the principal consumers of Internet traffic. In 2014,
video over Internet Protocol (IP) has been reported to ac-
count for 67% of all IP traffic while this share is predicted
to grow to 80% by 2018 (Cisco, 2015). Furthermore, with
the advent of 4K resolution and 3D video, the quality re-
quirements for these services are becoming more stringent.
Today, the prevalent method to deliver the video to the
end-users relies on Content Delivery Networks (CDNs). In
order to meet the growing quality requirements, CDNs aim
at bringing the content closer to the clients to reduce both
the latency and the bandwidth consumption. Currently,
a common way for traditional CDNs, such as Akamai or
Netflix, to bring their content to the edge of the network
is to physically place part of their distributed storage in-
frastructure inside the Internet Service Provider (ISP) net-
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work or to connect it to a nearby Internet exchange point
through manually-negotiated contractual agreements.

However, given that large CDNs control both the place-
ment of the content and the server selection strategy (i.e.,
select from which location to satisfy each request) across
their geographically dispersed storage infrastructure with
only limited knowledge about the underlying network, they
can put an immense strain on the resources of ISP net-
works (Jiang et al., 2009). This has resulted in increasing
operational costs and decreasing revenues for the ISPs.
Therefore, they have started to explore alternative busi-
ness models and service offerings, leading to the deploy-
ment of Telco CDNs. As ISPs have global knowledge about
the utilization of their network resources, controlling the
storage of content deep inside their network allows them
to reduce the bandwidth demand on their backbone infras-
tructure while significantly improving the service quality
for the end-users.

Moreover, the advent of cloud computing, Software-
Defined Networking (SDN) and Network Function Virtu-
alization (NFV) technologies have enabled ISPs to virtu-
alize their Telco CDN infrastructures. This allows them
to dynamically offer virtual storage and content delivery
services at the edge of the network, redeeming traditional
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CDN providers from installing additional hardware. In
previous work, we proposed a proactive cache manage-
ment system for ISP-operated multi-tenant Telco CDNs
to optimize the content placement and server selection
across tenants and users (Claeys et al., 2014a,b). The
tenants specify the amount of storage capacity they want
to lease, while the management framework decides on the
allocation of the leased capacity across the storage infras-
tructure, the content placement and the server selection.
Such a scenario allows the tenants to bring their content
closer to the end user without having to physically deploy
dedicated storage infrastructure inside the ISP network.
This reduces the installation and operational costs for the
content provider, while the ISP has better control over
its network resources. All of these decisions are based on
the prediction of content popularity and the geographical
distribution of requests, making the performance strongly
dependent on the accuracy of the request prediction.

Proactively placing content inside the ISP network has
multiple advantages over reactive cache replacement, for
example reduced bandwidth consumption by performing
content migrations during off-peak hours and delivering
cache hits on the first request of popular content. However,
given the dynamic nature of content popularity in a Video-
on-Demand (VoD) scenario, the performance of the pro-
active cache management presented in previous work can
significantly fluctuate over time. To deal with the uncer-
tainties in the future request pattern, this paper proposes
a hybrid cache management system, which combines the
benefits of both proactive and reactive content placement
strategies. In the proposed approach, the total caching
space available in the network is divided in such a way
that part of it is reserved to proactively push content in
the different caching locations, while the rest is used to
implement reactive caching. As such, content placement
and server selection can be optimized across tenants and
users, based on the predicted content popularity and the
geographical distribution of requests, while simultaneously
providing reactivity to unexpected changes in the request
pattern. Furthermore, frequently migrating content to re-
configure the proactive placement can significantly influ-
ence the total bandwidth usage. Therefore, in this paper,
the migration overhead is taken into account in the place-
ment decisions.

The main contributions of this work are as follows. We
redefine the Integer Linear Program (ILP) model of the
multi-tenant content placement and server selection prob-
lem proposed in previous work (Claeys et al., 2014a,b)
to take into account the overhead introduced by the fre-
quent content migrations and to reduce the level of detail
required for the request predictions. In contrast to our
previous work, which required predictions of accurate re-
quest timestamps, the updated ILP model only requires
predictions of request aggregates. We also investigate the
benefits that can be obtained in terms of performance im-
provement by augmenting the results of the content pop-
ularity prediction algorithm with exogenous information

about the future request pattern, e.g., based on trends in
social media (Asur and Huberman, 2010). In addition, we
show how the caching space can be divided between pro-
active and reactive placement and investigate the added
value when considering adaptivity in the proposed hy-
brid caching approach. We evaluate the performance in
terms of both network and caching metrics based on a real
VoD request trace from a major European ISP. The re-
sults show that the proposed hybrid cache management
approach can outperform both a purely proactive and a
purely reactive approach while significantly reducing the
migration overhead compared to our previous work.

The remainder of this paper is structured as follows.
Section 2 highlights related work on cache management
in distributed storage infrastructure. Section 3 presents
the proposed management architecture and describes the
scenario under study. Next, the problem is formally mod-
eled as an ILP in Section 4 and the hybrid cache division
strategy is described. Section 5 introduces the setup used
to evaluate the proposed approach while the evaluation
results are detailed in Section 6. Finally, the main conclu-
sions are presented in Section 7.

2. Related work

Hybrid cache management approaches that partition
the storage space available at each caching location in
order to implement different caching strategies were pro-
posed by Applegate et al. (2010) and Sharma (2013). How-
ever, the effect of partitioning was investigated on few per-
formance metrics only (network utilization and latency)
based on arbitrary fixed ratios. Furthermore, in these ap-
proaches, the partitioning is performed on each cache indi-
vidually. In contrast, this paper proposes a network-level
partitioning and provides a more systematic analysis as it
relies on a wide range of ratios and highlights the effect
based on both network and caching metrics. In addition,
the benefits of updating the partitioning ratio in an adap-
tive fashion are also quantitatively evaluated.

In the last few years, there have been significant re-
search efforts towards the development of proactive cache
management approaches. While some of the proposals
have focused on content placement strategy only (Sourlas
et al., 2012; Laoutaris et al., 2006; Borst et al., 2010; Dai
et al., 2012; Wauters et al., 2006; Korupolu and Dahlin,
2002), others have proposed new mechanisms to manage
the redirection of user requests (Valancius et al., 2013;
Frank et al., 2012). Optimal solution structures for the
combined problem of content placement and server selec-
tion have also been developed (Baev and Rajaraman, 2008;
Bekta et al., 2008; Applegate et al., 2010). However, all
of these consider a single provider scenario only, which is
a subset of the problem we investigate.

One of the most relevant approaches for the problem
investigated here is the work of Laoutaris et al. (2004,
2005), in which algorithms for the joint optimization of
capacity allocation and object placement decisions under
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known topological and user demand information were de-
veloped. However, despite the similarity in terms of prob-
lem objectives, the proposed models cannot apply to our
scenario as they disregard per node capacity constraints
and assume hierarchical caching infrastructures only.

