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Abstract 



Since 2009, a 4D treatment planning workshop has taken place annually, gathering researchers 

working on the treatment of moving targets, mainly with scanned ion beams. Topics discussed 

during the workshops range from problems of time resolved imaging, the challenges of motion 

modelling, the implementation of 4D capabilities for treatment planning, up to different aspects 

related to 4D dosimetry and treatment verification.  

This report gives an overview on topics discussed at the 4D workshops in 2014 and 2015. It 

summarizes recent findings, developments and challenges in the field and discusses the relevant 

literature of the recent years. The report is structured in three parts pointing out developments in 

the context of understanding moving geometries, of treating moving targets and of 4D quality 

assurance (QA) and 4D dosimetry.  

The community represented at the 4D workshops agrees that research in the context of treating 

moving targets with scanned ion beams faces a crucial phase of clinical translation.  In the coming 

years it will be important to define standards for motion monitoring, to establish 4D treatment 

planning guidelines and to develop 4D QA tools. These basic requirements for the clinical application 

of scanned ion beams to moving targets could e.g. be determined by a dedicated ESTRO task group.  

Besides reviewing recent research results and pointing out urgent needs when treating moving 

targets with scanned ion beams, the report also gives an outlook on the upcoming 4D workshop 

organized at the University Medical Center Groningen (UMCG) in the Netherlands at the end of 

2016. 

 

1. Introduction 

Over the years, the scope of the 4D treatment planning workshop has broadened significantly. 

Initially focusing on aspects related to the treatment of intra-fractionally moving targets, the 6th and 

7th edition of the 4D treatment planning workshop addressed the entire range of motions that can 

occur, including inter-fractional changes. Motion and geometrical changes on all different time 

scales were quoted (ms – heartbeat, s – breathing, min – drifts, days – treatment response, weight 

loss/gain, filling/emptying of cavities) and corresponding treatment planning (TP) approaches were 

discussed (“plan of the day”, “plan of the beam”, “plan of the segment", “plan of the second”). While 

in past years mainly scientists and clinicians from particle radiotherapy attended the workshops, the 

present workshops featured invited speakers and attendees from conventional photon radiotherapy 

backgrounds as well. Furthermore, researchers from related fields such as biomedical engineering, 

medical imaging and computer science were represented. 

Up to now the treatment of moving targets has been entitled as a “4D problem”. Discussions 

revealed that as motions on different time scales can happen simultaneously (e.g. a tumour 

responding to treatment by shrinking is still affected by breathing motion) and thus the problem 

would be better posed using a higher dimension. The potential knowledge about the actual motion 

characteristics increases as the imaging options advance. At the same time, progress in the 

development of new radiotherapy treatment machines increases the possibilities to address the 

challenges due to motion. However, the treatment of moving targets is an indication-specific, 



patient-specific and modality-specific problem and treatment options often span over a large 

parameter phase space, which reveals the complexity of finding a “simple solution”. 

In the 6th edition of the  4D workshop held in 2014, discussing technical aspects of 4D treatment 

planning and delivery in the context of changing patient geometries, high-light talks were given by 

Marco Schwarz (Proton therapy Department Trento, Italy) and Martijn Engelsman (HollandPTC, 

Netherlands), illustrating requests for a proton TP system and a proton radiotherapy facility 

optimized for the treatment of moving targets. Both talks initiated  active discussions in the 2014 

workshop and are therefore considered as highlight talks. The poster prize 2014 was awarded to a 

contribution of Valeriy Vishnevskiy et al. (Computer Vision Laboratory, ETH Zurich) on “Total 

Variation Regularization of Displacements in Parametric Image Registration” [Vishnevskiy 2014]. 

Slides of the talks and abstracts of all posters can be found at the 2014 4D workshop webpage 

(http://4d-treatment-planning-workshop-2014.cs.ucl.ac.uk/index.html).  

A high-light talk of the 7th edition of the 4D workshop held in 2015 was given by Francesca Albertini 

(PSI, Switzerland) emphasizing the need of further developments in commercially available TP 

planning software in order to treat moving targets with particle beams. Two other keynotes were 

presented by Daniel Low (UCLA, USA) and Guntram Pausch (OncoRay, Germany) on relating external 

and internal motion and the advantages of prospective 4D-CT reconstruction and prompt-gamma 

based in vivo dosimetry and its extension to 4D capability, respectively. The poster prize 2015 was 

awarded to a contribution of Maxim Makhinya et al. (Computer Vision Laboratory, ETH Zurich) on 

“Real-time Tracking of Liver Landmarks in 2D Ultrasound Sequences” [Makhinya 2015]. Slides of the 

talks of the 2015 workshop, the award winning poster and abstracts of all other posters can be 

found at  http://www.oncoray.de/announcements/4d-treatment-planning-workshop-2015/. 

This report focuses on novelties and necessities discussed at the last two 4D workshops in regards to 

the treatment of moving targets mainly considering particle therapy, however also keeping an eye 

on the developments in conventional photon radiotherapy. Section 2 presents the current status on 

imaging, modelling, and predicting motion. In section 3, key points for an “ideal” proton facility and 

an “ideal” planning system in regards to the treatment of moving targets are given. In this context, 

the need for a 4D error simulation platform is discussed. Section 4 gives an overview on 4D QA and 

4D dosimetry and sketches future developments and needs. Finally, section 5 gives a summary and 

an outlook on the next 4D workshop to be held at the end of 2016.  

 

2. Understanding moving patient geometries 

2.1 Imaging motion 

Imaging is crucial when treating moving targets [Bert 2011, Korreman 2012]. For an ideal 

consideration of motion, the patient geometry (target volume and organs at risk) should be 

monitored prior to and during treatment delivery. As the last workshop report discussed [Knopf 

2014], motion monitoring capabilities during radiotherapy are more advanced in photon therapy 

than in particle therapy. However, image guidance in proton therapy is slowly beginning to catch up 

with conventional therapy. In-room imaging in form of in-room CT and CBCT is becoming available 

[Veiga 2016]. Cone-beam CT based proton dose calculations have been investigated [Veiga 2015b, 



Kurz 2015] and the utilization of 4D-CBCT data for dose calculation has been proposed [Cai 2015]. As 

more in room image guidance options become available for particle therapy in the coming years 

there will be a greater opportunity to exploit the dosimetric advantages particle therapy has to offer. 

For motion evaluation prior to treatment 4DCT imaging is still standard. Recently it has been shown 

that prospective 4D CT reconstruction is superior to retrospective reconstruction resulting in less 

artefacts. Dou et al. have proposed a promising implementation that was recently applied clinically 

[Dou 2015]. In order to capture motion variations and drift effects the value of 4DMR has been 

pointed out [von Siebenthal 2007, Boye 2013]. During the recent workshops motion monitoring 

possibilities during treatment delivery without the use of ionizing radiation were discussed.  A 

specific focus was given to the use of ultrasound (US) and magnetic resonance (MR) imaging to help 

optimizing radiotherapy of moving and deforming targets. Talks during the workshop 2014 featuring 

these topics were highlighted in a medicalphysicsweb article [medicalphysicsweb 15 December 

2015].  

In recent years, there has been a trend towards MRI guided radiotherapy. MR offers exquisite soft-

tissue contrast and is highly versatile, capable of imaging a wide variety of structures. The ability to 

visualize lymph nodes, for example, enables the use of stereotactic boost to individual nodes. In the 

context of moving targets, MRI offers the ability to perform 4D imaging, implemented as a repeated 

acquisition of 3D image volumes. Currently achieved temporal resolutions are in the order of 2 s to 3 

s. Further development is needed to obtain real time 4D data acquisition. However, there has been 

recent progress on retrospectively reconstructing 4D-MRI datasets from multi-slice acquisitions 

[Paganelli 2015] and MRI-based 4D-CT generation [Bernatowicz 2016]. It is also believed that online 

MRI can provide a feedback loop to enable gating and beam tracking in clinical routine [Glitzner 

2015, Stam 2013], and there have been initial studies on the effect of the magnetic field on particle 

beams [Oborn 2015, Hartman 2015], and motion prediction from orthogonal cine MRI [Seregni 

2016]. 

Another approach for non-ionizing, non-invasive imaging of soft-tissue motion is to use US guidance 

[Fontanarosa 2015, Western 2015]. US offers many advantages over existing approaches for 

radiotherapy motion management, including superior soft-tissue contrast compared to X-ray 

imaging, no dose, no need for fiducial markers, high temporal resolution, low cost and theoretical 

compatibility with particle therapy [e.g. Schwaab 2014]. US imaging in 3D is possible, enabling 4D 

monitoring of target positions prior to- and/or during treatment. This method is currently being 

developed into a clinical product (Clarity Autoscan (Elekta Ltd.)) for transperineal prostate motion 

monitoring [Lachaine 2013]. For other sites there are, however, a number of challenges to consider. 