In parallel to these management strategies, research
efforts have also focused on the development of new mod-
els and frameworks to support the interaction between
ISPs and CDNs. These range from ISP-centric caching ap-
proaches (Kamiyama et al., 2009; Cho et al., 2011), which
exclude CDNs from the delivery chain, to collaborative so-
lutions (Jiang et al., 2009; Frank et al., 2012; Wichtlhuber
et al., 2015), defining new models of cooperation between
ISPs and CDNs. Another relevant initiative concerns the
Content Delivery Network Interconnection (CDNI) work-
ing group of the Internet Engineering Task Force (IETF)
which focuses on standardizing the communications be-
tween CDNs to allow interoperability between different
vendors1. All of these approaches are targeting to im-
prove content delivery performance. Intermediate solu-
tions, such as the one proposed by co-authors of this paper
(Tuncer et al., 2013), have also been considered and rely
on providing a limited capacity CDN service within ISP
networks by deploying caches at network edges.

Finally, while this paper focuses on a VoD service, pro-
active content placement has recently been investigated
in the context of live video streaming (Mukerjee et al.,
2015), which focuses on the end-to-end optimization of
the stream delivery. In contrast to our approach, this tar-
gets very short re-configuration intervals (in the order of
milliseconds) and involves changing different parameters
(e.g., video stream placement and bitrate encoding selec-
tion), which are features specific to this type of service.

To the best of the authors’ knowledge, this paper is
the first to propose a hybrid cache management approach
with a network-level cache division and support for multi-
tenant scenarios.

3. Experiment description

In this section, the considered experiment is described.
Section 3.1 introduces the ISP-based CDN service where
capacity is leased to one or more content providers. In
Section 3.2, the characteristics of the investigated VoD
use-case are presented, based on which the request pre-
diction strategy is introduced in Section 3.3. Finally, Sec-
tion 3.4 discusses the limitations of popularity prediction
algorithms in the considered use-case.

3.1. Caching scenario

In this paper, a scenario is considered where a large-
scale ISP operates a limited capacity CDN service by de-
ploying caching points within its network, as depicted in

1https://datatracker.ietf.org/wg/cdni
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Figure 1: Overview of the Telco CDN service operated by the ISP.

Figure 1. However, it is important to note that the ap-
plicability of the proposed approach is not limited to this
scenario. For example, the standardization effort in the
CDNI working group of the IETF allows the proposed ap-
proach to be used on a larger scale and to communicate
between different CDN vendors.

In the considered scenario, the set of network nodes
consists of edge nodes, which represent access networks
connecting multiple users in the same region, and core
nodes, which interconnect the different access networks.
Each network node is equipped with caching capabilities,
enabling a set of content items to be stored locally. These
local caches could be external storage modules attached
to routers or, with the advent of flash drive technology,
integrated within routers.

All content requests are received at the edge nodes.
If a requested content item is available in the local cache
of the corresponding edge node, it is served locally. Oth-
erwise, the request is redirected to one of the caches in
the network where the requested item is stored. In case
a copy of the item is not available in the ISP network,
the request is served from the origin server outside of the
network, hosted by the content provider. As depicted in
Figure 1, the request for content x1 received at edge node
E2 is served locally, whereas the request for content x1
received at edge node E1 is redirected to and served by
node E2. In line with previous related research by Apple-
gate et al. (2010), we assume that traffic is routed over the
shortest path, which was shown to be more realistic than
arbitrary routing (Garg and Konemann, 2007).

In this scenario, the ISP leases the caching space in its
network to one or more content providers. Each content
provider specifies the amount of caching capacity it wishes
to lease for storing part of its content catalog, while the
ISP decides which content items will be stored and where.
The optimal placement of content in terms of network re-
source utilization depends on the geographical distribution
of requests, the content popularity and the network topol-
ogy. To minimize the resource utilization while simulta-
neously maximizing the total hit ratio (i.e., reducing the
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Figure 2: Popularity curve of the considered VoD trace.

number of requests that have to be served from outside the
network), this paper proposes a hybrid multi-tenant cache
management approach where the ISP controls the parti-
tioning of the available storage space between the content
providers. In the proposed hybrid approach, part of the
available caching capacity is allocated and managed ac-
cording to a proactive cache management strategy, while
the rest is controlled through a reactive approach. The
proactive placement algorithm is executed periodically by
a central manager to allocate the proactive part of the ca-
pacity across the network based on the predicted value of
the content popularity and its geographical distribution.
In contrast, the reactive approach is applied at each cache
independently and serves as a buffer to react locally to
unpredicted popularity changes.

3.2. VoD trace characteristics

To evaluate the proposed approach, a request trace of
the VoD service of a leading European telecom operator
has been used. The trace was collected between Satur-
day February 6, 2010 and Sunday March 7, 2010 and con-
tains monitoring information for a period of 30 days. Due
to a failure of the probing nodes, a couple of hours of
monitoring data was missing for both February 12, 2010
and February 19, 2010. These gaps have been filled by
considering the request pattern of the same period in the
previous week, mapped on the content popularity of the
same period in the last day. The resulting trace consists of
108,392 requests for 5644 unique videos, originating from
8825 unique users spread across 12 cities. Figure 2 shows
the popularity curve of the VoD trace. In this paper, all
movies are considered to have an equal duration of 90
minutes and a bit rate of 1Mbit/s, resulting in a size of
675Mbyte for each video. The entire video catalog size
thus amounts to about 3.64Tbyte. Each movie is requested
in a segmented way, as is often the case in modern stream-
ing technologies (e.g., Apple HLS, MPEG DASH), with
a fixed duration of 1 second each. When multi-tenancy is
considered, the set of movies in the VoD trace is uniformly
split between the different content providers.

The daily number of requests and unique requested
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Figure 3: Request pattern and number of daily unique content items
in the considered VoD trace.

videos in the considered VoD trace are depicted in Fig-
ure 3. In this graph, a clear weekly pattern can be ob-
served. The five peaks in the request pattern correspond to
the five weekends, with increased activity on Friday, Satur-
day and Sunday. As only per-day aggregates are shown for
the sake of visibility, the underlying diurnal trend cannot
be observed. For Wednesdays and Sundays, the activity
peak is situated between 4:30pm and 6:30pm, while for the
other days of the week, the largest number of requests is
reported between 8pm and 10pm. On average, 3613 re-
quests for 1012 unique movies, i.e., about 18% of the total
movie catalog, are monitored per day.

3.3. Request prediction

To be able to take proactive decisions concerning con-
tent placement, predictions about the content popularity
in the considered period have to be made. Content popu-
larity prediction is a complex issue that is outside the scope
of this paper. Therefore, in this paper we apply a simple
request prediction strategy based on the characteristics of
the VoD trace described in the previous section.

The request pattern consists of multiple types of infor-
mation: (i) the request intensity, i.e., the total number of
requests in the network, over time, (ii) the geographical
distribution of the requests, and (iii) the relative content
popularity, i.e., the distribution of the requests amongst all
the content items. As shown in Figure 3, a clear weekly
pattern can be identified for the request intensity of the
VoD trace. Based on this observation, the request inten-
sity and the geographical distribution of requests of the
same period of the previous week are used for predicting
the request pattern in a specific period. However, given
the highly dynamic nature of video popularity, such an
approach cannot be used to predict content popularity.
Although some request intensity trends can be identified
for each day of the week, it is more likely that the change in
popularity of a given content item will be more significant
over a week than between two consecutive days. Based on
the results reported in our previous work (Claeys et al.,
2014b), we use the content popularity of the last 3 days to
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predict the popularity of specific content items as it was
shown to result in the highest prediction accuracy.