Firstly, US waves do not propagate easily through interfaces with high density differences; so direct 

monitoring of anatomy obstructed by ribs and lungs is challenging [Xu 2006]. The useful maximum 

depth for accurate US motion estimation is approximately 20 - 30 cm. In addition, the placement of 

the US probe without impacting the treatment delivery for abdominal sites remains a challenge 

[Zhong et al 2013]. Also, although US imaging is fast, the delays in the image acquisition/capture and 

processing pipeline still introduce a lag, e.g., of down to 20-50ms in 2D for current state-of-the-art 

[Makhinya 2015], often with a trade-off between accuracy and speed. Most current 3D US 

transducers include a motorized linear or curvilinear array which is swept through a defined 

acquisition angle to acquire a 3D volume (i.e. a stack of 2D frames). With a swept array approach, 

acquisition is limited by the motor sweep precision and speed [Harris 2011]. Newer technology, 



developed for echocardiology, which uses a 2D matrix array transducer can create one to two 

thousand volumes per second [Byram 2010]. However, this newer technology is not yet commonly 

applied within radiotherapy [Bell 2012].  Sub-millimetre motion estimation accuracy has been 

demonstrated for the prostate [O'Shea 2014] and liver [Harris et al 2010]. A number of interesting 

approaches for liver feature (blood vessel) tracking have recently been contrasted [De Luca 2015]. 

Several groups are also currently investigating the full potential of US imaging for setup, gating and 

beam tracking applications [Bell 2014, Schlosser 2010, Schwaab 2014], including the use of US to 

track high frequency cardiac motion during (atrial fibrillation ablative) radio-surgery [Bruder 2014]. 

2.2 Modelling motion 

2.2.1 Deformable Image Registration (DIR) 

Deformable Image Registration (DIR) has become an invaluable tool for 4D TP as highlighted by 

many poster contributions, including the prize-winning poster at the 2014 workshop. DIR has many 

potential applications in planning, guiding and assessing RT treatments [Brock 2006, Rietzel 2005, 

Veiga 2014]. Although it is a  powerful tool when used correctly, there was agreement between the 

speakers and participants of the workshops that care needs to be taken to ensure that it is used and 

interpreted appropriately. A warning was given not to have overconfidence in registration results, 

particularly from commercial systems where the inner-working and nuances of the algorithm may 

not be known. 

Understanding the limitations of DIR in relation to its different application is key for its correct use. 

Some applications require ‘descriptive’ results, i.e. they must look good, but do not necessarily have 

to be anatomically correct. For example, when propagating structure delineations from one scan to 

another [Wang 2008] it is important that the structure boundary is aligned correctly, but it does not 

matter if the transformation is incorrect inside or outside the structure. For other applications the 

results must be ‘quantitative’, i.e. they must be anatomically correct even inside homogenous 

structures. For example, when warping doses in order to perform dose accumulation [Zhang 2012, 

Veiga 2015a] any inaccuracies in the transformation will lead to errors in the accumulated dose. 

Achieving reliable results as well as defining appropriate ground truth data is challenging, and in 

general is still an unsolved problem and the focus of on-going research. Furthermore it is important 

that the applied DIR is able to cope with the type of anatomical changes to be expected (e.g. 

shrinkage of volumes vs. preservation of volumes). Most commonly used registration algorithms 

assume a smooth continuous transformation, which cannot correctly model sliding between organs 

or tissue that is present in one scan but not the other e.g. due to tumour growth/regression or 

weight loss. 

It is essential that registration results are validated for each clinical application so that the results 

can be used with confidence and any uncertainties in the results can be incorporated into the TP 

process. Offline validation experiments should be performed to estimate the uncertainty in the 

registration results. These involve estimating the ground truth motion and deformation that has 

occurred, e.g. by manually locating landmark points [Castillo 2009] and structure boundaries [Veiga 

2014] in the images being registered, and comparing these to the motion recovered by the 

registration. This can be a  time consuming and labour intensive process (e.g. it has been shown that 

to get a good estimate of the registration error in the lungs several hundred well distributed 

landmarks should be used [Castillo 2009]), which is subject to intra- and inter-observer errors, and is 



not possible in homogenous regions of the images. Another approach is to use software or hardware 

phantoms [Kashani 2008], where the ground truth motion is known or can be accurately measured, 

but there will always be a question regarding how realistic the phantoms are and how relevant the 

results are to real clinical data (see also Chapter 4). In addition to offline validation studies, some 

form of online verification (e.g. visual inspection) should be performed for every registration result, 

as there is always the possibility of the registration performing significantly worse than in the 

validation studies. Therefore automatic consistency checks of registration results are highly desirable 

for application in clinical practice. Although first ideas in this direction have been proposed, this 

topic seems to be under-investigated so far. 

2.2.2 Surrogate based correspondence models 

During the workshops correspondence models were discussed which relate the internal motion of 

interest (i.e. of the tumour and OARs) to one or more respiratory surrogate signals, such as the 

motion of the skin surface, which can be accurately measured during image acquisition and 

treatment delivery [McClelland 2013]. Such models have a wide range of potential applications in 

RT, including accounting for motion during image acquisition [Rit 2009], when planning RT [Werner 

2012], and when guiding RT delivery [Schweikard 2000], but to date have only seen limited clinical 

use. Their main clinical use has been in guiding RT delivery where they are used in two commercial 

systems: the Cyberknife (Accuray) and the Vero SBRT system (Brainlab). An important point about 

these systems is that they usually model the motion of only a small number of implanted markers. 

The motion of the implanted markers can be easily determined using stereo x-ray images [Zhang 

2013]. This can be used to check the accuracy of the models during treatment, and to update or 

rebuild the models if required.  

There has been much research into correspondence models that can model the motion of an entire 

region of interest rather than just a few specific points [McClelland 2013]. In this case the motion is 

usually determined by applying DIR to a 4D dataset, and then fitting the correspondence model 

relating the registration results to the surrogate signal(s). As such, the afore-mentioned issues in the 

context of DIR also apply to correspondence modelling and translate into model errors, respectively. 

In addition one of the main problems with fitting correspondence models to DIR results is acquiring 

appropriate 4D data. Most currently available 4D imaging methods cannot acquire data over the 

entire region of interest fast enough to ‘freeze’ the respiratory motion. Instead they acquire data 

over several breath cycles, and then sort the data into coherent volumes after the acquisition [von 

Siebenthal 2007, Hugo 2012]. In essence this assumes a particular correspondence model during the 

image formation (although the model is usually not explicitly calculated), and therefore it is at least 

questionable to fit other correspondence models to the 4D dataset. One potential solution to this is 

to use several fast helical CT acquisitions and record the surrogate signal value for each individual 

slice [Thomas 2015]. Another potential solution is to combine the correspondence model fitting and 

DIR into a single optimisation [McClelland 2014], which allows the model to be fitted directly to the 

unsorted ‘raw’ or ‘partial’ data before it is sorted into coherent volumes. 

Other topics discussed at the workshops in the context of surrogate based correspondence models 

included:  



- the use of multi-dimensional surrogate data (e.g. 3D skin surfaces) and appropriate fitting 

methods such as ridge regression, principal component regression, partial least squares, and 

canonical correlation analysis [Wilms 2014] 

- population based models that can be used to estimate the motion for a new subject 

without needing to image the motion for that subject  [He 2010, Preiswerk 2014] 

- the wish for a publically available repository of image, surrogate, and validation data that 

can be used to objectively assess and compare different models (such as is available for DIR 

at www.dir-lab.com [ Castillo 2009]) 

- how different sources of error (e.g. surrogate measurement errors, DIR errors) impact the 

accuracy of the models, how these translate into dose errors, how they can be accounted for 

when planning and delivering treatment, and what magnitude of errors would be considered 

clinically acceptable?  

2.3 Predicting motion 

The estimation or forward-prediction of patient anatomy is an important link in the chain of adaptive 

radiotherapy. Prediction of patient motion can compensate for inherent system latencies, i.e. the lag 

time between the request of an action and its complete execution. Typical latencies are caused by 

the image acquisition time, the image-processing time, computing times and the multi-leaf 

collimator (MLC) travel time among others. Total system latency can add up to anything between 

tens to hundreds of milliseconds.  

A large variety of motion predictors have been studied in the literature: Kalman filters, kernel 

density estimation, linear regression, Markov models, neural networks and support vector 

regression to name only a few [Sharp 2004, Krauss 2011, Ernst 2013]. Prediction is mostly limited to 

the target without considering deformations or the organ-at-risks, which might move differently. 

Prediction success is usually measured in terms of residual geometric misalignment (error) with the 

true target motion. Almost all predictors depend on multiple parameters and the optimisation of 

these parameters is based on a large training sample of previously acquired patient data. Irregular 

motion presents the biggest challenge to motion prediction. Some models are tuned in a “training 

phase” just before treatment or even constantly re-tuned according to the current patient motion. 

This is especially useful for systematic motion events such as baseline shifts.  

It is important to keep in mind that these models are inherently mathematical and not physiological 

which presents a limitation. At the workshop, it was discussed that the development of more and 

more mathematically advanced motion predictors may have reached the point of diminishing return, 

and that a better physiological understanding of patient motion would be needed to advance the 

field further. 

 

3. Treatment of moving targets with proton beams 

For several years, moving targets have been treated with conventional radiotherapy and with 

passively scattered particle therapy.  Recently, particle centres equipped with scanning started 



treating moving tumours. At the MD Anderson cancer centre in Houston and at Scripps proton 

therapy centre in San Diego a subset of lung patients are treated with active scanning [Chang 2010, 

Hui 2011, Kadar 2014, Li 2014, Liu 2014]. The same holds true for the University of Pennsylvania in 

Philadelphia. The proton radiotherapy group in Sapporo will soon start online x-ray image guided 

scanned proton treatment [Shimizu 2014]. Researchers at Heidelberg Ion-Beam therapy centre (HIT) 

have treated liver patients with scanned carbon beams [Habermehl 2013] and the group at National 

Institute of Radiological Sciences (NIRS) started gated scanned treatment for lung and liver 

[Takahashi 2014, Mori 2014, Mori 2016]. These are only a few examples for the rapid clinical 

development towards scanned particle treatments for moving targets. Many new proton facilities 

are solely equipped with scanning and thus will have to use pencil beam scanning SFUD or IMPT 

plans for static as well as moving indications. Participants of the 4D workshops 2014 and 2015 raised 

concerns about this potentially rash development.  