To estimate the quality of the prediction, we define
an accuracy metric as follows. When the total amount of
leased capacity is equal to the combined size of y videos,
the accuracy of the y most popular content items in the
request prediction is crucial for the performance of the sys-
tem, as these items are most likely to be cached. Therefore,
we define the prediction accuracy in a specific period as the
ratio between the relative number of requests for the pre-
dicted y most popular videos, denoted as rpred, and for the
actual y most popular videos, denoted as ract, over that
period. For example, we consider a total amount of leased
capacity of y =100 videos. If the set of 100 videos that are
predicted to be the most popular accounts for rpred=50%
of all requests in the considered period while the actual
100 most popular videos during that period amount for
ract=65% of the requests, the accuracy of the popularity
prediction is said to be 76.92% (=

rpred
ract

= 50%
65% ).

Figure 4a shows the average prediction accuracy for
different amounts of leased capacity (expressed relatively
to the total catalog size), in terms of the length of the
predicted period. It can be observed that the prediction
accuracy increases with the predicted period length, up
to a length of 24h. This can be explained by the charac-
teristics of the content popularity. Typically, requests for
popular content are spread over the day while less pop-
ular content is only requested a few times a day at spe-
cific points in time. As the considered period of time de-
creases, the number of unique requested videos decreases
and the steepness of the popularity curve significantly re-
duces. Therefore, the shorter the time period, the harder
the content popularity prediction. In addition, due to the
highly dynamic nature of the content popularity and the
relatively short popularity lifetime of video content, the
prediction accuracy degrades when the predicted period
length exceeds 24h. Furthermore, it can be seen that the
prediction accuracy is rather insensitive to the amount of
leased capacity. However, this does not mean that the
popularity of less popular content is as easy to predict as
for more popular content. Because of the steep popularity
curve of the considered VoD trace, shown in Figure 2, the
vast majority of cache hits is for the most popular content,
making these content items the decisive factor in the ac-
curacy metric (which is based on cache hits). Therefore,
the decreasing accuracy of predicting less popular content
does not have a significant influence on the total prediction
accuracy.

In the considered VoD request trace, a significant part
of daily requests (17.92% on average) is for videos that
were not requested in the recent history of 3 days. Even
when longer history windows of up to one week are used,
about 15% of the requests remains for unseen content.
None of these requests can be predicted using pure history-
based prediction techniques. The prediction of requests
for new content is an active research area and previous re-
search efforts have proposed to extract information about

future blockbuster movies, for example based on activity
trends on social media (Asur and Huberman, 2010), using
collaborative filtering models (Koren, 2008) or relying on
life span patterns of video popularity (Zhou et al., 2015;
Yu et al., 2006). In this work, we assume that we are in-
formed about a short list of the most popular blockbuster
movies on a daily basis, regardless of the technique used to
extract this information (i.e., a limited number of the most
popular movies are assumed to be known by the system in
advance, based on external information). Figure 4b and 4c
show the influence of the number of informed blockbuster
movies on the average prediction accuracy and its standard
deviation, respectively. It can be seen that, for example
in a scenario where predictions are made every 24h, even
with a limited amount of 10 informed blockbuster movies
(about 1% of the requested movies per day on average),
the average prediction accuracy is increased by 5% while
its standard deviation is decreased by 41% compared to
the pure history-based prediction. This shows that besides
increasing the average prediction accuracy, using knowl-
edge about blockbuster movies significantly stabilizes the
prediction accuracy over time. For example, information
about 10 blockbuster movies lowers the difference between
the highest and the lowest prediction accuracy over time
from 28% to 18%.

3.4. Popularity prediction limitations

As described in the previous section, exogenous infor-
mation can be used to predict blockbuster movies. How-
ever, this can only be done for a small fraction of popular
content. A significant part of new content remains unpre-
dicted. In addition, Figure 5 shows the average shifting
probabilities in the VoD trace. The plot shows the per-
centage of content items that shifts from a given popular-
ity category to another category on average. It is impor-
tant to note that while the different popularity categories
are unevenly sized in terms of number of contents, each
category accounts for a similar number of requests. For
example, the 2.5% most popular content items on a given
day account for 29% of the requests on average, while the
80% least popular content items (i.e., category 100% in
Figure 5) account for 33% of the requests on average. It
can be observed that the content popularity in the con-
sidered trace is very volatile. For example, on average,
24.60% of the 2.5% to 5% most popular movies on a given
day are not requested at all the next day. Furthermore,
it can be deduced from Figure 5 that on average more
than 13% of the top 2.5% most popular content was not
requested the day before2. These findings strongly limit
the possibilities of popularity prediction techniques. When
considering time periods shorter than 24h, the fluctuation

2On average, 82.07% of all content is not requested on a single
day, 0.40% of which is in the 2.5% most popular content the next
day. This amounts to 0.33% of the total content catalog, or 13.2%
of the 2.5% most popular content.
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Figure 4: Analysis of the prediction accuracy for the VoD trace.
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in content popularity becomes even more significant, re-
sulting in a lower prediction accuracy. Additionally, it can
be observed from Figure 5 that the fluctuation in popu-
larity grows for less popular content. Therefore, when less
popular content is cached, it is more likely to be replaced
in the next reconfiguration phase, resulting in additional
migration overhead.

4. Hybrid cache management

As shown in previous work, proactive content place-
ment can result in more efficient resource usage, compared
to reactive cache management (Claeys et al., 2014b). How-
ever, it was shown that the achievable performance gain
strongly depends on the accuracy of the popularity pre-
diction. As described in Section 3.4, the characteristics of
the VoD trace limit the accuracy of the request prediction.
To deal with these limitations, a hybrid caching approach
is proposed, applying both proactive and reactive caching
techniques. A proactive content placement is performed

periodically, based on a prediction of the content popular-
ity, while part of the capacity is used for reactive caching
in order to react to unexpected popularity fluctuations.
It is important to note that even though the performance
of both the proactive approach and the hybrid approach
will be influenced by the quality of the request prediction,
the hybrid approach will always benefit from the reactive
caching part to deal with new popular content that will
inevitably be missed by the request prediction strategy, as
discussed in Section 3.4. Therefore, even though the opti-
mal cache division might change, the hybrid approach will
always outperform both the proactive and reactive caching
approaches, or at least perform equally as good as the best
of the two approaches.

First, some general notations are introduced in Sec-
tion 4.1. Next, the hybrid cache division strategy is pre-
sented in Section 4.2. Finally, Section 4.3 describes the
proactive placement algorithm.

4.1. General notations

To support the description of the algorithm, we first in-
troduce some general notations used to represent the char-
acteristics of the considered scenario. The notations are
summarized in Table 1. The network topology is modeled
as a directed graph G = (N,L) with N and L representing
the set of nodes and links, respectively. The set of nodes
contains both the nodes NISP , belonging to the ISP net-
work, and an external server node S, logically represent-
ing the Internet, containing all content of all providers.
NISP can further be divided in a set of core nodes NC and
edge nodes NE . The links L can be divided into a set of
links, LS , connected to the external server (i.e., the ingress
links), and ISP-managed links LISP , connecting core and
edge nodes. For each node n ∈ N , we define a caching ca-
pacity cn ∈ N+ and a set of incoming and outgoing links,
denoted by In ⊆ L and On ⊆ L, respectively. For every
link l ∈ L, the available bandwidth capacity is denoted
by cl ∈ N+. The routing strategy applied in the network
is represented by a forwarding path Rs,d ⊆ L, for every
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Table 1: Summary of the general notations.