Scanning comes with the choice of a lot of parameters, whose tuning significantly influences the 

treatment quality, especially for moving targets. An optimal parameter combination is indication- 

and patient-specific and to date, there exist no clear guidelines for an optimal parameter choice. The 

following list of acute needs was compiled by the participants of the 4D workshops, which in their 

view are essential for a comprehensive and safe clinical implementation of scanned particle 

treatment for moving targets: 

- standards for initial end-to end test for moving targets 

- clinical guidelines as to which motion mitigation approach should be used in which situation 

and what are acceptable uncertainties 

- guidelines for internal target volume (ITV) and margin construction 

- robust measures to evaluate motion effects (DVHs are not sufficient) 

- standards for motion monitoring during treatment delivery 

- standards for QA procedures for moving targets  

- feasibility of daily retrospective  4D dose reconstruction 

Focus topics during the workshops 2014 and 2015 were optimal facility characteristics and features 

missing in commercially available TP systems for the treatment of moving targets. Especially, gaps 

between the research world and the clinical reality were alluded. The majority of the 4D workshop 

audience agreed that for the next years a focus should be on developments, and efforts should be 

made to bring research outcomes into clinical routine.  

3.1 The “perfect” proton facility for treating moving targets 

Moving tumours have been treated with mainly double-scattered proton / particle beams utilizing 

gated delivery since several years with promising outcome and low toxicity (Oshiro 2014, Nguyen 

2015, Berman 2015). Although most of these patients were treated with double scattered beams 

and only a fistful of particle centres have the experience of actually treating moving targets, active 

beam delivery seems to be the preferred option for lung cancer treatment in the future for the 

majority of particle centres, as revealed by a survey. Likewise, vendors and customers share this 

view [De Ruysscher 2015]. 

A state-of-the-art or “perfect” proton facility should be capable to deliver an optimal, secure and 

effective treatment to patients with various, but probably not all, tumour entities, including mobile 



indications. Speakers at the workshop claimed that pencil-beam scanning in combination with 

motion mitigation techniques like gating, breath hold and rescanning should be capable to address 

under realistic circumstances approximately 80% of these cases. According to the workshop 

participants, beam tracking approaches are seen as rather hypothetical and are unlikely to be 

implemented clinically anytime soon. Essential for a modern proton facility is the availability of 

gantries in a multiple rooms (2-3) setup with continuous beam-sharing between all rooms. Especially 

to address moving targets, a scanning system with layer switching times in the order of 0.5 to 1.5 

seconds and lag-times (reaction time) below 0.3 s or even lower for large amplitudes [Prall 2014] 

should be realized.  

Important for the handling of moving targets are appropriate imaging capabilities. Orthogonal x-ray 

imaging systems, as implemented for the majority of photon treatment facilities, were pointed out 

to be insufficient in the context of treating moving targets with protons as they do not provide 

accurate enough 3D information. Cone-beam or diagnostic CT would be desired instead, preferably 

to enable in-room imaging at the iso-centre. For dose validation, online dose recalculation should be 

enabled with additional techniques in place to assess the effectiveness of dose degradation 

management techniques [da Silva 2015a, da Silva 2015b]. Options currently discussed for range 

verification are prompt gamma or in-vivo PET measurements.. In order to evaluate the wide 

parameter phase space in the context of the treatment of mobile targets with scanned particles, it 

was suggested to develop a community-supported freeware platform to perform comprehensive 4D 

error simulations (see also summary of discussed topics in section 2.2). 

To realize a state-of-the-art or “perfect” proton facility it was pointed out that a close collaboration 

between research, development and the clinic is essential. In the recent years a gap between 

research and development has been established. Current research often focuses on limited parts of 

a problem and rarely provides comprehensive, technologically mature solutions. While new exciting 

findings get published and praised, the development until implementation of new findings often 

remains unrewarded and undone. Furthermore, tight clinical schedules, financial pressures and the 

reluctance to move on to new protocols hinder developments. To overcome these struggles, 

participants of the workshop agreed that clinical, academic and commercial organisations have to 

work closely together.  A competition in terms of the applied clinical treatment quality should be 

prevalent and should predominate publication contents.  

3.2 The “perfect” planning software for treating moving targets 

Different TP strategies for mobile targets  have been investigated in the last years, including beam-

specific target volumes [Knopf 2013, Lin 2015], optimized spot scanning patterns [Brevet 2015, Li 

2015b, Liu 2015], and various motion mitigation techniques [Schätti 2014a, Schätti 2014b, Dueck 

2015, Gassberger 2015, Zhang 2015]. The clinical implementation of developed algorithms into 

certified TP systems, however, still lags behind. Available are quasi-static approaches that calculate 

dose on different phases of a 4DCT, on an average CT or based on a maximum intensity projection 

CT.  For a realistic evaluation of motion effects it is essential to consider the geometrical changes in 

the patient (and the timeline of the delivery in the case of scanned proton therapy) in a dynamic 

way. To do so reliable dose accumulation algorithms are needed based on standardized DIR 

algorithms [Zhang 2012]. 

Features that are desired for the treatment of moving targets with particle beams are:  



- DVH uncertainty bands: Simulations have shown that small changes in the initial conditions 

can have a significant impact on 4D dose distributions. Therefore it is recommended to 

compute 4D dose distributions for a meaningful set of initial conditions and present dose 

distributions with error bars. DVH uncertainty bands have been proposed long time ago 

[Goitein 1985] and their importance has been highlighted in recent publications [Trofimov 

2012, Hild 2013]. However they are still not available in commercial TP systems.  

- Dedicated margin recipes: ITV definitions used in photon radiotherapy are insufficient as 

pointed out in the past [Rietzel 2010, Graeff 2012]. Due to particle specific range 

uncertainties, beam-specific margin concepts have been suggested [Knopf 2013, Lin 2015], 

but have not been implemented clinically to assist target volume definition during TP.  

- 4D optimization: Several approaches have been studied over the years. Eley et al. 

investigated the possibilities of 4D optimization in beam tracking with a scanned carbon 

beam [Eley 2012]. Graeff et al. developed a more general framework for 4D optimization 

based on subdividing the target volume to ease the technical demands in the optimization 

[Graeff 2013]. Worst case robust optimization for lung cancer has recently been shown to 

result in treatment plans not only robust against setup and range error but also improving 

insensitivity against anatomy changes throughout therapy [Li 2015a]. However, 4D 

optimization approaches only start to get incorporated in commercial TP systems. 

In the context of moving targets, an essential requirement for TP systems is efficiency and 

computational speed.  To efficiently cope with the increased amount of medical images in the 

context of moving targets, contouring procedures have to be automated and contour propagation 

has to become more robust. This again demands reliable and standardized DIR algorithms. A 4D TP 

system should be capable to adapt the dose on a daily basis without causing delays in the general 

treatment workflow. Preferably, this would include the capability to perform online re-planning in 

order to instantaneously react to a changing patient geometry [Hild 2016]. 

While most TP systems rely on analytical beam models, Monte Carlo dose calculation methods might 

improve the exactness of the resulting dose distributions [Paganetti 2012]. Generally, MC 

calculations come at the expense of increased calculation time which needs to be countered by the 

use of modern computer architecture [Jia 2012, Souris 2014]. However, Monte-Carlo computation 

time does not have to scale with the number of CT phases in a 4D CT, and might therefore become 

beneficial for 4D robust TP in the future. 

During the workshops, representatives of commercial vendors of TP systems were faced with the 

various demands by the research community, emphasizing the need of further development. 

 

4. 4D QA and 4D dosimetry 

 A recurrent topic of discussion at the 4D workshops is the question of what is available and what is 

still needed in terms of 4D QA and 4D dosimetry. Motion management techniques such as ITV 

concepts, gating, beam tracking and rescanning require validation. Independent dose recalculations 

that allows for 4D dose reconstructions have been proposed for 4D plan QA. Meier et al. showed 

that QA based on independently reconstructed dose distributions is favorable to pencil beam by 



pencil beam comparisons for the detection of delivery uncertainties and the estimation of their 

effects [Meier 2015].  

In vivo dosimetry is of immanent importance, especially in particle therapy. There is a noticeable 

interest of vendors to participate and collaborate actively in the integration of at least 3D particle 

therapy dosimetry in terms of hardware development e.g. for prompt gamma measurements and 

algorithmic implementations like the prediction of treatment plan specific PET distributions in a 

commercial TPS. This was one of the reasons why it was selected as special focus for the 2015s 

edition of the workshop. Among the studies that have been performed, mostly 4D-PET has been 

investigated, taking into account patient motion during the post-treatment acquisition. In-beam PET 

is still challenging for clinical applications due to the high signal rate and limited time resolution of 

the detectors [Sportelli 2014]. In this context, the measurement of prompt gammas and charged 

secondary particles emitted along the beam path during the irradiation of a single spot is a 

promising on-line monitoring technique. Currently, prompt gamma based methods are of great 

research interest using either the spectroscopic, spatial or temporal distribution of the prompt 

gammas [Verburg 2014, Hueso-González 2015]. This topic gained a big momentum over the last 

years. In particular, at the beginning of 2007, a single publication existed about prompt gamma 

imaging [Min 2006]. Now prompt-gammas are commonly recognized as one of the most promising 

methods for in-vivo range verification in particle therapy. Dose/range monitoring based on the 

detection of charged secondary particles is a further promising approach. The evidence of the 

correlation between the position of the Bragg peak in tissues and the emission shape of charged 

secondary particles produced in the patient has been already demonstrated [Piersanti 2014] and a 

detector, which is feasible to obtain this information on-line is currently under construction 

[Marafini 2015]. 