Notation Description
N Set of network nodes.

S ∈ N Server node.
NISP ⊂ N Set of ISP-managed nodes.
NC ⊂ NISP Set of core nodes.
NE ⊂ NISP Set of edge nodes.

L Set of network links.
LS ⊂ L Set of ingress links.
LISP ⊂ L Set of ISP-managed links.
cn ∈ N+ Storage capacity of node n ∈ N .
In ⊆ L Set of incoming links of node n ∈ N .
On ⊆ L Set of outgoing links of node n ∈ N .
cl ∈ N+ Bandwidth capacity of link l ∈ L.
Rs,d ⊆ L Routing path from s ∈ N to d ∈ N .

P Set of content providers.
dp ∈ N+ Caching space leased by p ∈ P .
Op Content items offered by p ∈ P .

O =
⋃
p∈P O

p Total set of offered content items.

so ∈ N+ Size of content item o ∈ O.
bo ∈ N+ Bit rate of content item o ∈ O.

source-destination pair (s, d) ∈ N × N . The forwarding
path can be divided into a set of server links RSs,d ⊆ LS ,
containing the links in the forwarding path connected to
the external server node S, and a set RISPs,d ⊆ LISP con-
taining the other links in the forwarding path, inside the
ISP network.

A set of content providers P lease caching space from
the ISP. For each content provider p ∈ P , the leased
amount of caching space and the set of offered content
items are denoted by dp ∈ N+ and Op, respectively. O =⋃
p∈P O

p represents the entire set of offered content. Ev-

ery content item o ∈ O has an associated size so ∈ N+ and
bit rate bo ∈ N+.

4.2. Cache division

In the proposed hybrid caching approach, a relative
part λ ∈ [0; 1] of the leased capacity for each provider is
used as a reactive cache, for example applying the Least
Recently Used (LRU) replacement strategy. The remain-
ing part (1−λ) of the leased capacity is used for proactive
placement. The value of λ is called the reactive ratio of
the hybrid caching system. When a provider p ∈ P leases
a capacity of dp bytes, then λ × dp bytes are used for re-
active caching, while the remaining (1− λ)× dp bytes are
used for proactive placement.

Instead of using a fixed reactive ratio on every node,
the reactive part of the leased capacity is uniformly dis-
tributed across the entire topology, proportional to the
storage capacity of the nodes. In this way, the entire net-
work is provided with reactive caching capacity to deal
with unexpected popularity fluctuations, independently of
the geographical distribution of the predicted request pat-
tern. When λ× dp bytes are used for reactive caching for

provider p ∈ P , on every node n ∈ NISP , the number of
bytes allocated for reactive caching for provider p can be
calculated using Equation (1).

cn ×
λ× dp∑
n′∈NISP

cn′
(1)

The remaining leased capacity of (1 − λ) × dp bytes
are used for proactive placement. The allocation of this
capacity, spread across the network, is based on the ILP
model, described in Section 4.3. For each node n ∈ NISP ,
the total capacity available for proactive placement cpron

can be calculated using Equation (2).

cpron = cn −
cn × λ×

∑
p∈P dp∑

n′∈NISP
cn′

(2)

Using this hybrid approach, the geographical distribu-
tion of the allocation of proactive caching capacity is based
on the predicted request pattern, allocating more capacity
where more requests are expected. However, by uniformly
distributing the reactive capacity, every area in the net-
work is provided with some backup capacity to deal with
possible errors in the request prediction or rapid popular-
ity fluctuations.

4.3. Proactive placement

The ILP, used to model the considered problem, is
a modified version of the ILP described in our previous
work (Claeys et al., 2014b). The modifications handle the
difficulty in accurately predicting the exact time points at
which a request will be sent. Therefore, while the ILP
model in our previous work required the prediction of spe-
cific time points of requests, the modified ILP requires
more realistic aggregated request predictions (i.e., the to-
tal number of predicted requests over the considered pe-
riod instead of exact timing information of each request).
Furthermore, the current placement configuration is taken
into account in order to limit the migration overhead.

In the remainder of this section, the input values, the
decision variables, the objective functions and the con-
straints of the ILP are presented.

4.3.1. Input values

The objective of the proposed approach is to periodi-
cally compute a new caching configuration based on the es-
timation of content popularity and geographical distribu-
tion of requests for the next provisioning interval. As such,
besides the characteristics of the network topology, the
content catalog and the leased capacity for each provider,
a prediction of the request pattern for the considered time
interval is required by the algorithm at each reconfigura-
tion step to determine a new content placement and server
selection strategy. In addition to the general notations in-
troduced in the previous section, we note ro,d ∈ N as the
predicted number of requests for content o ∈ O, originat-
ing from edge node d ∈ NE in the considered provisioning
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interval. No ⊆ NE represents the set of edge nodes re-
questing content o ∈ O in the considered interval. To be
able to take into account the current placement configura-
tion, an additional notation Xn ⊆ O is introduced for each
node n ∈ N , representing the set of content items that are
currently stored at node n.

4.3.2. Decision variables

A solution to the content placement problem is trans-
lated into binary decision variables xn,o ∈ {0, 1} defining if
a node n ∈ N is used to store content o ∈ O. In addition,
auxiliary decision variables zn,o,d ∈ {0, 1} are introduced
to represent the server selection strategy. These variables
define if a node n ∈ N is used to store content o ∈ O to
be delivered to edge node d ∈ NE .

4.3.3. Objective function

Different optimization criteria have been considered in
the literature (Sharma, 2013; Laoutaris et al., 2006; Ap-
plegate et al., 2010). Even though other metrics such as
delivery delay minimization or link load minimization can
easily be integrated in the problem formulation, in this
paper we focus on reducing the ISP network resource us-
age. As such, we define the optimal solution to the prob-
lem as the one minimizing the bandwidth usage inside the
ISP network. While calculating the bandwidth usage, a
weighting factor α ∈ [0; 1] can be used to define the im-
portance of ingress link usage. In this way, the objective
function can be tuned to purely optimize bandwidth us-
age or to focus on optimizing the hit ratio. Low values of
α steer the ILP to minimize the bandwidth usage within
the ISP network. In contrast, higher values of α result in
minimizing the bandwidth usage on the ingress link, yield-
ing a maximization of the hit ratio. In this work, we focus
on optimizing the total bandwidth usage, considering both
the server link usage and the bandwidth usage inside the
ISP network. Therefore, a value of α = 0.5 is used, unless
otherwise stated. The link weight ωl of a link l ∈ L is
shown in Equation (3).

ωl =

{
α if l ∈ LISP

1− α if l ∈ LS
(3)

In order to minimize the total bandwidth usage in the
ISP network, the bandwidth usage incurred by the video
streaming sessions is modeled in the basic objective func-
tion (Equation (4)). However, besides the video stream-
ing sessions, the periodic content migrations significantly
influence the total bandwidth usage. Therefore, this mi-
gration overhead can be taken into consideration in the
objective function as well, based on the current storage
configuration as shown in Equation (5). Content that has
to be placed at a specific node is fetched from the server
node S. In the overhead-aware objective function, shown
in Equation (6), both the video streaming bandwidth and
the migration overhead are taken into account. It can be

seen that only the streaming bandwidth objective func-
tion (Equation (4)) depends on predicted values (i.e., the
predicted request intensities ro,d). All remaining variables
have known values. In the remainder of this paper, we will
refer to Equation (4) and Equation (6) as the basic objec-
tive function and the overhead-aware objective function,
respectively, both of which are subject to minimization in
the considered ILP.