First in man application of prompt gamma monitoring technique has been demonstrated recently 

[Richter 2016]. As gammas are promptly emitted and the currently used detectors offer a sufficient 

timing resolution, an extension to 4D prompt gamma techniques is feasible and should be further 

investigated. Once the 4D information from in vivo imaging methods will be available, it could be 

processed and used not only for range or dose distribution monitoring but also for 

calculation/reconstruction of the 3D dose deposition for each individual pencil beam spot or possibly 

considered as a motion surrogate. For these reasons, time resolved range monitoring techniques, 

which are still in an early research and development stage, could become part of the 4D 

problematics in the future and face similar challenges of 4D treatments in the translation to clinical 

routine. 

4D dosimetry is often performed in physical phantoms. These should mimic the geometry of a 

typical patient, both in physical properties such as density and stopping power, as well as the 

physical dimensions and anatomy. Compared to static phantoms geometries, phantoms developed 

for validating treatments in moving geometries face a much higher complexity. A moving phantom 

requires, in addition to afore-mentioned criteria, a realistic tumor motion and relative motion of the 

target with respect to modeled bony anatomy. Some ingenious and complex phantoms have been 

manufactured and reported in the literature, reproducing the dynamics commonly present in the 

irradiation of abdominal or thoracic tumours. Phantoms produced by Kashani et al. [Kashani 2007], 

Vinogradskiy et al. [Vinogradsky 2009], Serban et al. [Serban 2008] and Perrin et al. [Perrin 2014] 

included a deformable lung, even more closely mirroring realistic patient anatomy. Others have 



attempted to use ex-vivo organs [Markel 2015], one of which was reported at the 4D workshop itself 

[Mann 2015]. 

For dosimetry purposes it is also essential that the phantom contains compartments or inserts that 

can accommodate dosimetric devices, for the tumor target. Ideally the dosimeters would have a 

high spatial resolution, have an online read-out, be water-equivalent and have little or no energy 

dependence. These criteria are extremely difficult to fulfill in one device. Steidl et al. [Steidl 2012] 

have reported a promising approach, building a detector head from pinpoint chambers for online 

absolute dose measurements, and with channels for inserting film, for high spatial resolution 

measurements, albeit with an arduous offline read-out. Another promising approach from Court et 

al. [Court 2010] employed MOSFET detectors within a 3D printed tumour, inserted into a 

anthropomorphic thorax phantom. High spatial resolution detectors with an online readout, suitable 

for insertion into internal cavities of anthropomorphic phantoms, should be the focus of ongoing 

research in order to move away from time-consuming and error-prone film dosimetry. 

The extension of the dosimetric capabilities to include implantable dosimeters in models of critical 

normal tissues found in the thorax, such as the lung, heart and esophagus, would increase the power 

of deformable phantoms to verify candidate treatment plans with different motion management 

techniques. For example, in proton therapy, planning concepts have been reported in which density 

override is employed in the ITV [Chang 2014]. The target will be covered at all phases of the 

respiratory cycle, while there will be significant overshoot of the proton pencil beams in phases 

when the beam does not meet the tumor along its path. This extra lung dose, not “seen” in the dose 

distribution performed on 3D CT, should be taken into account. Commercially available dynamic rigid 

phantoms, such as the CIRS dynamic thorax phantom1 allow for this, but deformable phantoms 

should also be developed to fulfill this need. 

Dynamic anthropomorphic phantoms can also be used to validate 4D dose calculation techniques. 

An important step in this type of calculation is to sum up doses in a reference image, and 

increasingly DIR algorithms are being applied for this step. However, the accuracy of a given DIR is 

precarious and needs to be benchmarked (see also section 2.1). Phantoms containing a high degree 

of detail can serve as a ground truth for benchmarking [Kashani 2007, Serban 2008]. Inserted 

features distributed over the deformable structure were necessary to provide the DIR with enough 

detail to achieve an accurate registration. 