BWstr =
∑
n∈N

∑
o∈O

∑
d∈No

∑
l∈Rn,d

ωl × ro,d × so × zn,o,d (4)

BWmig =
∑
n∈N

∑
o∈O\Xn

∑
l∈RS,n

ωl × so × xn,o (5)

BW = BWstr +BWmig (6)

4.3.4. Constraints

Multiple constraints are considered to define the set
of valid solutions to the considered optimization prob-
lem. First of all, auxiliary constraints are introduced to
formalize the relationship between the x and z decision
variables. The constraints presented in Equation (7) and
Equation (8) specify that content o ∈ O is stored at node
n ∈ N if and only if at least one edge node d ∈ NE requests
o from n.

∀n ∈ N, ∀o ∈ O,∀d ∈ NE : zn,o,d ≤ xn,o (7)

∀n ∈ N, ∀o ∈ O : xn,o ≤
∑
d∈NE

zn,o,d (8)

A valid solution to the optimization problem is so that
the caching space reserved for each content provider p ∈ P
is at most equal to the part of the leased capacity assigned
for proactive content placement, while satisfying the stor-
age capacity limitations. These constraints are modeled in
Equation (9) and Equation (10), respectively.

∀p ∈ P :
∑

n∈NISP

∑
o∈Op

so × xn,o ≤ (1− λ)dp (9)

∀n ∈ NISP :
∑
o∈O

so × xn,o ≤ cpron (10)

Finally, constraint Equation (11) ensures that every
request is served from exactly one location.

∀o ∈ O,∀d ∈ No :
∑
n∈N

zn,o,d = 1 (11)

Periodically solving the ILP results in a storage pro-
file represented by the values of xn,o and a server selec-
tion strategy represented by the values of zn,o,d, which
minimizes the objective function in Equation (4) or Equa-
tion (6), while satisfying the constraints in Equation (9) –
Equation (11). Every request from edge node d ∈ NE for
content o ∈ O is served from node n ∈ N where zn,o,d = 1,
using the shortest path Rn,d.

For the reader’s reference, the algorithm-specific nota-
tions are summarized in Table 2.
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Table 2: Summary of the algorithm-specific notations.

Notation Description
λ ∈ [0; 1] Reactive ratio.
cpron ∈ N+ Proactive capacity of node n ∈ NISP .
ro,d ∈ N Nr. of requests for o ∈ O from d ∈ NE .
No ⊆ NE Edge nodes requesting o ∈ O.
Xn ⊆ O Content items stored at node n ∈ N .

xn,o ∈ {0, 1} o ∈ O placed on n ∈ N .
zn,o,d ∈ {0, 1} o ∈ O placed on n ∈ N for d ∈ NE .
wl ∈ [0; 1] Weight of link l ∈ L.

5. Evaluation setup

To thoroughly evaluate the performance of the pro-
posed approach, a topology based on the GÉANT net-
work3 is used, consisting of 23 nodes. As described in
Section 3.2, the considered VoD request trace contains
12 cities, which are mapped on 12 edge nodes (NE =
{E1, ..., E12}). One node is selected as the external server
node S, storing all content of all content providers. The
10 remaining nodes are modeled as core nodes (NC =
{C1, ..., C10}). The resulting topology is shown in Fig-
ure 6. In this topology, shortest path routing based on
hop count is applied.

C1

C4

C7C8

C9

C3

C5

C6
C2

S

E1
E2

E3

E5

E6

E7 E8

E9

E10

E12

E4

E11

C10

500Mbit/s
1Gbit/s

Figure 6: Evaluated GÉANT-based topology.

As preliminary evaluations have shown that the node
capacities have limited influence on the performance of the
approach, unless otherwise stated, the storage capacity of
each core node was set high enough to be able to accom-
modate the leased capacity of all tenants throughout the
evaluations. Concretely, for every core node n ∈ VC , the
capacity is defined as cn =

∑
p∈P dp. The capacity of

the edge nodes is fixed to half of the capacity of the core
nodes, i.e., cn = 0.5×

∑
p∈P dp,∀n ∈ VE . The bandwidth

capacity of the links interconnecting core nodes and links
connected to the server node is set to 1Gbit/s while all
other links have a bandwidth capacity of 500Mbit/s.

Throughout the evaluations, the performance of the
proposed approach is compared to a purely reactive ap-
proach. For the reactive approach, the LRU replacement

3GÉANT Project - http://www.geant.net

strategy is applied, while the leased capacity is uniformly
spread across the network, proportional to the node capac-
ities. All requests are sent to the origin server S, applying
reactive caching. Consequently, the reactive approach can
result in a configuration where only parts of a movie are
available at a given node. In contrast, the proactive ap-
proach either places an entire movie at a specific node or
does not store it there at all.

Experiments have been performed for all of the 30 days
in the VoD trace, while only evaluating the last 23 days
(from February 13, 2010 to March 7, 2010). The first
7 days of the trace were used for obtaining the request
prediction used in the proactive approach and serve as a
cache-warming phase for the reactive approach. To peri-
odically determine the proactive placement configuration,
the ILP is solved using the IBM ILOG CPLEX Optimiza-
tion Studio 12.4 solver.

6. Evaluation results

To characterize the performance of the proposed ap-
proach, multiple performance indicators are evaluated:

• Hit ratio: the relative amount of segment requests
that could be served from within the ISP network
(in %).

• Average bandwidth usage: the average band-
width usage in the entire ISP network (in Mbit/s),
including both the video streaming bandwidth and
the content migration bandwidth induced by the pro-
active placement.

• Migration overhead: the total amount of data
transfer induced by the proactive content placement
(in Gbyte).

• Average hop count: the average number of links a
segment crosses between its storage location and the
requesting client. This metric indicates how close
the relevant movies are stored to the end-users.

First, the different aspects of the proposed hybrid cache
management approach are evaluated in Section 6.1. Next,
the performance of our approach is compared to a purely
proactive and a purely reactive cache management ap-
proach in Section 6.2.

6.1. Influence of the system parameters

In this section, the optimal configuration of the pro-
posed approach is determined, starting from a purely pro-
active approach (λ = 0) using the basic objective function
(Equation (4)) without blockbuster movie knowledge and
gradually evaluating the added value of more complexity.
Unless stated differently, in all of the evaluations, the con-
tent catalog has been uniformly distributed between two
content providers, each leasing storage capacity to accom-
modate 2.5%, 5% or 10% of their total movie catalog.
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6.1.1. Proactive placement frequency

The frequency at which a new proactive placement con-
figuration is computed defines a trade-off between opti-
mality and overhead. While more frequent reconfigura-
tions allow the system to be more reactive with respect
to changes in the request pattern, this comes at the cost
of more frequent content migrations. Figure 7 shows the
influence of the length of the time interval between sub-
sequent content placements on multiple performance in-
dicators. For these evaluations, a purely proactive ap-
proach has been applied using the basic objective function
without blockbuster movie knowledge. As could be ex-
pected, Figure 7a shows that the content migration over-
head strongly increases when more frequent reconfigura-
tions are performed, independently of the leased capacity.