During the workshops it was discussed that for anthropomorphic phantoms there is an inherent 

trade-off between anthropomorphic behavior, on the one hand, and dosimetric precision and 

reproducibility on the other. As a case in point, compare the dynamic, anthropomorphic phantom, 

LuCa, developed at the Paul Scherrer Institute [Perrin 2014], with the thorax phantom, PULMONE, 

developed at the Institute of Cancer Research [Nioutsikou 2006]. The former, LuCa, is constructed of 

an inflatable lung within a deformable rib cage frame; the tumor moves passively with inflation and 

deflation of the lung. The latter, PULMONE, is a solid, water-filled shell with cavities containing 

sponge-filled accordion-style bottles. Its tumor is coupled to a motion platform, and is moved by 

stepper motors. LuCa has a 3D nonisotropic lung deformation mimicking the physiological mode of 

breathing. In both phantoms the motion type is freely programmable, inputted as a list of control 

points in an ASCII file. However in the LuCa phantom the motion type depends on the day-to-day 

                                                           
1Computerized Imaging Reference Systems, Inc. Norfolk, Virginia 23513, USA. 



elastic properties of the lung upon inflation and deflation, causing limited reproducibility. PULMONE, 

on the other hand, can produce precise and reproducible motion patterns. However, due to the fact 

that there are two main deformable components in LuCa the rib cage and the lung, it produces more 

realistic conditions for dose verification. Thus, there is a trade-off between precision, reproducibility 

and anthropomorphic behavior. 

In summary, combining the requirements for a dosimetry and imaging in one phantom has proved to 

be challenging due to conflicting requirements: reproducibility and high precision dosimetry. During 

the workshops, it was concluded that promising phantoms have been developed and with further 

work could be improved by employing detectors with online measurements and including more 

dosimetric points in normal tissue structures. 

 

5. Conclusion and Outlook 

This report has summarised the different topics discussed during the 4D workshops 2014 and 2015 

and the opinions of speakers and participants expressed at these workshops. Options for imaging 

motion for particle therapy are now starting to catch up with what is available in photon therapy. 

The uses, and the limitations, of deformable image registration are starting to become better 

understood. There has been promising research on the use of surrogate driven motion models, 

though currently they are still the focus of on-going research rather than clinical translation. The 

workshop participants agreed that the growing number of proton therapy facilities equipped with 

scanning beam requires a rapid clinical development to enable the treatment of moving targets. 

Proton gantries offering high beam rates and a quick beam energy switch could be optimal to treat 

moving organs. The workshop participants agreed that the incorporation of in-room CT and motion 

monitoring devices should be aimed for. In terms of an ideal TPS, high computational speed, 

allowing for daily dose adaptation and on-line re-planning, as well as prospective and/or 

retrospective analysis of different motion mitigation approaches is desired. 4D dose distributions 

and DVHs should display uncertainties resulting from different motion scenarios and/or different 

motion mitigation procedure. Furthermore, a recurring topic of the 4D workshops are dedicated 

anthropomorphic phantoms to perform 4D treatment plan verification. Different models are being 

adapted or developed to reproduce a realistically moving anatomy, guaranteeing high dosimetric 

precision and reproducibility of the results. 

Talks and poster presentations at the last two 4D workshop  mainly covered a wide range of issues 

related to characterizing motion (motion imaging, modelling and predicting) and related to the 

application of time resolved therapy mainly with protons (treatment planning, delivery and 

verification). In 2014, a special focus of the workshop was on image guided (ion beam) therapy and 

on motion modelling. At the workshop 2015 workshop, 4D treatment planning using commercial 

systems, Monte Carlo approaches and robust optimization, and the capabilities of online dose 

verification for moving targets were discussed as special topics.  

The participants of the 4D workshops are convinced that, while there is still much research to be 

done, more efforts are now required to translate the promising outputs from recent research into 

clinical application. The formation of an ESTRO workgroup on particle therapy that will also cover 4D 

aspects will support this direction and focus the needs of clinical practice and communicate them to 



the industry, as does the 4D workshop.  Along this line the next 4D workshop will take place at the 

end of 2016 at the University Medical Centre Groningen (UMCG) in the Netherlands. Recently the 

construction of UMC Groningen Proton Therapy Centre (GPTC) started on the site of the UMCG. The 

GPTC will consist of a cyclotron and two treatment units with 360˚ gantries, which are dedicated for 

pencil beam scanning and equipped for image-guided and adaptive proton therapy. GPTC will be one 

of the centres implementing new 4D treatment concepts in the coming years and thus, Groningen is 

an ideal venue for the next 4D workshop. If you are interested in receiving details of the next 

workshop please write an email to 4Dworkshop.aknopf@gmail.com.While the community 

represented by the 4D workshop is keen on reaching out to the conventional radiotherapy world, a 

return to the roots of the first workshop focusing mainly on particle therapy is foreseen A small 

number of representatives of commercial vendors will be allowed to take part at the workshop to 

accelerate the impact of findings into clinical routine.  
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