Remarkably however, less frequent reconfigurations also
result in a higher performance in terms of hit ratio and
average bandwidth usage, as can be seen in Figure 7b
and Figure 7c, respectively. This counter-intuitive result
can be explained by the characteristics of the VoD request
trace and the applied prediction strategy, discussed in Sec-
tion 3.3. As was shown in Figure 4a, the prediction accu-
racy significantly decreases when predictions are made for
shorter periods of time. In the case of more frequent re-
configurations, the low prediction accuracy results in more
requests that have to be fetched from the origin server,
resulting in longer routing paths, which lead to higher
bandwidth usage and lower hit ratio. Similar observations
can be made for the average hop count, which is on av-
erage 4.87% lower when placements are performed every
24h compared to every 6h (graphs omitted due to space
limitations). Given the performance degradation in terms
of prediction accuracy for periods longer than 24h (as de-
scribed in Section 3.3) and the strong diurnal pattern in
the request trace, reconfiguration frequencies lower than
once every 24h have not been considered in the analysis.

The influence of the proactive placement frequency on
the average time needed by the CPLEX solver to solve
the ILP is presented in Figure 8. The error bars show
the standard deviation. It can be seen that the execution
time significantly increases with the content placement in-
terval, as an increasing number of requests results both
in a higher number of decision variables and constraints
and an increased complexity for the objective function of
the ILP. The high standard deviation values are due to
the high fluctuation of the request intensity over time as
shown in Figure 3. However, it can be seen that in the
considered scenario, the average time needed to solve the
ILP is reasonable compared to the placement interval (e.g.,
15s every 24h on average for a leased capacity of 10%).

In the remainder of this paper, we assume that the
proactive placement is performed every 24h given that this
frequency results in the best performance. Furthermore,
this allows the ISP to perform content migrations in off-
peak hours (e.g., at night).

Table 3: Stability of the content popularity.

Amount∗ Stability
2.5% 61.28%
5% 57.41%
10% 53.89%
20% 51.41%
100% 37.30%

∗Relative to the total number of re-
quested contents on given day.

6.1.2. Overhead-aware placement

The benefits of adding overhead-awareness to the pro-
active placement are evaluated in a purely proactive sce-
nario without blockbuster movie knowledge. Figure 9 shows
the relative performance of the approach using the overhead-
aware objective function compared to the performance of
the approach using the basic objective function. It can
be seen that taking into account the migration overhead
in the placement decisions drastically reduces the migra-
tion overhead by 37.49% on average. Furthermore, the
reduction in terms of migration overhead results in 3.33%
less bandwidth usage on average. Given that, on average,
the bandwidth introduced by the content migration only
amounts to about 10% of the total bandwidth usage, this
bandwidth reduction can be fully attributed to the reduced
migration bandwidth. The deviation of the bandwidth us-
age introduced by the streaming sessions is limited to less
than 1%. With a relative gain of 1.37% and 0.3% respec-
tively, the influence on the performance in terms of hit
ratio and average hop count is negligible. Furthermore,
due to its higher complexity, using the overhead-aware ob-
jective function results in a (limited) increase of 6.99% in
terms of the average time needed to solve the ILP.

As can be observed in Figure 9, the benefits of intro-
ducing overhead-awareness to the system increase when
more capacity is leased. The explanation for this obser-
vation can be found in the shifting characteristics of the
VoD request trace. Based on Figure 5, we can calculate
the average percentage of the x most popular content on
a given day that still belongs to the x most popular con-
tent on the next day with x being equal to 2.5%, 5%, 10%,
20% or 100% of the total number of content requested on a
given day. The resulting values, referred to as the stability
of the content popularity, are shown in Table 3. It can be
seen that the stability of the popularity decreases when a
higher amount of content is considered.

When more capacity is leased, content items with a
lower popularity can also be cached proactively. However,
as demonstrated, these items change more frequently than
the popular ones. By adding overhead-awareness to the
system, the placement algorithm can balance the band-
width gain of placing the less popular content in the net-
work against the cost of migrating the content. For pop-
ular content, the streaming bandwidth reduction exceeds
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(a) Influence of the proactive placement
frequency on the total migration overhead.
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(b) Influence of the proactive placement
frequency on the hit ratio.
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(c) Influence of the proactive placement
frequency on the average bandwidth usage
in the network.

Figure 7: Influence of the proactive placement frequency in a purely proactive scenario using the basic objective function without blockbuster
movie knowledge.
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Figure 8: Influence of the proactive placement frequency on the av-
erage time needed to solve the ILP.
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Figure 9: Influence of overhead-awareness in proactive content place-
ment on different evaluation criteria.

the migration cost, while this may no longer be the case
for less popular content. Therefore, overhead-awareness
adds more value when less popular content can be placed
in the network.

In the remainder of the evaluations, the overhead-aware
objective function is used to calculate the proactive place-
ment configuration.

6.1.3. Blockbuster movie knowledge

As shown in Section 3.3, the accuracy of the popular-
ity prediction can be increased based on the availability
of exogenous information about blockbuster movies. The
influence of this information on the performance of the
proposed approach in terms of hit ratio is shown in Fig-
ure 10. As expected, the perceived hit ratio increases with
the number of known blockbuster movies. It is also in-
teresting to see that the performance increase in terms
of hit ratio exceeds the increased prediction accuracy. For
example, when the leased capacity is equal to 5% of the to-
tal content catalog, knowledge about 5 blockbuster movies
leads to a relative increase of 3.97% in terms of prediction
accuracy (Figure 4b), while the relative improvement in
terms of perceived hit ratio amounts to 17.22% (i.e., an
absolute increase of 4.18% compared to the original hit
ratio of 24.27%, see Figure 10).

To clarify this observation, it is important to note that
the goal of the proactive placement is to minimize the
bandwidth usage. Therefore, storing duplicates of pop-
ular content can be preferred over storing as much unique
content items as possible, causing the perceived hit ratio
to be lower than what could be achieved based on the pre-
diction accuracy. This means that some of the less popular
content items are not selected by the placement algorithm,
even though they could be cached given the value of the
prediction accuracy metric. The information about block-
buster movies can be used to derive the real popularity of
some of these content items, resulting in a higher hit ratio
and this without affecting the prediction accuracy.

In terms of average bandwidth usage and average hop
count, a relative performance increase of 5.79% and 5.65%
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Figure 10: Influence of blockbuster movie knowledge on the perfor-
mance in terms of hit ratio.

is achieved respectively, while the migration overhead is
rather unaffected (decrease of 0.12%). In what follows,
unless otherwise stated, it is assumed that the system is
informed about the 5 most popular blockbuster movies by
an external source, as described in Section 3.3.

6.1.4. Hybrid cache division

Up to now, a purely proactive approach has been fol-
lowed. In Section 4, it was argued that applying a hy-
brid caching approach can significantly improve the per-
formance of the system. To evaluate the influence of the
cache division, the reactive ratio λ has been varied be-
tween λ = 0.0 (i.e., a purely proactive approach) and
λ = 1.0 (i.e., a purely reactive approach) in a scenario
where knowledge about 5 blockbuster movies is available
for the request prediction and the overhead-aware objec-
tive function is used. The proactive placement configura-
tion is recalculated every 24h.

Figure 11 shows the influence of the reactive ratio λ on
the hit ratio, the average bandwidth usage and the aver-
age hop count of the proposed approach. It can be seen
that, in the majority of the cases, both the purely pro-
active and the purely reactive approach are outperformed
by the hybrid scheme in terms of hit ratio, average band-
width usage and average hop count (i.e., for 79%, 94%
and 78% of the λ values, respectively). Given that the
lease constraint (Equation (9)) of the placement ILP lim-
its the amount of placed content to the size of (1−λ)dp for
each provider p ∈ P , the migration overhead decreases lin-
early with increasing reactive ratio λ (graph omitted due
to space limitations).

The reactive ratio that gives the optimal performance
in the considered scenario depends on the considered met-
ric. However, as can be seen in Figure 11, a wide range of
ratios has a performance close to the performance of the
optimal ratio for each of the metrics. To be able to select
a single ratio, the different metrics should be optimized
simultaneously. Therefore, for each evaluated metric M
and each reactive ratio λ, we define the deviation from the
optimum δMλ as shown in Equation (12). It is calculated
as the ratio between the performance of reactive ratio λ

in terms of metric M , denoted as φMλ , and the optimal
performance for that metric, ωM . ωM is defined as the
maximum or minimum value φMλ′ ,∀λ′ ∈ [0; 1], depending
on whether metric M should be maximized or minimized
respectively.

δMλ =

∣∣∣∣1− φMλ
ωM

∣∣∣∣ (12)

For each reactive ratio λ the average value of δMλ for
the considered metrics (M1: hit ratio, M2: average band-
width usage and M3: average hop count) can be calculated

as ∆λ = 1
3

(
δM1

λ + δM2

λ + δM3

λ

)
, representing how close the

performance is to the optimal performance on average.
Figure 12 shows the average deviation from the optimum
for different amounts of leased capacity. It can be seen
that the optimal ratio slightly increases with an increasing
amount of leased capacity. This can be explained by the
growing performance of LRU for bigger caches and the re-
duced stability of the content popularity for less popular
content. On average, the optimal performance is achieved
with a reactive ratio λ = 0.41.

6.1.5. Reactive ratio adaptation

As described in Section 1, the performance of the pro-
active placement approach strongly depends on the quality
of the popularity prediction. Given that the prediction ac-
curacy fluctuates over time, the optimal reactive ratio λ is
also subject to change. Therefore, changing the reactive
ratio over time might be considered. For example, Fig-
ure 13 shows the optimal reactive ratio λ over time at a
granularity of 6h for different amounts of leased capacity
in order to maximize the hit ratio. It can be seen that the
optimal ratio indeed strongly fluctuates over time without
following any well-defined pattern.

Figure 14 shows the relative hit ratio when using a
fixed reactive ratio λ = 0.41 compared to using the opti-
mal ratios shown in Figure 13 at a granularity of 6h. It
can be seen that the hit ratio using a fixed reactive ra-
tio is close to the optimal adaptive performance, with an
average deviation of only 2.90%. Furthermore, it is impor-
tant to note that the optimal performance is a theoretical
optimum that would require to be able to determine the
optimal reactive ratio at any point in time.

Adaptively changing the reactive ratio λ would intro-
duce a lot of added complexity to the system, as it re-
quires to be able to monitor the accuracy of the request
prediction. Furthermore, given the noisy pattern shown
in Figure 13, the accuracy of predicting the optimal ratio
would be limited, resulting in a lower performance gain
than theoretically possible. In addition, changing the re-
active ratio demands a reconfiguration of both the reac-
tive and the proactive cache at every single node in the
network, again introducing additional migration overhead.
Given this high level of complexity and the limited theo-
retical performance increase that could be achieved in the
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hit ratio.
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(b) Influence of the reactive ratio λ on the
average bandwidth usage.
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(c) Influence of the reactive ratio λ on the
average hop count.

Figure 11: Influence of the reactive ratio λ on the performance of the hybrid caching approach.
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Figure 12: Influence of the reactive ratio λ on the average deviation
from the optimum.

0 5 10 15 20 25 30
Time (days)

0.0

0.2

0.4

0.6

0.8

1.0

O
p
ti
m

a
l r

e
a
ct

iv
e
 r

a
ti
o
 λ

fo
r 

h
it
 r

a
ti
o

Leased capacity

2.5%
5%
10%

Cache warming phase

Figure 13: Optimal reactive ratio λ over time.
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Figure 14: Relative hit ratio with λ = 0.41 compared to an adaptive
reactive ratio.

considered scenario, a fixed reactive ratio is proposed in
practice.

6.1.6. Number of tenants

Up to now, all the evaluations have been performed for
two content providers. To show the applicability of the
proposed approach in the general case, evaluations have
been performed for multiple tenants leasing storage capac-
ity from the ISP. For this purpose, the VoD movie catalog
of 5644 movies has been uniformly split amongst the ten-
ants (i.e., each movie in the catalog has been randomly
assigned to one of the tenants with equal probability).
Even though the characteristics of the request trace and
the content catalog are unchanged and the total amount
of leased capacity across the tenants remains the same
in all the evaluations (i.e., independent of the number of
tenants), the results of the proactive placement approach
are influenced by the multi-tenancy. Given the leased ca-
pacity constraint (Equation (9)) for each provider, a fixed
amount of content items has to be stored for each provider
to meet their capacity requirements, even though other
providers might have more popular content. In contrast,
in a scenario with a single content provider, only the glob-
ally most popular content will be proactively placed. Fig-
ure 15 shows the influence of the number of tenants on
the hit ratio, the average bandwidth usage and the aver-
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age hop count. It can be seen that the influence of in-
creasing the number of tenants from 1 to 10 is limited to
a relative performance degradation of 4.54%, 2.78% and
2.72%, respectively. These values are in line with the
degree of performance degradation obtained in both the
purely proactive and reactive cases. The results show that
the proposed approach can be applied with a fixed pa-
rameter configuration which is independent of the number
of tenants, without incurring any significant performance
degradation.

6.1.7. Server link weight

In all of the above evaluations, the server link weight α
has been fixed to 0.5 in order to optimize the bandwidth
usage. As explained in Section 4.3, the value of α can be
used to steer the placement decisions between optimizing
the bandwidth usage and optimizing the hit ratio. For
the sake of completeness, the influence of the server link
weight α on the performance of the proposed approach is
evaluated.

Figure 16 shows the influence of the server link weight
α on the performance of the hybrid caching approach with
a reactive ratio of λ = 0.41, using the overhead-aware ob-
jective function and a request prediction without knowl-
edge of blockbuster movies. The proactive placement is
performed every 24h. Using a value of α > 0.5 steers
the ILP to minimize the bandwidth usage on the server
ingress link. Minimizing the server link usage directly re-
sults in a higher hit ratio, as can be seen in Figure 16a.
In terms of bandwidth usage, Figure 16b shows a clear in-
crease for the values of α > 0.5. When the focus is given to
the ingress link bandwidth, the algorithm prefers storing
more unique movies in the network instead of duplicating
the most popular ones. This results in longer routing paths
for the popular content, introducing additional bandwidth
usage. Finally, Figure 16c shows that for large values of α,
the migration overhead is significantly reduced. This be-
havior is due to the fact that the overhead-aware objective
function is used. As all migrated content originates from
the server node, all migration overhead is routed over a
server ingress link, having a strong impact on the objec-
tive of the ILP. Placing content inside the ISP network
can decrease the streaming bandwidth usage, but for large
values of α, the bandwidth inside the ISP network is not
decisive. Consequently, large values of α will steer the
algorithm to migrate less content items.

6.1.8. Capacity limitations

Up to now, all evaluations have been performed using
overprovisioned node capacities, i.e., sufficiently high to al-
locate all of the leased capacity on a single core node. This
gave the algorithm complete freedom on how to distribute
the capacity. To demonstrate the general applicability of
the proposed approach, simulations have been performed
in a scenario where the total storage capacity available in
the network is equal to the capacity leased by all of the
tenants. As with the previous evaluations, the capacity of

the edge nodes is set to half of the capacity of the core
nodes. In this configuration, the algorithm has less free-
dom to decide how to place the content given that the
space available at each node is limited.

Figure 17 shows the performance of the proposed ap-
proach when two tenants lease storage capacity in a sce-
nario with limited node capacities, relative to the scenario
with overprovisioned nodes. It can be seen that, due to
the restricted freedom of the algorithm, the average band-
width usage is slightly increased by 2.67%. Furthermore,
the limited capacity causes the content to be stored fur-
ther away from the end user, resulting in a slight increase
of 3.85% in terms of average hop count. However, it is
interesting to note that the number of duplicated content
items is reduced, resulting in the average hit ratio being
increased by 2.85%.

6.2. Performance comparison

In this section, we compare the performance of the pro-
posed approach to a purely proactive and reactive scheme
based on the preferred parameter configuration (i.e., the
one that optimizes the performance of the hybrid scheme)
derived from the analysis in Section 6.1:

• Reconfiguration interval of 24h

• Overhead-aware objective function

• Fixed reactive ratio λ = 0.41

In this section, we consider a scenario where no knowledge
about blockbuster movies is available and a scenario where
5 blockbuster movies are known a priori. In these evalu-
ations, two content providers lease some caching capacity
from the ISP with overprovisioned node capacities.

Figure 18 shows the performance of the proposed ap-
proach, relative to a purely reactive approach in a sce-
nario where no information about blockbuster movies is
available. It can be seen that the benefits of the proposed
approach are higher for lower amounts of leased capacity.
This can be explained by the combination of the increas-
ing performance of the LRU cache replacement strategy
for larger cache sizes and the decreasing stability of the
popularity for higher amounts of leased capacity, as de-
scribed in Section 6.1.2. For the evaluated VoD scenario
and topology, the relative performance increase on average
amounts to 5.35%, 42.96% and 8.15% in terms of average
bandwidth usage, hit ratio and average hop count respec-
tively.

In the same scenario, the performance of the proposed
approach is compared to a purely proactive approach in
Figure 19. As opposed to the comparison with a reac-
tive approach, the performance gain compared to a pro-
active approach increases with the amount of leased capac-
ity. Again, this can be explained by the increasing perfor-
mance of the LRU replacement strategy and the decreas-
ing stability of the content popularity: the reactive part
of the hybrid cache covers the decreasing performance of
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(a) Influence of the number of content
providers on the hit ratio.
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(b) Influence of the number of content
providers on the average bandwidth usage.

0 2 4 6 8 10
Number of content providers

0.0

0.5

1.0

1.5

2.0

2.5

3.0

A
v
e
ra

g
e
 h

o
p
 c

o
u
n
t

Leased capacity

2.5%
5%
10%

(c) Influence of the number of content
providers on the average hop count.

Figure 15: Influence of the number of content providers on the performance of the hybrid caching approach.
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(a) Influence of the server link weight α on
the hit ratio.
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(b) Influence of the server link weight α on
the average bandwidth usage.
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(c) Influence of the server link weight α on
the migration overhead.

Figure 16: Influence of the server link weight α on the performance of the hybrid caching approach.
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Figure 17: Relative performance of the proposed approach in a sce-
nario with limited capacity compared to the scenario with overpro-
visioned capacity.
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Figure 18: Relative performance of the proposed approach compared
to a purely reactive approach when no blockbuster knowledge is avail-
able.
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the proactive placement strategy in these scenarios. The
average performance increases amount to 7.36%, 18.78%
and 5.63% in terms of average bandwidth usage, hit ra-
tio and average hop count, respectively, with 39.19% less
migration overhead.
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Figure 19: Relative performance of the proposed approach compared
to a purely proactive approach when no blockbuster knowledge is
available.

When information about 5 blockbuster movies is avail-
able on a daily basis, the same trends can be seen (graphs
omitted due to space limitations). Compared to a purely
reactive approach, the average performance increase in
terms of average bandwidth usage, hit ratio and average
hop count is equal to 9.26%, 44.34% and 8.46%, respec-
tively. Compared to a purely proactive approach, rela-
tive performance increases of 5.89%, 10.58% and 3.94%
are achieved in terms of average bandwidth usage, hit ra-
tio and average hop count, respectively, with 39.63% less
migration overhead.

7. Conclusions

In this paper, we presented a hybrid cache management
approach for ISP networks in a scenario where multiple
content providers lease caching capacity. In the proposed
approach, a part of the leased capacity is uniformly al-
located across the network and equipped with a reactive
cache replacement strategy to handle inherent inaccuracies
when predicting the content popularity. The allocation of
the remaining caching capacity is periodically reconfigured
based on predictions of the content popularity and the ge-
ographical distribution of requests.

To characterize the performance of the proposed ap-
proach in a realistic scenario, a request trace of the VoD
service of a leading European telecom operator has been
applied. While general characteristics of this trace, such
as its popularity curve and diurnal pattern, are compa-
rable to generally accepted popularity models, it contains
real-life information about the geographical distribution of
content popularity and underlying relationships between
multiple content items, which is often nonexistent in syn-
thetic models.

Thorough evaluations have shown that a hybrid cache
management approach can combine the benefits of both
a reactive approach and the purely proactive management
approach proposed in previous work (Claeys et al., 2014a,b),
outperforming both approaches in terms of multiple per-
formance indicators for a wide range of reactive ratios.
After optimizing the reactive ratio over multiple scenarios
for the evaluated VoD use-case and topology, the hybrid
cache management approach can increase the hit ratio by
18.78% and 42.96% on average, compared to the purely
proactive and the purely reactive approach using the LRU
cache replacement strategy, respectively. In terms of av-
erage bandwidth usage, the reduction amounts to 7.36%
and 5.35%, respectively. Furthermore, content is shown to
be stored closer to the end users, indicated by the average
hop count being reduced with 5.63% and 8.15%, respec-
tively. Compared to the purely proactive approach, the
hybrid caching approach introduces 39.19% less migration
overhead.

Finally, the potential benefits of adaptively changing
the cache division ratio over time in order to react to
changes in the prediction accuracy have been investigated.
It was shown that the theoretical performance gain with
respect to a static reactive ratio in terms of hit ratio is
negligible compared to the required level of added com-
plexity.

In future work, the influence of the underlying network
topology on the performance of the hybrid cache manage-
ment approach will be investigated. Furthermore, business
models will be identified for the cooperation between the
ISPs and the tenants which lease caching capacity.
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